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0. Many classical theorems concerning metrizability of topological spaces are
well known (see e.g. [7], [12]). Different generalizations of metric spaces have been
considered (see e.g. [8]). Presently, some general approaches to the problem of
metrizability have been studied (cf. [9], [5]).

In this paper, a new approach to this subject is presented (cf. [18], [17]). This
approach is based on the theory of sequential convergence understood as a subset
of XV x X, where X is an arbitrary set. Apart from natural conditions F, U, S, H
that are usually assumed, and an operation G — G* which assigns to any convergence
G the smallest convergence containing G and satisfying the Urysohn condition, a few
conditions of diagonal type are intreduced. Using these simple notions and conditions
it is possible to give characterizations of convergences generated by real functions
(Proposition 1) and functions having some additional properties like triangle con-
dition (Proposition 2) and symmetry (Proposition 4). This leads to a characterization
of metrizable convergences (Theorem 1) and topologies (Theorem 2) as well as to
a characterization of metrizable topologies for paracompact spaces (Theorem 3).
In this way characterizations of some generalized metric spaces like quasi-metrizable
(Proposition 3), symmetrizable and semimetrizable (Proposition 5), and y-spaces
(Proposition 6) are also obtained.

Proofs of sufficiency of a few metrization theorems like those of Alexandroff-
Urysohn, Nagata-Smirnov and Moore are shown as examples of applications.

The paper develops some ideas of [18]; Propositions 1,2 and Theorem 1 are
generalizations of Theorems 1 —3 presented there. The proofs presented in the paper
are elementary; they are based only on sequential methods.

1. Let X be an arbitrary set and G a convergence on X, i.e. G = X" x X, where N
is the set of all positive integers. If {(x,), x) € G, then we say that the sequence (x,)
is convergent to x in G and write x, = x(G) or simply x, — x. In the case of two
or more indices, we write e.g. x,,, =" X to emphasize which of them tends to infinity.

The following conditions are considered in literature (see e.g. [10] and [16];
in [16] these conditions appear as (L;), where i = 0, 1,2, 3).
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F. If x, = x, then x, — x for each subsequence (x,,) of (x,).

U. If each subsequence of (x,,) contains a subsequence (xq") such that x, — x,
then x, — x.

S. If x, =xforn=1,2,..., then x, - Xx.

H. If x, » x and x, = y, then x = y.

Given a convergence G, we define a convergence G* in the following way:

x, = x(G*) if each subsequence of (x,) contains a subsequence (x,,) such that
Xq, = X(G).

This operation is close to the notion of a base of convergence defined by M. Dolcher
in [6] (see also [14]). Namely, if G5 = G and B, is the family of all sequences con-
vergent to x in Gy, then B, is a base of G at x. Conversely, if B, is a base of G at x
and G, is defined as follows: x, — x(G,) if (x,) is a subsequence of some sequence
belonging to B,, then G§ = G.

Remark 1. [f a convergence G satisfies condition F, then G* is the smallest con-
vergence containing G and satisfying the Urysohn condition U. Moreover, G satisfies
conditions S and H iff G* does.

We shall say that a convergence G is generated by a real function f: X x X — Rif
x, = x(G) iff f(x,x,)—0,

where the convergence on the right is the usual convergence of a sequence of real
numbers.

Remark 2. For any function f the convergence G, generated by f satisfies conditions
F and U. Moreover, f(x, x) = 0 iff G, satisfies condition S. If G, satisfies conditions
S and H, then f(x, y) = 0iff x = y.

In the sequel, we shall assume that all convergences satisfy condition S and all
functions generating convergences are non-negative.

We shsll follow [7] and [8] in using topological notions and notation.
2. The following diagonal condition has been introduced in [18]:

D,. If x,, »"x for m = 1,2,..., then x,, = x.

Additionally, consider the following weaker condition

D}. If x,,, »"x for m = 1,2, ..., then there is an increasing sequence (p,) of
positive integers such that x,, , — x.

