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ROUTE SYSTEMS AND BIPARTITE GRAPHS

LApisLAV NEBESKY, Praha

(Received January 3, 1989)

Route systems, which are defined in the present paper, generalize the systems of all
shortest paths of connected graphs. The route systems which are the systems of all
shortest paths of connected bipartite graphs will be characterized here.

We first make some conventions concerning sequences. Let V be a finite nonempty
set. We denote by & (V) the set of all sequences (uy, ..., u;) such that j = 1 and
#y,....,u;jeV. Let k 21, and let vy, ..., v, € V; if we denote a = (vl, ..., ), then
we shall write |al =)k and @ = (vk, . vl). Let m = 2,let ny,...,n, =1, and let
Witseoos Wings oovs Wty -5 We € V5 if we denote

Bi=(Wigs-eos Win,) s

then we shall denote by (By, ..., B,) the sequence

(Wigs ceos Wings ceos Wit <oes Wi, ) -

Moreover, we denote by #(V) the set #y(V) L {w}, where o is the empty sequence
with the properties that |o| = 0, @ = o, and (w,y) = (y, w) = y for any y e #(V).
We denote by (V) the set of all sequences (u,, ..., ;) such that j = 1, and u,, ...
..., u; are mutually distinct elements of V. Finally, we denote (V) = &y(V) U {w}.

We shall say that an ordered pair (V, £) is a route system if Vis a finite nonempty
set, # < o/)(V), and the following axioms are fulfilled:

I. f e e #, then a € X,
IL ifa,ye A(V), Be Ly(V), and («, B, y) € &, then fe &;
L ifu,veV,a B,y,6€ A(V), and (o, u, B, v,7), (4, 6, v) € Z, then
(o, 1,0,0,7) € R;

IV. for any distinct u, v € V there exists o € &(V) such that (4, «, v) € .
Let (V, 2) be a route system. Then elements of V will be referred to as vertices, and
elements of Z will be referred to as routes. Let u and v be vertices, and « be a route;
ifeither u = vand & = () or u % vand there exists f € (V) such that a = (u, B, v),
then we say that a is an u — v route.

By a graph we mean a finite undirected graph with no loop or multiple edge, i.e.
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a graph in the sense of [1], for example. Let (V, #) be a route system. By the graph
of (V, #) we mean the graph G such that the vertex set ¥(G) of G is identical with V
and the edge set E(G) of G is defined as follows:

uve E(G) ifand only if (u,v)eZ.

for any distinct u, ve V.

We say that a route system (V, £) is on a graph G, if G is the graph of (V, Z).
Obviously, every route system is on exactly one graph.

Let (V, #) be a route system, and let G be its graph. As follows from Axiom IV,
G is connected. If we denote by 2 the set of all paths of G, then Z = 2 < (V).
(Sometimes, paths of a graph are considercd to be alternating sequence of vertices
and edges. But in the present paper, paths of a graph are considered to be sequences
of vertices).

Let G be a connected graph. Put V = V(G). If u, v € V, then we denote by d(u, v)
the distance between u and v in G. Let w,, w, € V, and let « be a w, — w, path of G;
obviously, |«| = d(w,, w,) + 1; we say that « is a shortest w, — w, path of G if
|«| = d(w;, w,) + 1. Let B be a path of G; we shall say that B is a shortest path of G
if there exist u, v € Vsuch that f is a shortest # — v path of G. Let 2 denote the set
of all shortest paths of G. It is easy to show that (V, 2) is a route system. We shall say
that (V, 9) is the basic system on G. If G is not a tree, then there exists a route system
on G different from the basic system on G. It is not difficult to prove that for every
spanning tree T of G there exists Z; = & y(V) such that each path of T belongs to Zr
and (V, #7) is a route system on G.

Let (V, #) be a route system. For any u,ve V we denote by #,(u, v) the set of
all w e V' such that there exists t € V' — {w} with the properties that (w, t) € £, t belongs
toa w — u route, and t belongs to no w — v route. Moreover, we define

#(Wl’ Wz) = #o(wn Wz) Y {W1}
for any wy, w, € V. Under the condition that (V, ) is the basic system of a con-
nected graph, the mapping # has been studied in [2].

