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COMPLETIONS AND CLOSURES OF CYCLICALLY 

ORDERED GROUPS 

JÁN JAKUBÍK, KoSice 

(Received July 2, 1990) 

1. INTRODUCTION 

The notion of a cyclically ordered group is due to Rieger [17]. A representation 
theorem for cyclically ordered groups has been proved by S. Swierczkowski [18]. 
Further results on cyclically ordered groups were established in [2], [3], [4], [7], 
[8], [9], [11], [19], [20] and [21]. Cf. also [5], Chap. IV, § 6. In [22], [23] and [24] 
more general notion (which can be termed a partially cyclically ordered group) was 
dealt with. 

The completion di(G) of a cyclically ordered group G has been defined in [2]. 
The elments of di(G) are certain cuts of G as introduced (in a more general setting) 
in [16]. The cyclically ordered group G is called complete if it coincides with d^{G) 
(under the natural injection of G into ^i(G)). 

If Gt is a subgroup of a cyclically ordered group G, then G1 is always considered 
to be cyclically ordered by means of the inherited cyclic order. 

Linearly ordered groups can be viewed as a particular case of cyclically ordered 
groups. 

We can introduce the notion of a closed subgroup of a cyclically ordered group 
in such a way that for the particular case of linearly ordered groups this notion has 
the usual meaning. (Cf. Section 3 below.) 

Assume that G is a subgroup of a cyclically ordered group Я. If for each closed 
subgroup G' of H with G £ G' the relation G' = H is valid, then H is said to be 
c-generated by G. 

For each cyclically ordered group G we denote by ^(G) the class of all complete 
cyclically ordered groups H such that 

(a) G is a subgroup of H; 
(b) H is c-generated by G. 

The elements of ^(G) will be called c-closures of G. 

In the present paper it will be proved that for each cyclically ordered group G the 
class ^(G) contains, up to isomorphisms, only one element, namely d^G). 
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This generalizes a result of [10] concerning lineatly ordered groups (the case of 
archimedean linearly ordered groups was dealt with earlier in [13]). 

Let us remark that if ^(G) is the class defined in an analogous way for the case 
when G is a lattice ordered group, then there can exist, in general, a subclass (€1 

of #(G) such that <€1 is a proper class and the lattice ordered groups belonging to (€1 

are mutually nonisomorphic. (Cf. [13], [14].) A similar situation occurs in the theory 
ofBoolean algebras [15] and ofvector lattices [6]. 

2. COMPLETIONS 

This section can be viewed as a continuation of [2]. Some new results on comple­
tions of cyclically ordered groups will be established; they will be then applied in 
Section 3 to investigate the relations between completions and closures. 

For the basic notions and notation concerning cyclically ordered sets and cyclically 
ordered groups cf. [2], Section 1. 

A cyclically ordered group will be written as (G; + , [ ]); ifnot missunderstanding 
can occur, then we write G instead of (G; + , [ ]). 

Let C(G) be the completion ofthe cyclically ordered set (G; [ ] ) (cf. [16] or [2], 
Section 2). We recall the following definition (cf. [2], p. 161). 

Let Gx be a subset of C(G) with G Ç Gx. Suppose that a binary operation +t is 
defined on Gj such that the following conditions are fulfilled: 

(i) (G t ; + j ) is a cyclically ordered group (under the cyclic order inherited from 
C{G)). 

(ii) (G; + ) is a subgroup of (G^ +) . 
Then (Gt; + j ) is said to be an extension of G in C(G) (we shall write G1 instead 

o f ( G i ; + 1 ) ) . 
Let C0(G) be the set of all extensions of G in C(G). For Gl5 G2 є C0(G) we put 

Gx S G2 if Gx is a subgroup of G2. Then C0(G) turns out to be a partially ordered 
set. If C0(G) possesses a greatest element dt{G), then dx(G) is said to be a completion 
of the cyclically ordered group G. 

In [2] it has been proved that the completion dx(G) does exist for each cyclically 
ordered group G. 