. Suppose that X is a first-countable topological space and {U,(x): U,+4(x) = U,(x)
for n = 1,2,...} is a base of neighborhoods at x € X. Define the convergence Gy:

X, = X(G,) if x,eU,x) for n=12 ...
Note that G, fulfils conditions F, D, (and so D}), and Gy is the convergence
generated by the topology of X.
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On the other hand, one can easily construct an example of a convergence G
satisfying conditions F, U, S, H, and thus generated by a topology (cf. [13], see
also [10]), such that an arbitrary topology that generates G is not first-countable,
although G = G} for some convergence G, satisfying conditions F and D,.

The following simple example explains the difference between conditions Dj
and D,. ‘

Let X = N U {x,] and let 2 be a family of (increasing) subsequences of natural
numbers with the following properties: two elements of 4 have no common sub-
sequence, each sequence of natural numbers has a common subsequence with an
element of 4. (In the most essential case, when Z is infinite, the existence of such
a family follows from Kuratowski-Zorn Lemma.)

Define a convergence G, on X:

x, > x(G,) if x,=x foreach n=1,2,... and x = x,,
X, = xo(Go) if x,=1x, foreach n=1,2,... or (x,)
is a subsequence of an element of % .

One can easily check that the convergence G, satisfies D but does not satisfy D,.

Condition D, for a convergence G, is equivalent to the following one: there is
a family of subsets {V,(x); n = 1,2, ... x € X} such that (for each n e N and x € X)
x € V,(x), Vo4 1(x) = V,(x) and ‘

x, = x(G,) iff x,eV, (x) foreach neN.

This implies some relations to the ideas presented in [9] and [5], where certain families
of sets have been considered. In particular, it is easy to show that in the case of
a topological space X a family {¥,(x); n = 1,2, ... x € X} inducing the convergence
in X is a network but, in general, it need not be a neighbornet (cf. [8], [9]).

Proposition 1. A convergence G is generated by a function iff there is a convergence
G, satisfying conditions F and D such that Gy = G.
Proof. Let (c,) be a sequence of real numbers such that

(1) 41 =¢, <1 for n=1,2,... and ¢, > 0.
If G is generated by a function f, then the convergence G, defined by
(2 x, = x(Go) if f(x,x,)<¢, for n=12,..

satisfies conditions F and D,, and Gg = G for any sequence (c,) satisfying condition
(1).
Now, assume that G, satisfies conditions F and D, and Gy = G. Let {(x}): 2 € A}
be the family of all sequences convergent to x in G,. Let (c,) satisfy condition (1).
Define a function f: X x X — R in the following way:

inf{c,;n=1,2,...} if y = x} forsome AeA and neN,
(3) flxy) = {l otherwise .
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Let x, = x(G,) iff f(x, x,) = 0.
It is easy to check that G, = G§ (cf. [18], Theorem 1).
A function f is said to satisfy the triangle inequality if

(&) f(x,y) £f(x,2) + f(z, 9) .
If, moreover, f(x, y) = 0 if x = y, then the function f is called quasi-metric

(see e.g. [8] p. 488).
We introduce the following diagonal condition:

D,. There is an increasing sequence (p,) of positive integers such that if x,,, =" x,,
form=1,2,... and x,, = x, then x,, , — X.

Proposition 2. A convergence G is generated by a function satisfying (A) iff
there is a convergence G, satisfying conditions F and D, such that G = G. The
convergence G is quasi-metrizable (generated by a quasi-metric) iff G, additionally
satisfies condition H.

Proof. If a convergence G is generated by a function f satisfying condition (A),
then putting ¢, = 1/2" for n = 1,2, ... in formula (2) we get a convergence G,
satisfying condition D, with p, = n + 1 (n = 1,2,...). In fact f(X,s 1, Xpr 1 n41) =
< 1/2"" and f(x, x,44) < 1/2""1 imply, by (A), f(X, Xp41,0+1) S 1/27, which, by
formula (2), is equivalent to X, .41 = X(Go)

Now, suppose that a convergence G, satisfies conditions F and D,, and let (p,,)
be a sequence of positive integers that appears in D,. Then G, satisfies conditions F
and D/, whence the convergence G = G is generated by a function, in view of
Proposition 1.

Define the following sequences:

4 Gp=pn  (n=12..),

dn,i = Pgp,i-1 (l :2,3,-.., n = 1,2,...)
and
(5) ‘1n=(12,n (n=1,2,...).