Proposition 3 in [2] can be reformulated as follows: if (¥, £) is the basic system
on a connected graph G, then G is bipartite if and only if #(u, v) N #(v, u) = {u, v}
for any distinct u,ve V such that uv e E(G). In the present paper we shall prove
a much more general result:

Theorem. Let (V, &) be a route system, and let G be the graph of (V, &). Then
the following statements are equivalent:

(1) #(u, v) N #(v, u) = {u, v} for any distinct u, v € V such that uv e E(G);

2 for any mutually distinct x, y,z€ V such that yz eE(G) there exists
a € (V) with the property that either (x,a, y, z) € Z or (x, a, z, y) € &;

(3) (V, R) is the basic system on G and G is bipartite.
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Proof. (1) = (2). Let (1) hold. Consider any mutually distinct x, y, z € ¥ such
that yz € E(G). We wish to prove that there exists a € &( V) such that either (x, o, ), z)
or (x,a,z,y) is a route. To the contrary, we assume that neither (x, «;, y, z) nor
(x, 25, z, p) is a route for any a, € #(V). According to (1), x ¢ #(y, z) N #(z, y).
Without loss of generality we assume that x ¢ #(y, z). Denote x; = x. Thete exists
B, € (V) such that (x,, By, y) is a route. Since (x,, By, y, z) is not a route and
x; ¢ #(y, z), there exist y,, 8y, € #(V) and x, € V such that B; = (yy, x,, ),
(x4, 715 X2, B2, z) is a route, y does not belong to f,, and no vertex of &, belongs
to any x; — z route. Since neither (x,, &, y, z) nor (x,, @y, z, y) is a route for any
a, € &(V), Axiom III implies that neither (x,, a5, ¥, z) nor (x5, 5, z, y) is a route
for any o, € (V). Since no vertex of &, belongs to any x,— z route, Axiom III
implies that no vertex of d, belongs to any x, — z route, and therefore, x, € #(y, z).
As follows from (1), x, ¢ 4(z, ). Obviously, (x,, B, z) is a route. Since (x5, 5, z, y)
is not a route, there exist y,, &,, B3 € &(V) and x5 € V such that f, = (7, X3, 5,),
(%2, y2, x3, B3, ¥) is a route, z does not belong to f;, and no vertex of d, belongs to
any x, — y route. Since neither (x,, o, z, y) nor (x,, oz, ¥, z) is a route for any
a, € #(V), Axiom 1II implies that neither (x3, a3, z, y) nor (xs, o3, y, z) is a route
for any a3 € (V). Since no vertex of J, belongs to any x, — y route, Axiom III
implies that no vertex of d, belongs to any x; — y route, and therefore x; € #(z, y).
As follows from (1), x5 ¢ #(v, z). Since (x,, 7y, X5, 5, ¥) and (x, ¥,, X3, B3, y) are
routes, Axiom III implies that x, x,, X3 are mutually distinct.

If we continue our construction, we get a sequence (X, X5, X3, ..., Xy + 1) of mutual-
ly distinct vertices of V, which is a contradiction. Hence there exists a € &/(V) such
that (x, a, y, z) or (x, a, z, y) is a route, and (2) holds.

(2) = (3). Let (2) hold. Obviously, G is connected. If (V, #) is the basic system
on G, then it easily follows from (2) that G is bipartite. Therefore, we need to prove
that (V, £) is the basic system on G.

Consider arbitrary u, v € V. We wish to prove that for any shortest # — v path &
of G and any u — v route { it holds that £ is a route and ( is a shortest path of G.
We proceed by induction on d(u,v). The case when d(u,v) = 0 is obvious. Let
d(u,v) = 1.

Consider an arbitrary shortest u — v path & and arbitrary u — v route {. Put
m = d(u, v) and n = [(] — 1. Obviously, m = |¢| — 1 and m < n. It £ and { have
a common vertex different from u and v, then — by using the induction assumption
and Axiom III — jt is not difficult to prove that £ is a route and { is a shortest path.
We shall now assume that ¢ and { have no common vertex different from u and v.
Conscquently, there exist mutually distinct vertices Xy, ..., X, V1, ..., Vo Such that

&= (Xq,...s Xm ¥;) and
C =(x1’ym“‘a yl)' )
Obviously, x; = u and y; = v. Denote

&= (X ooos Xy Yoo yi) And G = (Xpo ooy Xgy Vs ooy Vi)
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for each k e {1, m}. Clearly, ¢, = £ and {; = (. Since ¢ is a shortest path and ¢
is a route, we can see that £, and {, are paths of G, for each k € {1, ey m}

We now prove the following auxiliarly statement:

(4) if {; is a route, then &; is a route, for any je{l,...,m} .

Consider an arbitrary je{1,...,m}. There exist mutually distinct vertices
Ugyeoes Uy, Uy, ..., U, such that

(5) ¢ =(uy,...,u,,v,) and
(6) {; =(u1,v,,,...,1_)1).

