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PSEUDO-COMPLEMENTED DISTRIBUTIVE GROUPOIDS 

D . J . HANSEN, Raleigh 

(Received May 2, 1990) 

1. INTRODUCTION 

A considerable amount ofwork on pseudo-complemented semilattices has appeared 
since Frink's paper in 1962 [2]. More recently, the study of distributive groupoids 
has begun to flourish with a number ofpapers appearing in the literature by various 
investigators such as, for example, J. Ježek, J. Kepka, and P. Němec [4, 5]. The 
purpose of this article is to examine pseudo-complementation from the viewpoint 
ofdistributive groupoids. The class of distributive groupoids that will be exploited in 
this paper are those which are left separative, as will be defined later. These 
groupoids are idempotent and have an associated partial ordering that is a cor­
responding analogue ofthe standard partial ordering for semilattices. The particular 
subclass of these groupoids on which a pseudo-complementation can be defined have 
a structure that permits one to extend a number of results from the theory of pseudo-
complemented semilattices. It will be shown that a theorem of the Glivenko-Frink 
type can be obtained, that is, the set ofclosed elements in the groupoid form a boolean 
lattice and that the set ofdense elements is a dual ideal. Also, assuming an additional 
restriction, the closed and dense elements will be used to givc a complete description 
of the structure of a certain class of pseudo-complemented distributive groupoids. 
Finally, it should be pointed out that one effort has been made to extend the work 
on pseudo-complemented semilattices to other types of groupoids. The paper by 
K. Nirmala Kumai Amma [ l ] considered the problem for intraregular groupoids 
(S, •), that is, having the property that J(x) n J(y) = J(xy) for each x, у є S, where 
J(x) denotes the principle ideal generated by the element x. A remark concerning 
systems of this type as compared with those of the type studied in this paper will be 
made in Section 3. 

2. ABIAN'S ORDER RELATION 

Throughout this article, S will denote a distributive groupoid, that is, a(bc) = 
= (ab) {ac) and (bc) a = (ba) (ca) for each a, fo, c e S. Also, ^ will denote Abian's 
relation given by x ^ y if and only if x2 = xy. Last, S is said to be separative 
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if (i) x2 = xy and y2 = yx imply x = y, and (ii) x2 = yx and y2 = xy imply x = y. 
If (i) holds on 5, then S is called left separative. 

Theorem 1. Abiarťs relation S is a partial order on S if and only if S is left 
separative. 

Proof. The necessity is immediate, thus assume S is left separative. First, it will be 
shown that each member of S is idempotent. Let a є S. Then (a2)2 = a2a2 = 
= a2(aa) = (a2a) (a2a) = [(aa) a] (a2a) = (a2a2) (a2a) = a2(a2a) = a2[(aa) a] = 
= a2(a2a2) = a\a2)2. Now, [(a 2 ) 2 ] 2 = (a2)2(a2)2 = (a2a2)(a2a2) - (a2a2)a2 = 
= (a2)2 a2. Thus, one has that (a2)2 = (a2)(a2)2 and [(a 2 ) 2 ] 2 - (a2)2 a2. Hence, 
by the left separative condition, (a2)2 = a2. Next, (a2)2 = (aa) (aa) = a2a and a2 = 
= a2a2 = a(aa) = aa2. Hence (a2)2 = a2a and a2 = aa2 implies, by the left 
separative condition, that a2 = a. Therefore each element of 5 is idempotent. 
Consequently, in a left separative distributive groupoid S, the left separative con­
dition reduces to the statement x — xy and y = yx implies that x = y. 

Next, assume x ^ y and y g z. Then x = xy and y = yz. Thus x = x j = x(yzi = 
= (xy) (xz) = x(xz). Therefore x = x(xz). Now xz = (xy) z = (xz) (yz). Thus 
xz = (xz) y and this gives xz = (xy) (zy) = x(zy) = (xz) (xy) = (xz) x. Hence we 
have obtained that x = x(xz), xz = (xz) x and this implies, by the left separative 
condition, that x = xz. Therefore x ^ z and thus ^ is transitive. 