Obviously, (g,) is an increasing sequence of positive integers.
Moreover, put

)N if n <gq,
©) c"‘{l/z“ i oqesn<gu, (n=12.).

Assume that the function f that generates G is given by formula (3) with the
sequence (c,) given by formula (6).
We shall show that

(7) f(x,y) £ V2)max [f(x, z), f(z, y)] forevery x,y,zeX.

Following [18] (Theorem 2), we shall consider three cases.
First case: max [f(x, z), f(z, y)] = 1.
Inequality (7) is evident.
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Second case: max [ f(x, z), f(z, y)] = 0.
By (3). z, = x(Go) and y, = 2z(G,) for z, = z and y, = y (n = 1,2,...). By con-
dition D,, y, = x(G,), so f(x, y) = 0.

Third case: max [ f(x, z), f(z, y)] = 1/</2 for some k € N.
By conditions F, S and formula (3) it follows that there are a matrix (x,,) and
a sequence (x,,) such that

Il
N

Xm = X(Go), X,
and

Xpn 2" Xm(Go) (M =1,2,...), Xgp0 =1V
Let y, = x,, ,, for n =1,2,.... By condition D,, y, = x(G,). Moreover, by (4)
and (5),

y = X‘lk,‘]k = x‘ll,k,‘ll.k = quz,k~l'pqz,k—l = Xl’llk—-nl’qk—x = y‘Ik-x .
Therefore, by (3) and (6), we have f(x, y) < 1/2*~* which completes the proof of (7).

From (7) it follows that

(3) f(x, y) £ 2max [f(x, 1), (¢, 2), f(z, »)] forevery x,t,z,yeX.

Inequality (8) implies by induction (see e.g. similar proofs in [4], [2] p. 300, [7]
p. 527) that for each positive integer k and t;€ X (i = 0, 1, ..., k) such that 1, = x
and t, = y we have

9) S y) £ 2(f(to, ty) + f(ts, 12) + oo + f(temy, 1)) -
Define
g(x, y) = inf {f(to, t;) + fty, 12) + oo 4 f(lx—1s te): tos tys ooy EX
to =X, t, =y, keN}.

Evidently, the function g fulfils condition (A). Moreover, by inequality (9), we have

11(x,y) £ g(x,y) = f(x ).

This proves that the functions f and g generate the same convergence. This, by
Remark 2, completes the proof.

Since a quasi-metric generating a convergence G induces the finest of all topologies
that generate G, hence in the case of topological spaces we obtain:

Proposition 3. A topological space X is quasi-metrizable iff it is sequential and
there is a convergence G, satisfying conditions F,H and D, such that G} is the
convergence generated by the topology of X.

Remark 3. In [8] (p. 489) the following condition equivalent to quasi-metrizability
of a topological space (X, ) is considered:

There is a function g: N x X — 7 such that

(i) {g(n, x); neN} is a base at x,

(i) yeg(n + 1,x) = g(n + 1, y) < g(n, x).

207



Putting x, = X(Go) iff x, € g(n, x) for all ne N, we get conditions D, and D,
(with p, =n 4+ 1 forn=1,2,...).

A symmetric function g, i.e. such that g(x, y) = g(y, x) is called a symmetric
if g(x, y) = 0 implies x = y (sec e.g. [8] p. 480).

There are many ways of describing convergences that are generated by sym-
metric functions (cf. [18]).

In this paper, we shall use the following condition:

(%) If x, = x, then there is an increasing sequence (p,) of positive integers and
a matrix (x,,) (m,n =1,2,...) such that x,, »"x, and x,, = x for each
positive integer n.

1

Proposition 4. A convergence G is generated by a symmetric function iff there is
a convergence G, satisfying conditions F, D} and () such that Gy = G. Moreover,
if G satisfies condition H, then it is generated by a symmetric.

Proof. If a convergence G is generated by a symmetric function f, then evidently
the convergence G, given by formula (2) with (c,) given by (1) satisfies conditions
F, Dy, (*) and Gy = G.