Clearly, {ty, ..., Uy, vy, ...s0,) = {X15.o0s Xy Y15 -o0r Yaj. Now, let {; be a route.
Obviously, if m = 1, then £; is a route. Assume that m = 2. Let d(uy, v)) < m — 1
according to the induction assumption {; is a shortest u; — v; path of G, and thus
|¢;| £ m;but || = n + 1 > m, which is a contradiction. Thus, we may assume that
d(uy, v,) = m. Therefore, &; is a shortest path. It follows from the induction as-
sumption that (u,, ..., %,) is a route. According to (2) there exists y € (V) such
that either (uy, y, vy, w,,) or (uy, 9, w,, v,)is a route. We first assume that (uy, y, vy, 1,,)
is a route; since {; isa route, Axiom IIT implies that (ul, Dy - -5 U1, W) IS also a route;
since d(u;, um) = m — 1, it follows from the induction assumption that (u,, v,, ...,
vy, U,,) is a shortest u; — u,, path; thusn 4+ 1 = m — 1, which is a contradiction.
We now assume that (u,, 7, 4, v,) is a route; since (uy, ..., %,,) isa route, Axiom
III implies that &; = (ul, ey Uy vl) is also a route, which completes the proofof(4).

Recall that ¢ = ¢, and { = {;. Since { is a route, it follows from (4) that ¢ is also
a route. It remains to prove that { is a shortest path of G; in other words, to prove
that m = n. To the contrary, we suppose that n > m.

Denote

Cm+1 = (yl’ Xpps vo05 X15 Vs o5 ym+1) .

We distinguish the following cases and subcases:

1. Assume that {,,, is a route. Since {; is a route, Axiom III implies that

(ylﬂ LS} ym xl’ ym LR} ym+ l) iS a route. BUt (yl’ cens Yo xl’ yn~ LR} ym+1) ¢ 'MN(V)’
which is a contradiction with the definition of a route system.

2. Assume that {,,,; is not a route. Since {; is a route, there exists je {1, ..., m}
such that
(7) {;is a route but {;,; is not a route .

We express &; and {; as in (5) and (6), respectively. Since ; is a route, it follows
from (4) that &; is a route.

2.1. Assume that m = 1. It follows from (2) that there exists 6 € (V) such that
either (v, 6, uy, v;) or (v,, 8, vy, u,) is a route. Recall that (uy, v,. ..., v;) is a route.
If (v,, 8, uy, v;) is a route, then according to Axiom II1 (v,, 8, uy, v,, ..., v;) is a route,
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but (v,, 8, ty, Oy, ..., ;) ¢ NV, which is a contradiction. Similarly, if (v,, 6, vy, u,)
is a route, then (v,,, O, 05 +ns Uy ul) is a route, which is also a contradiction.

2.2. Assume that m = 2. As follows from (2), there exists ¢ € &/(V) such that
either (u,, @, 05, v;) or (42, @, vy, v,) is a route.

2.2.1. Assume that (u;, @, v,,0;) is a route. Since d(u,,v;) < m — 1, it follows
from the induction assumption that (u,, ¢, v,, v;) is a shortest path, and therefore,
|¢| < m — 3. Since (uy, U, ..., U, v;) and (u,, @, v,,v;) are routes, we have that
{(uy, uy, @, v, v,) is a route. Since lp| < m — 3 and (uy, u,. @, v,) is a route, we
have that d(u,, v;) £ m — 1. Since (uy, v,, ..., v,) is a route and d(u,, v,) £ m — 1,
it follows from the induction assumption that (uy,v,,...,v,) is a shortest path.
Thus, n £ m, which is a contradiction.

2.2.2. Assume that (u,, @, v,, v;) is not a route. Then (u,, @, v,, v,) is a Toute.
According to (2), there exists § € o/(V) such that either (v2, ¥, u,, uy) or (v, ¥, Uy, uy)
is a route.

2.2.2.1. Assume that (v,,y, u,, u,) is a route. Since (u,, ¢, vy, v,) is a route,
we have that (v,, vy, @, 4, u,) is a route. Since (u,,v,, ..., v,) is a route, we have
that (v,, vy, 03, ..., U, t4;) is a route, which is a contradiction.

2.2.2.2. Assume that (v,, ¥, u, uy) is not a route. Then (v,, ¥, uy, u,)is a route.
Since (uy, vy, ..., v;) is a route, we have that (u,, u,, v,, ..., v,) is a route. This means
that {;,, is a route; which is a contradiction with (7)

Thus, we have received that m = n. Consequently, we have proved that (3)
holds.

(3) = (1) Let (3) hold. Obviously, G is connected. If | V| < 2, then (1) holds trivial-
ly. Let [V] 2 3. Consider arbitrary adjacent vertices u and v of G. Let we V — {u, v}.
Since G is connected and bipartite, we can see that either d(w, u) = d(w,v) — 1 or
d{w,v) = d(w,u) — 1. We first assume that d(w,u) = d(w,v) — 1. It is obvious
that if o is a shortest w — u path of G, then («, v) is a shortest w — v path of G.
Hence, w ¢ #(u, v). Similarly, we can show that if d(w,v) = d(w,u) — 1, then
w ¢ #(v, u). Thus, we have that w ¢ % (u, v) N #(v, u). This means that (1) holds.

The proof of the theorem is complete.
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