Finally, x ^ y and y ^ x gives x = xy and y = yx. Therefore, by left separativity, 
x = y and so ^ is antisymmetric. Consequently, ^ is a partial ordering of S. 

Theorem 2. / / S is left separative, then S is an idempotent partially ordered 
groupoid with respect to Abian's order relation g . 

Proof. Since Theorem 1 implies S *"s idempotent and ^ is a partial ordering of S, 
all that is left to show is that the binary operation defined on S is compatible with ^ . 
Thus, let each of x, y, z є S with x ^ y. Then x = xy and hence, by distributivity, 
zx = z(xy) = (zx) (zy) and xz = (xy) z = (xz) (yz). Therefore zx ^ zy and 
xz ^ yz. 

3. PSEUDO-COMPLEMENTATION 

Let (S, •, ^ )denote a partially ordered groupoid ofthe type described byTheorem 
2 and suppose there exists a right zero in S, that is, an element 0 є S such that xO = 0 
for each x є S. 

Definition. The statement that an element a' є S is a pseudo-complement of an 
element a e S means that (i) aa' = 0 and (ii) if ax = 0, for some x є S, then x g a'. 
If each element in S has a pseudo-complement then S will be called a pseudo-
-complemented groupoid. 

It should be noted that ifan element in S has a pseudo-complement then conditions (i) 
and (ii) imply that the pseudo-complement is uniquely determined. Also, it should 
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be indicated at this point that every pseudo-complemented meet semilattice is an 
example of a pseudo-complemented left separative distributive groupoid with a right 
zero 0. 

The following is an example of a pseudo-complemented groupoid ofthe type that 
is considered in this article which is not necessarily a pseudo-complemented meet 
semilattice. 

Example. Let (S, + , •) denote a boolean lattice. Let a є S and define/(x) = a + x 
for each x e S. Define x о y = f(x) y for each x, у є S. Observing tha t / [ / (x ) ] = f(x)> 
f(xy) =f(x)f(y), and f(x)x — x is true for each x,yeS, it follows by direct 
calculation that (S, о) is an idempotent distributive groupoid. This groupoid is left 
separative. For, let x = x o y and y = у о x. Then x = f(x) y and y = f(y) x. 
Thus f{x) =f[f(x)y] =f[f(x)]f(y) =f{x)f(y) and similarly f(y) = f(y)f(x). 
Consequently, f(x) = f(y) and this gives that x = f(x) y = f(y) y = y. Also, the 
least element 0 in the boolean lattice (S, + , •) serves as a right zero in (S, o) since 
x o 0 = f(x) 0 = 0. Note that 0 о x = /(0) x = (a + 0) x = tfx andthus, in general, 
0 is not necessarily a left zero. For pseudo-complementation in (S, o), we proceed 
as follows. For each b є S, define b' = a*b*y where (*) denotes complementation 
in the boolean lattice (S, + , •). Then b o b' = / (b) a*b* - (a + b) o*b* = 0. Next, 
suppose b o x = 0 for some x є S. Then / (b) x = 0 and this gives (a + b) x = 0 
which implies ax + bx = 0. Thus ax = 0 and bx = 0. Hence a* + x* = 0* = 1 
and thus xa* = x which implies xa*b* = xb*. Also, b* + x* = 1 and so xb* = x. 
Therefore xa*b* = x. Hence x o b' = / (x) b' = (a + x) b' = (a + x) a*b* = 
= xa*b* = x. Therefore x ^ b' where ^ denotes Abian's ordering of (S, o). Con­
sequently b' is a pseudo-complement of b. 

It should be mentioned that the preceding system (5, o) is an example of a distribu­
tive groupoid which is not intraregular as defined by K. Amma in [1]. It is an im­
mediate consequence of intraregularity thatif ab = 0, then ba = 0. For the above 
example, a o 0 = 0 for each a є S but 0 о a may not be equal to 0 for some a є S as 
was noted above. 

4. A GLIVENKO-FRINK THEOREM 

In the remaining part of this article, 5 will denote a pseudo-complemented left 
separative distributive groupoid. An element x e S will be said to be closed if x" = x 
and the set ofall such closed elements will be denoted by B(S). In addition, anelement 
x є S such that x' = 0 will be said to be dense. 