Let K be as in [2], Section 1. The largest linearly ordered subgroup of a cyclically 
ordered group G will be denoted by G0 (cf., e.g., [2], Lemma 13). It is obvious that G0 

is a normal subgroup of G. 
First, let G0 = {0}. In [2] it was shown that d^G) = G if G is finite, and dx(G) 

is isomorphic to K if G is infinite. 
Next, let G0 ф {0}. In [2], Section 6, a cyclically ordered group Gx was construc­

tively described and it was proved ([2], Theorem 6.2) that Gx is a completion of G. 
In the rest ofthis section we assume that G0 ф {0}. 
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Let g є G. For g(l) and gf(2) in g + G0 we put g(i) й g(2) if the relation 

(1) 0(l) - g й g(2) - g 

is valid in G0. 
lfg' is another element ofg + G0, then in view ofg — g' e G0, (!) is equivalent to 

0(1) - 0 + (g - g') й flf(2) - 0 + (0 - g') ; 
hence the relation S °n the set g + G0 is independent ofthe particular choice ofthe 
element g ofthe set g + G0. 

The following assertion is obvious (it was expressed already in [2]). 

2.1. Lemma. Let g e G. Then the relation ^ on g + G0 is a linear order. For 
each g' є g + G0, i/ie mapping t ^ t + g' (where t runs over G0) /s a« isomorphism 
of the linearly ordered set G0 onto g + G0. 

2.2. Lemma. Let g є G, {x f} /6 / £ # + G0, x є g + G0, ř e G. Assume that x = 
= V/ei X/ AoWs ш 0 + G0. ТЛеи 

л + t = Vt-e/ (x, + t), ř + л- = V;er (ř + л,-) 
are valid in g + t + G0. 

Proof. We have {xf + ř} / 6 ř ç # + f 4- G0 and x + i e # + t + G0. Next, 2.1 
yields x — g = Уш (xi — #) in G0. By applying 2.1 again we obtain that 

(x - g) + (0 + 0 = Vtei((xi - g) + (g + t)) 

holds in g + ř + G0, hence the first of the desired assertions is valid. The scond 
assertion can be proved similarly. 

Analogously we can verify the assertion dual to 2.2. 
Let D(G0) and w(G0) be as in [2] (Sections 4 and 5). In view of [2], p. 165 we can 

assume that D(G0) £ C(G); because of m(G0) Я D(G0) we obtain m(G0) £ C(G). 
Let H' be a completion of G. According to [2], Lemma 5.6, m(G0) is asubgroup 

of H'. Since m(G0) is a linearly ordered group we get w(G0) Я Я 0 . Thus m(G0) 
is a subgroup ofHÓ-

Let h' є Я 0 . Then [2], Lemma 6.3 yields that there is g є G such that g + /*' e 
є m(G0). If 0 <£ H'0, then 0 + A' є # + /i' + H'0 = g + Я 0 Ф Я 0 , which is a contra­
diction. Therefore geH'0. Hence the subgroup of Я generated by g is linearly 
ordered. Thus g belongs to G0 £ m(G0). Then we have h' є m(G0). Summarizing, 
we conclude that Я 0 = m(G0). Thus from 6.1, 6.2 and 6.3 in [2] we obtain: 

2.3. Lemma. Let H' be a completion of G. Then 
(i) H'0 = m(Co); 

(ii) / o r eac& &' є Я ' there is g є G such that h' e g + Я 0 . 
In what follows, H' has the same meaning as in 2.3. 

2.4. Lemma. Let g є G. iVexí, let {дцш and {gj}Jej be subsets ofg + G0 such that 
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the relations 

Aieijej {9j - úd = ° > Aiei.j*j(-0i + 0j) = ° 

are valid in G0. Then there is a uniquely determined element h'eH' such that 

h' = Ѵші Qi = A i e j 0; is valid in g + H0. 
Proof. Put g'i = Qi — g and g) = g} — # f ° r each i eI and each j є J. Then 

0Í - 9'i = 0; - fiF/, whence Aiei,jej {o'j - g'i) = ° n o l d s i n G0. Similarly, 
Aieijej(~g'i + #;) = 0 is valid in G0. Thus according to [1] there is h\ є m(G0) 
such that 

0 ) Viel9'i = AjeJ0; = A'l 
holds in m(G0). Then in view of2.3 (i), the relation (l) is valid in H'0. Hence according 
to 2.2, the relation 

УшОі = AjsjQj = fti + g 
holdsing + #O.Nowitsufficestoputfe' = h\ + #.Theuniquenessoftheelementfe' 
is obvious. 