Conversely, suppose that a convergence G, satisfies conditions F, D}, (*)and
G = Gg. Let f be given by formula (3) and

(10) g(x, y) = max [f(x, y), f(v, x)] .

Denote by G, the convergence generated by the function g. We shall show that
G, = G. Evidently, G, = G. On the other hand, if x, = x{G), then x,, = x(G,) for
an increasing sequence (g,) of positive integers. By (x) and (3) we have f(xq,,, x) = 0,
s0, by (10), g(x, x4,,) = 0 or, equivalently, x,,, — x(G,). Since G, satisfies condition U
we get G, = G as desired. It is easy to see that under condition H the convergence G
is generated by a symmetric.

Recall (see e.g. [8] p. 480) that a topological space X is symmetrizable if there is
a symmetiic g on X satisfying the following condition: U = X is open iff for each
x € U there exists ¢ > 0 which B(x, ¢) = U, where B(x,¢) = {y € X; g(x, y) < ¢&}.

o

If {B(x, ¢); ¢ > 0} forms a neighborhood base at x, then X is called semi-metrizable.

Proposition 5. A4 topological space X is symmetrizable (semi-metrizable) iff it is
sequential (Fréchet) and the convergence in X is generated by a symmetric.

Proof. Since semi-metrizable spaces are just symmetrizable and Fréchet (cf. [8]
Theorem 9.6), it remains to prove only the first part.

Sufficiency. It follows directly from Lemma 9.3 in [8].

Necessity. Let g be a symmetric for G, i.e. x, = x(G) iff g(x, x,) = 0. Let U be
open in a sequential topology generating G and let x € U. Then x, — x(G) implies
x, € U for almost all n. We shall show that there is ¢ > 0 such that B(x, ¢) = U.
Indeed, in the opposite case for each ¢, > 0 there is x, ¢ U such that g(x, Xp) < En
i.e. x, » x(G) (if &, - 0), a contradiction.

208



If U is not open then there is x e U and a sequence (x,) such that x, —» x
(9(x, x,) = 0) and x,, ¢ U. It follows that B(x, &) ¢ U for each & > 0. This completes
the proof.

If we combine Propositions 2 and 4, we easily obtain

Theorem 1. A convergence G is metrizable (i.e. generated by a metric) iff there
is a convergence G, satisfying conditions F, H, D, and (%) such that Gy =G.

Using the same arguments as in the case of Proposition 3, we have

Theorem 2. A topological space X is metrizable iff it is sequential and there is
a convergence G, satisfying conditions F, H, D, and (%) such that Gg is the con-
vergence generated by the topology of X.

Corollary 1. (The Alexandroff-Urysohn metrization theorem, cf. [1], see also [7]
p. 413.) A topological space X is metrizable iff it is a Ty-space and has a deve-
lopment W |, W ,, ... such that

(ll)for every positive integer n and any two sets Wy, W, € # ., with non-empty
intersection there exists a set We W', such that Wy 0 W, < W.

Proof of sufficiency. Notice that X is first-countable, so it is sequential. Define
the convergence G:

x, = x(Go) if x,eSt(x,#,) for each positive integer n .

Evidently, Gy is the convergence generated by the topology of X. By (11),
St(x, #i+,) < St(x, #7;) for each i € N, hence G, satisfies condition F. Condition (*)
follows from the fact that x € St(y, #7,) iff y € St(x, #7,).

Assume that x, = x(G,) and x, = y(G,), i.e. x,€St(x, #",) and x, € St(y, #,)
for n = 1,2, ... or, equivalently, x € St(x,, #7,) and y € St(x,, #) (n = 1,2,...).
Thererore, by (11), x € St(y, #7,-,) and y € St(x, #,_,) for n = 2,3,... which,
by T,, implies x = y.

To prove condition D, assume that x,,, =" x(Go) (m = 1,2, ...) and x,, = x(G).
In particular, x, € St(x,, #7) and x, € St(x, #7) for each ke N. By (11) we have
Xu € St(x, #Wy—q) for k = 2,3, .... Therefore, putting p, = n + L forn =1,2,...,
we have x,, , — X, which proves D,. It remains to apply Theorem 2.

