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1. INTRODUCTION

The notion of a cyclically ordered group is due to Rieger [17]. A representation
theorem for cyclically ordered groups has been proved by S. Swierczkowski [18].
Further results on cyclically ordered groups were established in [2], [3], [4], [7],
(8], [9], [11], [19], [20] and [21]. Cf. also [5], Chap. IV, § 6. In [22], [23] and [24]
more general notion (which can be termed a partially cyclically ordered group) was
dealt with.

The completion d;(G) of a cyclically ordered group G has been defined in [2].
The elments of d(G) are certain cuts of G as introduced (in a more general setting)
in [16]. The cyclically ordered group G is called complete if it coincides with d,(G)
(under the natural injection of G into d,(G)).

If G, is a subgroup of a cyclically ordered group G, then G, is always considered
to be cyclically ordered by means of the inherited cyclic order.

Linearly ordered groups can be viewed as a particular case of cyclically ordered
groups.

We can introduce the notion of a closed subgroup of a cyclically ordered group
in such a way that for the particular case of linearly ordered groups this notion has
the usual meaning. (Cf. Section 3 below.)

Assume that G is a subgroup of a cyclically ordered group H. If for each closed
subgroup G’ of H with G = G’ the relation G’ = H s valid, then H is said to be
c-generated by G.

For each cyclically ordered group G we denote by %(G) the class of all complete
cyclically ordered groups H such that

(a) G is a subgroup of H;

(b) H is c-generated by G.

The elements of ¥(G) will be called c-closures of G.

In the present paper it will be proved that for each cyclically ordered group G the

class %(G) contains, up to isomorphisms, only one element, namely d,(G).
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This generalizes a result of [10] concerning lineatly ordered groups (the case of
archimedean linearly ordered groups was dealt with earlier in [13]).

Let us remark that if %(G) is the class defined in an analogous way for the case
when G is a lattice ordered group, then there can exist, in general, a subclass €,
of %(G) such that %, is a proper class and the lattice ordered groups belonging to %,
are mutually nonisomorphic. (Cf. [13], [14].) A similar situation occurs in the theory
of Boolean algebras [15] and of vector lattices [6].

2. COMPLETIONS

This section can be viewed as a continuation of [2] Some new results on comple-
tions of cyclically ordered groups will be established; they will be then applied in
Section 3 to investigate the relations between completions and closures.

For the basic notions and notation concerning cyclically ordered sets and cyclically
ordered groups cf. [2], Section 1. '

A cyclically ordered group will be written as (G; +, [ ]); if not missunderstanding
can occur, then we write G instead of (G; +, [ ]).

Let C(G) be the completion of the cyclically ordered set (G; [ ]) (cf. [16] or [2],
Section 2). We recall the following definjtion (cf. [2], p. 161).

Let G, be a subset of C(G) with G = G,. Suppose that a binary operation + is
defined on G, such that the following conditions are fulfilled:

(i) (Gy; +,) is a cyclically ordered group (under the cyclic order inherited from
C(G)).

(ii) (G; +) is a subgroup of (Gy; +).

Then (Gy; +,) is said to be an extension of G in C(G) (we shall write G, instead
of (Gy; +14)).

Let Cy(G) be the set of all extensions of G in C(G). For Gy, G, € Co(G) we put
G, £ G, if G, is a subgroup of G,. Then Co(G) turns out to be a partially ordered
set. If Co(G) possesses a greatest element d,(G), then d,(G) s said to be a completion
of the cyclically ordered group G.

In [2] it has been proved that the completion d,(G) does exist for each cyclically
ordered group G. )

Let K be as in [2], Section 1. The largest lincarly ordered subgroup of a cyclically
ordered group G will be denoted by G, (cf., e.g., [2], Lemma 13). It is obvious that G,
is a normal subgroup of G.

First, let G, = {0}. In [2] it was shown that d,(G) = G if G is finite, and d,(G)
is isomorphic to K if G is infinite.

Next, let G, # {0}. In [2], Section 6, a cyclically ordered group G, was construc-
tively described and it was proved ([2], Theorem 6.2) that G, is a completion of G.

In the rest of this section we assume that G, {0}
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Let g € G. For g(1) and ¢g(2) in g + G, we put g(1) < g(2) if the relation
(1) g(1) =9 =9(2) - ¢
is valid in G,.
If g’ is another element of g + G, then in view of ¢ — g’ € G, (1) is equivalent to
d)—g+(@-9)=92)-9+(g-9):
hence the relation < on the set g + G, is independent of the particular choice of the

element g of the set g + G,.

The following assertion is obvious (it was expressed already in [2]).