Now let Я" be any cyclically ordered group such that 
(a) G is a subgroup of # " ; 
(b) Щ = m(Go); 
(c) for each /г" є Я" there is # e G with /і" є g + Щ. 
If /г" e Я", then we consider the linear order ^ on the set h" + Я0' which is defined 

in an analogous way as in 2.1. Let g be as in (c). If t є H'ó n G, then t + g e 
є (A" + Я'о) n G (since Яо is a normal subgroup of H"). In view of (b), each element 
of Яо is ajoin of some elements of G0; thus according to 2.2 we obtain: 

2.5. Lemma. Let h" є H". Then there is a set {g^iei £ (A" + HJ) n G such that 

h" = Vi*i9i. 

In a dual way we obtain: 

2.6. Lemma. Let h" e Я". Then there is a set {gj}jeJ £ (ft" + Я£) n G st*cfe řftař 
ft" = A / e j ^ . 

2.7. Lemma. Lei h"eH". Next, let {gi}ieI and {gj}jeJ be as in 2.5 or 2.6,respec-
tively. Then Aieijej{dj - 9i) = ° and Aieijej{-9i + 9j) = 0 are valid in G0. 

Proof. By way ofcontradiction, assume that the first assertion ofthe lemma fails 
to hold. Then there is 0 < c e G0 such that g} - gt ^ c in G0 for each г є / a n d each 
j є J. If / є і , then in the linearly ordered set h" + Я 0 = g + Я 0 (where g is as 
in (c) above) we would have g} ^ xt + c, from which we obtain h" ^ xt + c, 
hence h" — c ^ x(- and thus h" — c ^ /г", which is a contradiction. The second 
relation can be proved analogously. 

Let us remark that in the proof of 2.4 we have used only the fact that G £ H' and 
the conditions (i), (ii). Thus in view of (a), (b) nad (c) above, 2.4 remains valid if H' 
is replaced by Я"; let the corresponding assertion be denoted as Lemma 2.4'. 
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2.8. Lemma. Let g є G, {gi}ieI £ g + G0, /г' e # + H'0. Assume that h' = 
= Viei9i is valid in the linearly ordered set g + H'0. Then there is h"eg + H'0 
such that h" = V*=i#t Äo/ds /и g + H"0. 

Proof. Let us apply Lemma 2.6 for H' instead of H" and for the element h'. Thus 
there exists a set {gj}jeJ in g + G0 such that Д і є і o,- = 0. In view of 2.7 (applied 
for h' and H') the relations 

Aieijej(dj-9i) = Aieijej(-9i + 9j) = 0 

are valid in G0. Hence according to 2.4' we obtain that there is h" є g + #o such 
that h" = Vn=j 9i is valid in a + Щ. 

2.9. Lemma. Lei g є G, { # J ^ c g + G0, {aJ кєк — 9 + G0, ^' є # + Яд. Assume 
that h' = Уієїді = Ѵкек9к /5 vtf/z'd ш ř/ie linearly ordered set g + Яо. Leř /г" 
Ьг as in 2.8. ТЯел й" = УкеКдк holds in g + Н"0. 

Proof. According to 2.8 there is h"(l)eg + Щ such that h"(i) = \/кєКдк is 
valid in # + Я'о- We have to verify that h" = /i"(l). By way ofcontradiction, suppose 
that h" ф /i"(l). Then without loss of generality we can assume that h" < /i"(l) 
in 0 + Я'о. Hence ft"(l) - h" > 0 is valid in H"0 = m(G0). Thus there is 0 < c є G0 

such that c S h"(i) - h" is valid in Щ. Let {gj}jeJ be as in the proof of 2.8. In view 
of 2.7 (applied for h', H', {gk}keK and {gj}jeJ) we obtain that Аіеімк {9u ~ 9i) = 0 
is valid in G0. But 

gk-gtž h"(l)- h"^c ( ř e / , fceK) 

is vàlid in Яд, whence afc — gt ^ c is valid in G0 for each / є / and each keK, 
which is a contradiction. 

2.10. Lemma. Let g, {g^iei and h' be as in 2.8. Next, let g(l), {^/(пЬсоє/а) 
and h'(i) have analogous meanings. Then Vi6/,i(i)e/(i)(i7t + 0/(u) = ^' + ^0) 
is valid in g + g(l) + Я 0 . 