Lemma 3. Ifa, b e S such that a ^ b, then b' ^ a'. Also,for each b є S, Qb' = 0. 
Proof. Suppose a ^ b. Then ab = a. Thus ab' = (ab) b' — (ab') (bb') = 

= (ab') 0 = 0. Hence b' ^ a'. Next, M) = 0 implies that 0 g b' for each b e S. 
Therefore 0b' = 0. 
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Theorem 4. If a, b є S, then (ab)" = a"b". 
Proof. Let x = (ab)'(a"b"). Then bx = b[(af>)'(a"&")] and thus a(bx) = 

= (ab){[a(aby] [a(a"b")]} = {[(ab) a] 0} {(ab) [a(a"b")]} = 0{(ai>) [a(a"b")]} = 
= [0(ab)] {(Од) [(0a"i (Ob"i]} = [0(ab)] [(0a) 0] = [0(ab)] 0 = 0. Thus bx g a'. 
Also, a'{bx) = fl'{b[(flbV(a"b")]} = (a'b){[a'(ab)'] [(a'a")(a'b")]} = 
= (fl'b){[a'(ab)'] [0(a'b")]} = (a ' f t ){ [a 'H) ' ] [(0a')(0b")]} = (a'b){[a'(ab)']0} = 
= (a'&) 0 = 0. Therefore bx g a" and consequently bx ^ a'a" = 0 which implies 
that bx = 0 and thus x ^ b'. Next, b'x = b'[(ab)' (a"b")] = 
= [b'(ab)'] [(b'a")(b'b")] = [b'(ab)'] [(b'a")0] = [b'(ab)'] 0 = 0. Hence x ^ fr". 
Therefore x й b'b" = 0 which gives that x = 0. Therefore (ab)f (a"b") = 0 and 
this implies that a"b" й (ab)". Now (ab) b' = (ab') (bfo') = (ab') 0 = 0 which gives 
that b' <; (ab)' and thus, by Lemma 3, (ab)" <£ fr". Last, (ab)a' = (aa ')(ba ') = 
= 0(ba') = (0b)(0a') = (0b)0 = 0. Thus a ' ^ ( a b ) ' and, again, by Lemma 3, 
(ab)" й a". Hence (ab)" й a"b". Therefore a"b" й (ab)" and (ab)" S a"b" implies 
that (ab)" = a"b". 

To obtain the following Glivenko-Frink type theorem, we will make use of a result 
by Frink, see [3], who characterized a boolean lattice as a meet semilattice (B, •) 
containing a special element 0 along with a mapping (*) from B into B possessing the 
property that a . b* = 0 if and only if a . b = a. The least upper bound for a pair 
of elements a, b є B was shown to be a v b = (a* . b*)*. 

Theorem 5. The set B(S) ofclosed elements of S is a boolean lattice. 
Proof. First, it will be shown that 0eB(S). 0'0 = 0 implies that 0 g 0". Also, 

from Lemma 3, 00" = 0 which gives that 0" й 0'. Hence 0"0" й 0'0" - 0. Thus 
0" S 0 and consequently 0" = 0. Therefore 0 є B(S). Next, B(S) is a subgroupoid 
of S since, by Theorem 4, the product of two closed elements is again closed. Let 
x, у є B(S). In order to show that B(S) is a meet semilattice, we need to point out 
that xy is the greatest lower bound for x and y. Now (xy) x' = (xx') (yx') = 
= 0(>'x') = (0y) (0x') = (0y) 0 = 0. Thus x' <L (xy)' and, by Lemma 3, (xy)" й x". 
Thus xy ^ x. In a similar manner (xy) y' = (xy') (yy') = (xy') 0 = 0 and thus 
y' á (*>y)' which implies that (xy)" ^ y". Hence xy ^ y. Therefore xy is a lower 
bound for x and y. Finally, let k є B(S) such that k S x and k ^ y. Then /c ^ x/c g 
^ xy. Consequently, xy is the greatest lower bound for x and y in B(S). Therefore 
B(S) is a meet semilattice. Last, one needs to show that the pseudo-complementation 
operation (') has the property mentioned above for the unary operation (*) in Frink's 
theorem. First, ifx є B(S) then x' є B(S) since (x')" = (x")' = x'. Now let a, b є B(S) 
with ab' =. 0. Then b' S a>' and thus, by Lemma 3, a" S b", Hence a ^ b and this 
gives ab = a. Next, suppose ab = a. Then ab' = (ab) b' = (ab') (bb') — (ab') 0 = 
= 0. Therefore ab' = 0 if and only if ab = a and thus, by Frink's theorem, B(S) 
is a boolean lattice. 