2.1. Lemma. Let g € G. Then the relation £ on g + G, is a linear order. For
each g’ e g + G, the mapping t > t + g’ (where t runs over G,) is an isomorphism
of the linearly ordered set G, onto g + G,.

22. Lemma. Let g€G, {x;};c; S g + Gy, xe€g + Gy, 1€ G. Assume that x =
= Via X; holds in g + G,. Then

x+t=Vg(xi+1), t4+x=Vi(t+x)
arevalid ing + t + G,.

Proof. We have {x; + t};,,; S g+ 1+ Gy and x + teg + 1 + G,. Next, 2.1
yields x — g = Vi (x; — g) in G,. By applying 2.1 again we obtain that

(x=9)+(@+1)=Via((xi —9) + (g + 1))

holds in g + ¢ + Gy, hence the first of the desired assertions is valid. The scond
assertion can be proved similarly.

Analogously we can verify the assertion dual to 2.2.

Let D(G,) and m(G,) be as in [2] (Sections 4 and 3). In view of [2], p. 165 we can
assume that D(G,) S C(G); because of m(G,) = D(G,) we obtain m(G,) = C(G).

Let H' be a completion of G. According to [2], Lemma 5.6, m(G,) is asubgroup
of H'. Since m(G,) is a linearly ordered group we get m(G,) < Hy. Thus m(G,)
is a subgroup of Hy,.

Let h’' € Hy. Then [2], Lemma 6.3 yields that there is g € G such that g + I’ €
em(Gy). If g¢ Hy, theng + h'eg + b’ + Hy = g + Hy # Hy, which is a contra-
diction. Therefore g € Hy. Hence the subgroup of H generated by g is linearly
ordered. Thus g belongs to G, = m(G,). Then we have h'e m(G,). Summarizing,
we conclude that Hy = m(G,). Thus from 6.1, 6.2 and 6.3 in [2] we obtain:

2.3. Lemma. Let H' be a completion of G. Then

(i) Ho = m(G,);

(ii) for each h' € H' there is g € G such that h' € g + Hj,.
In what follows, H' has the same meaning as in 2.3.

2.4. Lemma. Let g € G. Next, let {g,} ;c; and {g,} ;c; be subsets of g + G such that
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the relations

Nier jes (9;—9)=0, Aierjes (—9: + gj) =0
are valid in G,. Then there is a uniquely determined element h' € H' such that
B = Viag; = Njes 9; is valid in g + Hy,.

Proof. Put g} = g; — g and g; = g; — g for each i€l and each je J. Then
g5 — g9;i =9, — gi, whence Aiecrjes (97 — 9;) =0 holds in G, Similarly,
Aier jes (—gi + g}) = 0 is valid in G,. Thus according to [1] there is b} € m(G,)
such that
(1) Vier 9: = Nies 95 = hy
holds in m(G,). Then in view of 2.3 (i), the relation (1) is valid in Hy. Hence according
to 2.2, the relation

Vi 9: = Aje.l g; = hy + g
holdsing + H. Now it suffices to put i’ = h} + g. The uniqueness of the element b’
is obvious.

Now let H” be any cyclically ordered group such that

(a) G is a subgroup of H”;

(b) Hg = m(Go);

(c) for cach h” € H” there is g € G with h" e g + Hg,.

If h” € H", then we consider the linear order < on the set h” + Hg which is defined
in an analogous way as in 2.1. Let g be as in (¢c). If te Hn G, then t + g€
e (h" + Hg) 0 G (since Hy is a normal subgroup of H”). In view of (b), each element
of Hg is a join of some elements of Gy; thus according to 2.2 we obtain:

2.5. Lemma. Let h” € H". Then there is a set {g;}iq S » + 6) N G such that
h' = Vi g

In a dual way we obtain:

2.6. Lemma. Let h" € H". Then there is a set {gj}je, c (" + Hg) n G such that
h" = /\jeJ gj-

2.7. Lemma. Let h" € H". Next, let {g;};; and {g,};e; be as in 2.5 or 2.6,respec-
tively. Then Nier jes (9; — 9;) = 0 and Ajejes (—9: + g;) = 0 are valid in G,.

Proof. By way of contradiction, assume that the first assertion of the lemma fails
to hold. Then there is 0 < ¢ € G, such that g; — g; Z cin G for each i €I and each
jedJ. If iel, then in the linearly ordered set h” + Hy = g + Hy (where g is as
in (c) above) we would have g; = x; + ¢, from which we obtain R > x; + ¢,
hence h” — ¢ = x; and thus h” — ¢ = h”, which is a contradiction. The second
relation can be proved analogously.