Proof. According to 2.2 we have 

h' + fc'(l) - V / ( l ) e / ( l ) ( ^ + 0/<l)) = VielVi(l)eI(i)(9i + 0/ ( l ) ) = 

= VieI,i(l)eI(l){9i *+" 0 / : l ) ) 

in 9 + fif(l) + Я0 . 

2.11. Lemma. Lei ft'(l),fe'(2),A'(3)eH'. Then [h'(l),h'(2),h'(3)] ifand only 
if some of thefollowing conditions isfulfilled: 

(i) there are distinct elements 9x,gi,gz^^ sucn г^аї h'(i)egi + Я 0 (/ = 
= 1,2,3) and [0!,02>0a]; 

(ii) there are gi9g$eG such that h{\)egt + Я 0 , h(2)egí + Я 0 , й (3)є# 3 + 
+ Яо, a3 £ 0i + Я 0 and ft(l) < й(2) m a t + Я 0 ; 

(iii) řfcere are a l5 g2 є G suc& řfcař й(2), й(3) є a2 + Я^, a t £ #2 + Яо and 
h(2) < h(3) in g2 + я ^ ; 
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(iv) there are g2,gz^G such that h(\),h(3)eg3 + H'0, ^ Й з + ^о and 
h(3) < /<1) in дъ + H'0; 

(v) there is geG such that h{l),h(2)Ji(3)eg + H'0 and some oj the con­
ditions 

h(\) < h{2) < h(3) or h(2) < /i(3) < h(\) or h(3) < /?(l) < A(2) 
is valid in g + H'0. 

Proof. This is an immediate consequence of2.3 and 2.1. 
We define a mapping q> of H' into H" as follows. 
Let h' eH'. According to 2.5 (applied for h' and Я') there is a subset {#/} ie / 

of (h' + H'0) n G such that /?' = V/e/ #i holds in Я' + H'0. Next, there is g e 
є (/г' + H'0) n G. Let /г" be as in 2.8. Then we put cp(h') = /i". 

It is easy to verify that h" docs not depend on the particular choice ofthe clement g 
of the set (h' + H'0) n G. This fact and Lemma 2.9 imply that the mapping cp is 
correctly defined. 

Next, 2.8 yields that cp is an injection. From 2.5, 2.6, 2.7 and 2.4 we obtain that cp 
is surjective. Further, from 2.10 and from the assertion analogous to 2.10 concerning 
H" we infer that cp is a homomorphism with respect to the operation + . Summarizing, 
we have 

2.12. Lemma, cp is an isomorphism of the group H' onto H". 

2.13. Lemma. Let h(i)Ji(2)eH' such that /z(l) - h(2)eH0 and ft(l) й h(2) 
in the linearly ordered set h(\) + H'0. Then ф(/г(1)) ^ q>(h(2)), and conversely. 

Proof. This is an immediate consequence ofthe definition of <p. 

2.14. Lemma, <p is an isomorphism of the cyclically ordered set H' onto the 
cyclically ordered set H". 

Proof. This follows from 2.13 and 2.1.1. 
ït is obvious that <p(g) = g for each g є G. 

The following Theorem is a consequence of2.3, 2.12 and 2.14. 

2.15. Theorem. Let G be a cyclically ordered group with G0 ф {0}. Let H' be the 
completion of G and let H" be a cyclically ordered group such that G is a subgroup 
ofH". Then thefollowing conditions are equivalent: 

(a) There is an isomorphism cp of H' onto H" such that cp(g) = gfor each g є G. 
(ß) H" satisfies the conditions (b) and (c). 

3. CLOSURES 

If (L; ^ ) is а linearly ordered set, then the cyclic order on Lwhich is generated 
by the linear order ^ will be denoted by [ ] á. More thoroughly: for distinct elements 
a, b and c ofL we put [a, b, c]á if and only if 

(1) a < b < c or b < c < a or c < a < b 

is valid. 
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Let Я be a cyclically ordered group. A linear order on the set Я will be called 
admissible ifthe cyclic order [ ] ^ coincides with the original order [ ] defined on Я. 

Let G0 be a subset of a cyclically ordered group Я. Consider the following con­
dition: 

(cx) If ^ is an admissible linear order on Я, 0 ф X ^ G0, and if h is an element 
of Я such that the relation h = sup X holds in ( # ; ^ ) , then h є G0. 