3. Let us introduce the following two conditions:

Dj. If Xpy =" X, for m = 1,2, ... and x,, = x, then X, , — x for an increasing
sequence (p,) of positive integers.

(#*) If x, > x and y, — x, then there is an increasing sequence (pn) of positive
integers and a matrix (X,,) (m,n =1,2,...) such that x,, »"x, and
Xus = Yp, fOr each positive integer n.

Remark 4. Evidently, D, implies D} and () implies (). Moreover, if f is a metric,
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then the convergence G, defined by formula (2) (with (c,) given by (1)) fulfils con-
dition (*x).

Lemma 1. If a convergence G, satisfies conditions F and D', then there is a con-
vergence G, satisfying conditions F and D, such that G5 = G7.

Moreover, G, can be chosen in such a way that

(i) if G, satisfies condition D}, then G, does;

(i) if Go satisfies condition (*x), then G, does.

Proof. Let a convergence G, satisfy conditions F and D} and let a function f be
given by formula (3) with a sequence (c,) satisfying (1).

Define a convergence G, as follows:

X, = x(Gy) if f(x,x,)<e¢, for n=12 ...

Then G, < G, and G, satisfies condition D;.
Moreover, we have

(12) if x, - x(G,), then there is a matrix (x,,) (m,n =1,2,...) such that
Xpn " x(GO) and x,, = x, for each positive integer n.

By (12) and due to condition D7 for Gy, it follows that if x, = x(G,), then there is
an increasing sequence (p,) of positive integers such that x, — x(G,). Therefore
G = G,

Now, suppose that x,, =" x,(G,) for m =1,2,... and x, — x(G,). Since
x,,. = x(G,) for an increasing sequence (p,,) of positive integers, there exists a matrix
(V) such that y,, >"x, (Go) and y,, = x,,,. (n =1,2,...), in view of (12) and
condition F for G,. Therefore, if G, satisfies condition D} then there is an increasing
sequence (g,) such that X, .. = X(Go). Consequently, G, satisfies condition D}
because G, = G,.

Similarly we see that if G, satisfies (*x), then G, does.

Lemma 2. If a convergence G, satisfies conditions F, D, and D}, then

(13) for every x there is an increasing sequence (p,,) of positive integers such that
if X =" X0(Go) (m = 1,2,...) and x,, > x(G), then x,, , — x(G,).

Proof. Let (x,,) be a matrix such that x,, =" x,(G,) for m =1,2,... and
X = x(G,). Notice that x,, = x(G,) by F and D}. By F, D, and D), it follows that
for each k € N there is an index i, such that for each i > i, there is a sequence (y,;)
such that y,; »" x(G,) and y,; = x;;.
Indeed, in the opposite case there would be an increasing sequence (r,,) of positive
integers such that no subsequence of (x,,,,,) would be convergent to x in G,.
Therefore there is an increasing sequence (g,) of positive integers (chosen for the
matrix (x,,)) such that

(14) Xgoraw = X(Go) iff g, =g, foreach n=1,2,...,

PnsPn

where (g,) is an arbitrary increasing sequence of positive integers.
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Now, suppose that (13) does not hold, i.e. there is a sequence of matrices (xkn)
(k = 1,2,...) such that x5, =" xk(Go) (m, k = 1,2,...), xt >™ x(Go) (k = 1,2, ...)
and gy, " oo for some index ny, where (g}) are the sequences having property (14)
and chosen for the matrices (xk,), respectively (k = 1,2, ...).

We may assume that
(15) gr,=k+1 for k>n, and ¢f_ <M< oo if no+1.

Consider the matrix (xj,). Since xj, »" x{(Go) (k = 1,2,...) and, by Dy, x} -
— x(G,), conditions D, and F imply the existence of an increasing sequence (p,)
of positive integers such that

Pn
xpml‘n

-»x and p,=I1>M.

Put

. - {x{hu,q". for n * ny,
" X1 for n=n,.