Let us remark that in the proof of 2.4 we have used only the fact that G < H' and
the conditions (i). (ii). Thus in view of (a), (b) nad (c) above, 2.4 remains valid if H’'
is replaced by H”; let the corresponding assertion be denoted as Lemma 2.4,
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28. Lemma. Let geG, {gi}ia S 9+ Go. W'eg + Hj. Assume that h' =
= Vier 9; is valid in the linearly ordered set g + Hg. Then there is h" € g + H
such that h" = Vi g; holds in g + Hg.

Proof. Let us apply Lemma 2.6 for H' instead of H” and for the element #’. Thus

there exists a set {g,};c; in g + G, such that A, g; = 0. In view of 2.7 (applied
for i’ and H') the relations

Aiet jes (gj —-g) = Aiel,jeJ(—gi + gj) =0
are valid in G,. Hence according to 2.4’ we obtain that there is h” € g + Hg such
that h” = V. g; 1s valid in g + Hy.

2.9. Lemma. Let g € G, {g;}ic; S g + Go, {gibxex S 9 + Go, h' € g + Hy. Assume
that ' = Vi1 9i = Viek 9x is valid in the linearly ordered set g + Hy. Let h”
be as in 2.8. Then h" = V,x g, holds in g + Hj.

Proof. According to 2.8 there is h"(1)e g + Hg such that h"(1) = Viek g; is
valid in g + Hg. We have to verify that k" = h"(1). By way of contradiction, suppose
that A" % h"(1). Then without loss of generality we can assume that h” < h"(1)
in g + Hg. Hence h'(1) — h” > 0 is valid in Hj = m(G,). Thus there is 0 < c € G,
such that ¢ < h"(1) — A" is valid in H{. Let {g,} ;c; be as in the proof of 2.8. In view
of 2.7 (applied for h', H', {gi}icx and {g;};c;) We obtain that Asersex (9 — g:) = 0
is valid in G,. But

g—9g:Zh ()= h"zc (iel, keK)

is valid in Hg, whence g, — g; = ¢ is valid in G, for each i el and each keK,
which is a contradiction.

2.10. Lemma. Let g, {g;};; and h’ be as in 2.8. Next, let g(1), {gi1)}iyercr)
and (i) have analogous meanings. Then Ve (9 + giry) = I+ W(1)
is valid in g + g(1) + Hy,.

Proof. According to 2.2 we have

h + h'(l) = Vi(l)sl(l)(h, + 9i1) = Vier Vi(l)el(i)(gi + Gin) =
= Vierinern (9 + giny)
in g + g(1) + Hj.

2.11. Lemma. Let h'(1), h'(2), h'(3)e H'. Then [h'(1), h'(2), h'(3)] if and only
if some of the following conditions is fulfilled:

(i) there are distinct elements g;.9,,g5€ G such that h'(i)eg: + Hy (i =
=1,2,3) and [g,, 9,, 93]

(i) there are gy, g3 € G such that h(1)e g, + Ho, h(2) e g, + Ho, h(3)egs +
+ Ho, 93¢ 91 + Hy and h(1) < h(2) in g, + Hg;

(iii) there are g,,9, € G such that h(2), h(3) € g, + Hi, g, ¢ g, + Hy and
h(2) < h(3) in g, + Hy;
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(iv) there are g,,g5€ G such that h(1), h(3)eg; + Hy, g, ¢9g5 + Hy and
h(3) < h(1) in g5 + Ho;
(v) there is ge G such that (1), k(2), H(3)eg + Hy and some of the con-
ditions
h1) < h(2) < h(3) or h(2) < h(3) < k(1) or h(3) < h(1) < h'2)
isvalid in g + Hy,.

Proof. This is an immediate consequence of 2.3 and 2.1.

We define a mapping ¢ of H' into H” as follows.

Let h' € H'. According to 2.5 (applied for k' and H’) there is a subset {g;}
of (K" + Hy) 0 G such that h' = V4 g; holds in h' + H{. Next, there is g e
e(h’ + Hy) N G. Let h” be as in 2.8. Then we put (k') = h".

It is casy to verify that h” docs not depend on the particular choice of the clement g
of the set (h" + Hg) n G. This fact and Lemma 2.9 imply that the mapping ¢ is
correctly defined.