If the condition (cj) and also the condition (c2) dual to ( c^ are valid, then Я will 
be said to be a closed subset of the cyclically ordered group Я. 

Let us consider the particular case when (Я; ^ ) is a linearly ordered group. Then Я 
is a cyclically ordered group under the cyclic order [ ] ^ . 

Let A ф 0 and Б Ф 0 be subsets of Я such that A n £ = 0, A \j B = Я and a < b 
for each a e A and each Ь є B. Let x, j> є Я. We put x ^ (A, В) у it some of the 
following conditions holds: 

(i) x S У, and either x, у є A or x, у є Б; 
(ii) x є B and у є А. 

The following assertion is a consequence of [16], Corollary 3.9. 

3.1. Lemma. Let H be a linearly ordered group and let ^ (l) be a linear order 
on H. Then ^ ( l ) is an admissible linear order on H if and only if either a ( l ) 
coincides with I*, or there are A,B <= H satisfying the above conditions such 
that ^ ( l ) coincides with ^ (Л , B). 

Lemma 3.1 yields: 

3.2. Lemma. Let H be a linearly ordered group and let 0 ф X Я Я , h є Я . 
Let ^(1) Ье оп admissible linear order on Я. Assume that supX = ft /s шІ/d in 
(Я; ^ ( l ) ) . Г/їеи fftere is a nonempty subset Xx ofX such that s u p J ^ = h is valid 
in {H; g ) . 

3.3. Lemma. Let H be a linearly ordered group and let G0 be a subset of H. 
Then thefollowing conditions are equivalent: 

(j) G0 is a closed subset of the cyclically ordered group H. 
(ii) G0 is a closed subset (in the usual sense) of the linearly ordered group H. 
Proof. This is a consequence of 3.2 and ofthe corresponding dual assertion. 
Thus we have verified that in the case of linearly ordered groups the notion of 

closedness (as introduced above) coincides with the usual meaning of closedness as 
applied for lattices. 

Now let G be a cyclically ordered group. The class #(G) was defined in the intro­
duction. Let Я є ЩѲ) and let H' be the completion of G. Our purpose is to show 
that Я is isomorphic to H'. 

Consider the factor cyclically ordered group G\G0 (cf. [l2]). From the 
Swierczkowski's Representation Theorem (cf. [18] or [2], Thm. 1.1) we obtain 
that GJG0 is isomorphic to a subgroup ofX. Since K is linearly ordered (let us remark 
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that it fails to be a linearly ordered group), we can assume that GjG0 is linearly 
ordered; this linear order is generated by the isomorphism under consideration. 

Let gx and g2 be elements of G. We p u t # ! g 0 g2 if either gx + G0 < g2 + G0 

in the linear order of GjG0, or gx + G0 = g2 + G0 and gx fg g2 in # t + G0 (in the 
sense of Lemma 2.1). 

Then we obviously have: 

3.4. Lemma. ^ 0 is a linear order on G. Next, ^ 0 is admissible with respect 
to the original cyclic order on G. 

3.5. Lemma. Let G0 Ф {0}. Let g є G, 0 Ф X £ G я/id suppose that supJ*T = # 
&o/ds /л (G; ^ 0 ) . 77ierc X t = X n (g + G0) Ф 0 and supXj = g holds in g + G0. 

Proof. By way ofcontradiction, assume that Xi = 0. Since G0 ф {0}, it has no 
least element and hence g + G0 has no least element. Thus there is g' e g + G0 

with g' < g in g + G0. Then x < 0 #' holds in (G; ^ 0 ) for each x e I , therefore 
supX й°д\ which is a contradiction. We have verified t h a t A \ ф 0. If x1eXí 

and хєХ\Х1, then x < x t . Thus supX = supX t and hence s u p ^ = g holds 
in (C; £°) . 

3.6. Lemma. Let G0 ф {0} and let 0 Ф X c G. 77zen f/ie following conditions 
are equivalent: 

(i) X /s я closed subset of G. 
(ii) / / g є G, Xj = X n (g + G0) ф 0, then Xx /s д closed subset of the linearly 

ordered set g + G0. 
Proof. This is a consequence of 3.6. 