For what follows, thegreatest element in B(S), namely 0', will be denoted by the 
symbol 1. 
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Lemma 6. J/ x є 5, then x' g x'". 
Proof. By Lemma 3, 0x' = 0. Thus 0 = 0x' = {x'x")x' = x'(x"x'). Hence 

x"x' й x" and thus (x"x') x" = x"x'. Hence x"x' = {x"x') x" = x"(x'x") = x"0 = 0. 
Therefore x' ^ x'". 

In the following theorem, a dual ideal K of S is defined to be a subgroupoid of S 
which has the property that if x e K and у є S, with x ^ y, then y e K. 

Theorem 7. If D is the set of all dense elements of S, then D is a dual ideal of S. 
Proof. Let du d2 e D. Then d'[ = 0' = 1 and d"2 = 0' = 1. Thus, by Theorem4, 

(d^Y = d\d"2 = 11 = 1. Hence (dtd2)m = 1' = 0. Now, by Lemma 6, (dxd2)' й 
= (did2)'" = 0 a n ( i t h u s (^1^2)' = 0. Consequently, dtd2 is dense and therefore Z> 
is a subgroupoid of S. Next, let d є D and x є 5 with d S x. Then, by Lemma 3, 
x' ^ d' and this gives that x' = 0 since d' = 0 and thus x є D. Therefore D is a dual 
ideal of S. 

5. A STRUCTURE THEOREM 

Theorem 8. Suppose (S, •, ^ ) denotes a left separative pseudo-complemented 
distributive groupoid, where ^ is the associated partial order on (S, •). Let each 
of B and D denote the set of closed and dense elements of S respectively. If the 
members of Dform an antichain with respect to ^ , and,for each xeS, there 
exists exactly one d e D such that x = x"d, then (<$, •, ^ ) can be expressed as a 
cardinal sum of boolean lattices Bd. whereJor each dt є D, ld ř is the greatest element 
of Bdt and Bdi is isomorphic to B. 

Proof. For each deD, let Bd = {xd\xeB}. First, it should be noted that 
each xeS is a member of some Bd since, by hypothesis, x = x"du where x"eB 
and di є D and thus x e Bdl. Let each of d b d2 є D with dx ф d2. We want to show 
next that no member in Bdi is comparable with a member in Bdr Suppose x є Bdl 

and y e Bdl and that x S У- Now x = ххаг and y = y2d2. By Theorem 4, x" = 
= x'[d'[ = x[ 1 = x"i = xl and similarly y" = y"2 = y2. Thus x = x,/d1 and y = 
= y"d2. From x ^ 3; we thus have xf,di ^ y'fd2 which gives (x"d^) {y"d2) = x,,di. 
Applying Theorem 4 again, gives [(x")" d'i] [ ( / ' ) " d2] = (x")" d" and consequently 
we have x"y" = x". Returning again to x"di S y"d2 and multiplying on the left 
by x"d2 gives (x"d2)(x"d^) <£ (x"d 2 ) ( / 'd 2 ) a n d thusx"(d2di) й {x"y")d2 = x"d2. 
Hence x"(d2di) á *"d2 now implies that [x"(^2^i)] (x,fd2) = x ' ^ d ^ ) and thus 
x"[(d2i^) d2] = x"(^2d1). Therefore, from the uniqueness of the dense elements 
in the representation of each member of S, we have that (d2dx) d2 = d2dx. 
Thus d2dx Ú à2 and this gives that d2di = d2 since the members of D form an anti­
chain with respect to g . Therefore d2 ^ dx which again implies that d2 = dt and 
this is a contradiction since d2 ф dx. Consequently no member in Bdi is comparable 
with a member in Bdr 