Next, 2.8 yields that ¢ is an injection. From 2.5, 2.6, 2.7 and 2.4 we obtain that ¢
is surjective. Further, from 2.10 and from the assertion analogous to 2.10 concerning
H"” we infer that ¢ is a homomorphism with respect to the operation +. Summarizing,
we have

2.12. Lemma. ¢ is an isomorphism of the group H' onto H".

2.13. Lemma. Let h(1), h(2)e H' such that h(1) — h(2)e Hy and h(1) £ h(2)
in the linearly ordered set h(1) + Hy. Then o(h(1)) < ¢@(h(2)), and conversely.
Proof. This is an immediate consequence of the definition of ¢.

2.14. Lemma. ¢ is an isomorphism of the cyclically ordered set H' onto the
cyclically ordered set H".

Proof. This follows from 2.13 and 2.11.

It is obvious that ¢(g) = g for each g € G.

The following Theorem is a consequence of 2.3, 2.12 and 2.14.

2.15. Theorem. Let G be a cyclically ordered group with Gy # {0}. Let H' be the
completion of G and let H" be a cyclically ordered group such that G is a subgroup
of H". Then the following conditions are equivalent:

(o) There is an isomorphism ¢ of H' onto H" such that ¢(g) = g for each g € G.

(B) H" satisfies the conditions (b) and (c). ‘

3. CLOSURES

If (L; <) is a linearly ordered set, then the cyclic order on L which is generated
by the linear order < will be denoted by [ ]<. More thoroughly: for distinct elements
a, b and c of L we put [a, b, ¢]< if and only if

(1) a<b<c or b<c<a or c<a<b

is valid.
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Let H be a cyclically ordered group. A linear order on the set H will be called
admissible if the cyclic order [ ]< coincides with the original order [ | defined on H.

Let G° be a subset of a cyclically ordered group H. Consider the following con-
dition:

(c,) If < is an admissible linear order on H, § = X < G°, and if h is an element
of H such that the relation & = sup X holds in (H; <), then h e G°.

If the condition (c,) and also the condition (c,) dual to (c,) are valid, then H will
be said to be a closed subset of the cyclically ordered group H.

Let us consider the particular case when (H; <) is a linearly ordered group. Then H
is a cyclically ordered group under the cyclic order [ ] <.

Let A + Qand B % Q be subsets of Hsuchthat AnB =0, Au B = Handa < b
for each ae A and each be B. Let x, ye H. We put x < (4, B) y it some of the
following conditions holds:

(i) x < y, and either x, ye 4 or x, y€ B;

(i) xe B and y € A.

The following assertion is a consequence of [16], Corollary 3.9.

3.1. Lemma. Let H be a linearly ordered group and let < (1) be a linear order
on H. Then <(1) is an admissible linear order on H if and only if either <(1)
coincides with <, or there are A, B < H satisfying the above conditions such
that <(1) coincides with <(A, B).

Lemma 3.1 yields:

3.2. Lemma. Let H be a linearly ordered group and let ) = X < H, he H.
Let =(1) be an admissible linear order on H. Assume that sup X = h is valid in
(H; <(1)). Then there is a nonempty subset X of X such that sup X, = h is valid
in (H; £).

3.3. Lemma. Let H be a linearly ordered group and let G° be a subset of H.
Then the following conditions are equivalent:

(i) G is a closed subset of the cyclically ordered group H.

(ii) G° is a closed subset (in the usual sense) of the linearly ordered group H.

Proof. This is a consequence of 3.2 and of the corresponding dual assertion.

Thus we have verified that in the case of linearly ordered groups the notion of
closedness (as introduced above) coincides with the usual meaning of closedness as
applied for lattices.

Now let G be a cyclically ordercd group. The class %(G) was defined in the intro-
duction. Let H € ¥(G) and let H' be the completion of G. Our purpose is to show
that H is isomorphic to H'.

Consider the factor cyclically ordered group G/G, (cf. [12]). From the
Swierczkowski’s Representation Theorem (cf. [18] or [2], Thm. 1.1) we obtain
that G/G, is isomorphic to a subgroup of K. Since K is linearly ordered (let us remark
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that it fails to be a linearly ordered group), we can assume that G/G, is linearly
ordered; this linear order is generated by the isomorphism under consideration.

Let g, and g, be elements of G. We put g, <°g, if either g, + G, < g, + G,
in the linear order of G/G,, or g, + Gy = g, + Goand g; < g, in g, + G, (in the
sense of Lemma 2.1}.

Then we obviously have:

3.4. Lemma. <° is a linear order on G. Next, £° is admissible with respect
to the original cyclic order on G.

3.5. Lemma. Let G, + {0}. Let g€ G, O + X = G and suppose that supX = g
holds in (G; <°). Then X, = X n (g + Go) # 0 and sup X, = g holds in g + G,.