By D, we have z, - x(G,). By (15), q;, — 1 = I > g, _;. We have got a contra-
diction to the definition of the sequence (q,',)

Lemmas 1 and 2 make a characterization of y-spaces in terms of condition D)
possible. Recall (see e.g. [8] p. 491) that a topological space (X, 1) is said to be a y-
space if there exists a function g: N x X — 7 such that

(i) {g(n, x); ne N} is a base at x,

(if) foreach ne N and x e X there exists me N such that ye g(m, x) implies

g(m, y) = g(n, x).

Proposition 6. A topological space (X, 1) is a y-space iff it is sequential and there
is a convergence G, satisfying conditions F and D), such that G} is the convergence
generated by the topology t.

Proof. Assuming, in a y-space, x, = x(G,) iff x, € g(n, x) for each ne N we get
a convergence with the required properties.

Conversely, suppose that a convergence G, satisfies conditions F and D). By
Lemma 1 we may assume that G, satisfies also condition D,. For each x € X and
k =1,2,... define Vi(x) = {y € X; there is (x,), x, > x(G,), ¥ = x;}. Then x, -
— x(G,) iff x, € V,(x) for all n € N. By Lemma 2 it follows that for each n € N there
is m € N such that y € V,,(x) implies V,,(y) = V,(x). Then in the topology introduced
by the family of sets {V,(x)} (see e.g. [11] p. 19) the sets ¥,(x) form a base of neigh-
borhoods at x and for each open set U and x € U there is k € N such that y € V;(x)
implies ¥(y) = U. By the result 4.3 in [9] this completes the proof.

Lemma 3. Let a convergence G, satisfy conditions F, Dy, (13) and (¥x). If x;, -
- xO(GO), then there is an increasing sequence (p,,) of positive integers such that
Xp..pn = X(Go) whenever x,,, =" x,(Go) (m = 1,2,...) and x,, > x,(G,) for some
k=0,1,....
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Proof. Suppose that a convergence G, satisfics conditions F, D, and (13) with
a sequence (p,) at a point x.

Given a matrix (x,,,) and a sequence (x,,) such that x,,, =" x,(Go) form = 1,2, ...
and x,, = x(G,), we have x,, , — x(G,) for an arbitrary increasing sequence (g,)
such that g, = p, for all n = 1,2, .... Moreover, given a point x € X, there are an
increasing sequence (p,) of positive integers, a sequence (y,) and a matrix (y,.,)
with the following properties:

1° You =" ¥u(Go) for m =1,2,...;

2° ym = x(Go);

3° Ygoan = X(Go) iff g, = p, for each n = 1,2, ...

For arbitrary k = 0, 1, ... denote by (p}), (%) and (»},) sequences and a matrix,
respectively, satisfying 1°—3° for the point x.

Now, suppose that the assertion of the lemma does not hold. Then there is an
index ng such that sup {pi: ke N} = +oo.

We may assume that

(16) pk, >k and sup{pk_,:keN;, <M< .

Then, putting
c {xk if n=#+ng

" W i on=mng

t

we get
(17) zx +" x,(Gy) for k> M,

in view of (16) and D,.

Since yi, =" ¥i(G,) for k = 1,2,..., yk 5" x(G,) for k =1,2,... and x, -
— xo(Go), we have yI —— x,(G,), where g, = ppo (n=1,2,...), by applying
condition (13) twice. Since x,, — xo(Gy), condition (17) yields a contradiction
to (*x). This completes the proof.

By Lemmas 1, 2, 3, Remarks 1, 4 and Theorem 1 we directly obtain the following
propositions:

Proposition 7. Suppose that a convergence G is compact, i.e. every sequence
contains a convergent subsequence in G. Then G is metrizable iff there is a con-
vergence G, satisfying conditions F, D}, H and (x) such that G = G.

Proposition 8. If a convergence G, satisfies conditions F, D3, H and (xx), then
the convergence Gy is locally metrizable, i.e. for every x there is a sequential
neighborhood U(x) of x and a metric that generates the convergence G, on U(x).

The converse is not true. It is easy to give an example of locally metrizable space
with a convergence G such that there is no convergence G, satisfying condition D}
for which Gf = G.

Proposition 9. If a topological space X is sequential and there is a convergence G,
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satisfying conditions F, D}, H and (**) such that G¥ is the convergence generated
by the topology of X, then X is locally metrizable.