3.7. Lemma. Я 0 Ф {0} // and only if G0 Ф {0}. 
Proof. Let G0 ф {0}. Since G0 is a linearly ordered subgroup of Я and Я 0 is 

a largest linearly ordered subgroup of Я we obtain that Я 0 -3 G0, thus H0 ф {0). 
Conversely, suppose that Я 0 Ф {0}. By way of contradiction, assume that 

G0 = {0]. Hence 

(1) H*G. 

Thus according to the definition of Я, the set G cannot be closed in Я. Therefore 
in view of 3.6 (applied for Я and G instead of G and X) there is h e Я, 0 ф Xí Я 
ç (h + Я0) n G such that sup Xx — h or infX^ = h holds in h + Я 0 , and /1 £ G. 
Let us consider the first case. 

Assume that cardX 1 > 1. Hence we can choose distinct elements x and x' in Xt. 
Then 0 Ф x — x' є Я 0 and, at the same time, x — x' є G. This yields that x — x' є 
e G 0 , which is a contradiction. Therefore cardXi = 1 and hence heG. The case 
h = inf X in h + Я 0 can be treated analogously. Thus G is closed in Я and so we 
Viave amved at a contradiction. 

3.&. Lemma. Let G0 = ^ . Then there is an isomorphism q> of H' onto H such 
that q)(g) = g for each g є G. 
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Proof. In view of 3.7 we have H0 = {0}. According to [2] (Lemma 1.3 and 
Theorem 1.1) the cyclically ordered group Я is isomorphic to a subgroup of K. 
Thus Theorem 7.5, [2] yields that some ofthe following conditions is valid: 

(i) H is finite. 
(ii) Я is isomorphic to K. 
First, suppose that (i) holds. Then G is finite. Now, since G c-generates Я, we must 

have G = Я. Hence G is complete and thus G = H'. Therefore H = H'. 
Next, suppose that (ii) is valid. Because G c-generates Я, the cyclically ordered 

group G must be infinite. Also, G is isomorphic to a subgroup of K. From [2], 
Theorem 7.3 we get that H' is isomorphic to K. 

Hence there is an isomorphicm ç of H' onto Я. We can obviously choose q> in 
such a way that all elements of G remain fixed. 

Now suppose that G0 Ф {0}; thus H0 Ф {0}. 

3.9. Lemma. Let h e Я. There exists g є G such that g є h + Я 0 . 
Proof. By way of contradiction, assume that there exists heH such that 

(h + H0) n G = 0. Put 
Hx = {h, e H: (hx + H0) n G Ф 0} . 

Then Я 1 ф Я. It is obvious that Я 1 is a subgroupofЯ and G я Я1# 

Next, 3.6 yields that Hx is a closed subset of Я . Thus G does not c-generate Я, 
which is a contradiction. 

Let Tx be the system of all elements h є Я having the property that h = Vi6/ xi 
in /г + Я 0 for some subset {xJ^ j of G. Next, let T2 have the dual meaning and 
T = Ti u T2. 

Since each h + Я 0 is linearly ordered, by applying the same method as in [10], 
2.1—2.7, and in view of2.2 we obtain: 

3.10. Lemma. T is a closed subgroup of H and G ç T; thus T = Я. Moreover, 
T± = T2. 

3.11. Lemma. Let h eH0. There are subsets {#J,gj anJ {#yL'eJ °f ^o 5MC^ ^ш* 
Vie/0i = h = Ajej9j-

Proof. Without loss of generality we may assume that 0 < h is valid in Я 0 . 
According to 3.10 there are subsets {д^ш and {gj}jej of Я 0 n G such that Vie/ 0i = 

= /г = AyeJ ^y. It ŝ clear that all elements of Я 0 n G belong to G0. 

3.12. Lemma. Я 0 = m(G0). 
Proof. From the fact that Я is a complete cyclically ordered group it follows 

that m(H0) = Я 0 . Thus according to 3.11, Я 0 = m(G0). 

3.13. Lemma. There is an isomorphism cp of H' onto H0 such that <p(g) = g 
for each g є G. 

Proof. This is a consequence of 3.9, 3.12 and 2.15. 

Now, 3.8and 3.13 yield: 
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3.14. Theorem. Let G be a cyclically ordered group. Next, let H' be a completion 
ofG and H є <%(G). Then there is an isomorphism <p ofH' onto H such that q>(g) = g 
for each g є G. 
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