Proof. By way of contradiction, assume that X, = 0. Since G, + {0}, it has no
least element and hence g + G, has no least element. Thus there is g’ € g + G,
with g’ < g in g + G,. Then x <°g’ holds in (G; <°) for each x € X, therefore
sup X £%g’, which is a contradiction. We have verified that X, + 0. If x, € X,
and x € X\ X,, then x < x,. Thus sup X = sup X; and hence sup X, = g holds
in (G; £9).

3.6. Lemma. Let G, # {0} and let 9 = X = G. Then the foliowing conditions
are equivalent:

(i) X is a closed subset of G.

(i) If ge G, X, = X n(g + Go) * 0, then X, is a closed subset of the linearly
ordered set g + G.

Proof. This is a consequence of 3.6.

3.7. Lemma. H, + {0} if and only if G, * {0}.

Proof. Let G, # {0}. Since G, is a linearly ordered subgroup of H and H, is
a largest linearly ordered subgroup of H we obtain that H, 2 G,, thus H, # {0}

Conversely, suppose that H, = {0} By way of contradiction, assume that
G, = {0}. Hence

(1) H=+G.

Thus according to the definition of H, the set G cannot be closed in H. Therefore
in view of 3.6 (applied for H and G instead of G and X) thereis he H, 0 + X, =
< (h + Hy) n G such that sup X; = h or inf X, = h holds in h + H,, and h ¢ G.
Let us consider the first case.

Assume that card X, > 1. Hence we can choose distinct elements x and x" in X .
Then 0 £ x — x" € H, and, at the same time, x — x’ € G. This yields that x — x" €
€ G,, which is a contradiction. Therefore card X; = | and hence h € G. The case
h =inf X in h + H, can be treated analogously. Thus G is closed in H and so we
have arrived at a contradiction.

38. Lemma. Let G, = {0}. Then there is an isomorphism ¢ of H' onto H such
that ¢(g) = g for each g € G.

167



Proof. In view of 3.7 we have H, = {0}. According to [2] (Lemma 1.3 and
Theorem 1.1) the cyclically ordered group H is isomorphic to a subgroup of K.
Thus Theorem 7.5, [2] yields that some of the following conditions is valid:

(i) H is finite.

(ii) H is isomorphic to K.

First, suppose that (i) holds. Then G is finite. Now, since G c-generates H, we must
have G = H. Hence G is complete and thus G = H'. Therefore H = H'.

Next, suppose that (ii) is valid. Because G c-generates H, the cyclically ordered
group G must be infinite. Also, G is isomorphic to a subgroup of K. From [2],
Theorem 7.3 we get that H' is isomorphic to K.

Hence there is an isomorphicm ¢ of H' onto H. We can obviously choose ¢ in
such a way that all elements of G remain fixed.

Now suppose that G, # {0}; thus H, = {0}.

3.9. Lemma. Let h € H. There exists g € G such that g€ h + H,,.

Proof. By way of contradiction, assume that there exists h e H such that
(h + H))n G = 0. Put

Hy ={hjeH:(hy + H))n G + 0} .
Then H, # H. It is obvious that H, is a subgroup of H and G < H,.

Next, 3.6 yields that H, is a closed subset of H. Thus G does not c-generate H,
which is a contradiction.

Let T, be the system of all elements h e H having the property that h = V¢ X;
in h + H, for some subset {x,.},.e, of G. Next, let T, have the dual meaning and
T=T, vT,.

Since each h + H, is linearly ordered, by applying the same method as in [10],
2.1—2.7, ard in view of 2.2 we obtain:

3.10. Lemma. T is a closed subgroup of H and G < T; thus T = H. Moreover,
T, = Tp.

3.11. Lemma. Let h € H,. There are subsets {g;}i.; and {g;}c; of Go such that
Vier9: = h = Aje.l gj-

Proof. Without loss of generality we may assume that 0 < h is valid in H,.
According to 3.10 there are subsets {g;} s and {g;} oy of Hy N G such that V,e; g; =
= h = Ajes g9;- It s clear that all elements of H, " G belong to G,.

3.12. Lemma. H, = m(G,).
Proof. From the fact that H is a complete cyclically ordered group it follows
that m(H,) = H,. Thus according to 3.11, H, = m(G,).

3.13. Lemma. There is an isomorphism ¢ of H' onto H, such that ¢(g) = g
for each g € G.
Proof. This is a consequence of 3.9, 3.12 and 2.15.

Now, 3.8 and 3.13 yield:
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3.14. Theorem. Let G be a cyclically ordered group. Next, let H' be a completion
of G and H € 4(G). Then there is an isomorphism ¢ of H' onto H such that ¢(g) = g
for each g € G.
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