Since any paracompact locally metrizable space is metrizable (cf. [19]), we obtain
the following characterization:

Theorem 3. Let X be a paracompact space. Then X is metrizable iff it is sequential
and there is a convergence G, satisfying conditions F, D5, H and (**) such that Gg
is the convergence generated by the topology of X.

Corollary 2. (The Nagata-Smirnov metrization theorem, cf. [15], [19], see also
[7] p. 351.) A topological space is metrizable iff it is regular and has a o-locally
finite base.

Proof of sufficiency. Let %, %,, ... be a sequence of locally finite, open covers
forming a base and such that %; < %;,, for i =1,2,....

It is easy to see that the space X is paracompact (see e.g. [7] p. 376, Th. 5.1.11).
Moreover, X is first-countable; the sequence U, = {NU: xe U,Ue%,} (n = 1,2, ...)
is a base of open neighborhoods at x.

Let ¥"; = {Vi;: Ae A;} for i = 1,2, ... be the sequence of closed covers formed
by the closures of sets from %;, respectively. Evidently, ¥7; (i = 1, 2, ...) are locally
finite.

Define

Z,={NZy:Z;, ="V, or Z;; =cl(X — V), where V;; €77} for
AeA;

i=1,2,....

It is easy to check that &; is a locally finite, closed refinement of ¥7; for each
i=1.2,....
Now, we introduce a family of convergences G, (k =1,2,...):

x, = x(G,) if x, € St,(x, Z,) for each n = 1,2, ..., where St,(x, Z,) = St(x, Z,)
and
St(x, Z,) = St(Sty_(x, Z,), Z,) for k=23, ...

Evidently, the convergences G, satisfy condition F. We shall show that Gf is the
convergence generated by the topology of X for each k =1,2,.... This and the
regularity of X imply, in particular, that G, satisfy condition H.

Notice that if Ue %, and V < U, then St(V, Z,) = U. Moreover, since Z,, is
locally finite, we have x e int St(x, Z,). Hence, by the regularity of X, Gy is the
convergence generated by the topology of X.

To show that G, fulfils condition D (k = 1,2,...) notice that if y e St,(x, Z,)
and zeSt(y, Zn), then zeSty(x, Z,). In other words, if x,, >"x,(G,) and
X, = X(G,), then x,, = x(Gz). This, by Gy = G3,, implies the existence of an
increasing sequence (p,) of positive integers such that x,, , — x(G,).

In a similar way we can show that G, fulfils condition (#x).
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Hence each of the convergences G, satisfies all conditions that are required in
Theorem 3. This completes the proof.

In particular, we have got

Corollary 3. (The Urysohn theorem, cf. [21], [22], see also [7] p. 325 Thms.
4.28, 4.29.) A regular (or Hausdorff and compact) second-countable space is
metrizable.

Finally, we shall show an application of Theorem 3 to a proof of the Moore
theorem.

Corollary 4. (The Moore metrization theorem, cf. [3], [20], see also [7] p. 409.)
A topological space is metrizable iff it is a Ty-space and has a strong development.

Proof of sufficiency. Let %,, %,, ... be a strong development such that %, is
a refinement of %; foreach i =1,2,....

Define x, — x(G,) if x, € St(x, %,) for each n = 1,2, ....

Evidently, G, satisfies condition F and Gj is the convergence generated by the
topology of X. In a similar way as in Corollary 1 we can show that G, satisfies
condition H. Notice that for every x and each positive integer n there is a number p,
such that St(St(x, %, ), %,,) < St(x. %,). This directly implies condition D}.

Now, suppose that x, = x(G,) and y, = x(G,), i.e. x,€St(x,%,) and y,€
€ St(x, %,) for each n =1,2,.... Hence there are sets U,,, U,, €%, such that
x,€Uy,, y,€U,, and xeU,,nU,, =U,. Since x,— x(G,) and y, - x(G,),
there is a number p, such that x, € U, and y,, € U,, so x, € St(y,,, %,)-

Consequently, the convergence G, fulfils condition (xx).

To complete the proof, it remains to apply first-countability and paracompactness
of X.

T wish to thank Professor A. Kaminski for his valuable remarks.
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