Last, we want to show that (B, ^ ) is order-isomorphic to (Bd, S) for each d e D. 
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Let d є D and, for each x є £, define fd(x) = xd. From the definition of Bd and fdr 

it is immediate that fd maps Б onto J3d. Next, suppose that fJ^x^ = fd(x2). Then 
*id = x2d, and by Theorem 4, x"d" = x2ď' and thus x'{ = x'[ 1 = x2 1 = x"2. Hence 
Xj = x2 since each of х ь х 2 є Б . Therefore fd is a "one-to-one" mapping. Now 
suppose хл <̂  x2. Then xxd ^ x2d andthus/d(x!) ^ fd{x2)- Finally, suppose/^XjJ Ú 
= fd{*2)- Then x t d ^ x2d which implies that ( x ^ ) (x2d) = x ^ . Hence (xxx2) d = 
= x±d. Applying Theorem 4, we obtain ( x ^ ) " d" = x[d" and thus x ^ = xv 

Consequently, xx ^ x2. Therefore/d is an order-isomorphic mapping from B to Bd. 
Since, by Theorem 5, B is a boolean lattice, we thus have that Bd is also a boolean 
lattice. Note that x ^ 1, for each x є B, implies that/d(x) = xd ^ id. Thus id is the 
greatest element for Bd. 

Before proceeding to the last theorem, there are four observations that need to 
be made concerning the dense elements D given in Theorem 8. 

P r o p e r t y (i). If d є D, then dì = 1. This follows from the fact that 0 ^ 1 implies 
that d0 S d\ and thus 0 й dì. Now 10 ^ l(di) and so 0 S l(dl). Since dì is dense, 
0 є Bu l(dl) є Bdl and, by Theorem 8, no element in Bt is comparable with an element 
in Bdu we thus have that di = 1. 

P r o p e r t y (ii). If du d2 e D and dxd2 = 1, then d2 = 1. Let each of 0X and 02 

denote the least element in Bdl and Bdl respectively. Now,/d l(0) = 0Х and/d2(0) = 02 

and so Ы1 = 0i and 0d2 = 02. Thus 0 ^ 2 = (0^ ) (0^ 2 ) = 0^id2) = 01 = 0. 
Hence 0А02 = 0 implies that 02 ^ 0i. Now 0i <̂  1 since, 00^ = 0, by Lemma 3, 
and thus 0i ^ 0'. Consequently, 02 ^ 1, 1 e Bu and 02 є Bdr Therefore, by Theorem 
8, d2 = 1. 

P r o p e r t y (iii). If de D, thenthere exists exactly one d1 є D such that d = idx. 
This follows directly from the hypothesis of Theorem 8 and since d" = 1. 

P r o p e r t y (iv). If each of du d2 є D such that d1d2 = d1, then dx = d2. Ägain, 
this follows from the fact that the members of D form an antichain with respect 
to Abian's order relation ^ . 

Theorem 9. lfB is a boolean lattice and D is an idempotent distributive groupoid 
containing an element 1 satisfying properties (i), (ii), (iii), and (iv), then there 
exists a pseudo-complemented left separative distributive groupoid (S,0) such 
that 

1. the set ofclosed elements Bt in S is order-isomorphic to B relativeto Abian's 
order relation ^ , 

2. the set of dense elements D' in S is isomorphic to D and no two distinct 
members in D' are comparable with respect to ^ , and 

3. if x є S, then x = x" 0 dfor exactly one d e D', where (') denotes the pseudo-
complement operation in (S, 0). 

Proof. Without loss of generality, we may assume that Bn D = 0. From the 
sets B and D and noting property (iii), one can construct, for each d-x e D, a set Bdi 
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such that card Bd. = card B, Bdi n D = {1JJ and, if df Ф d,., then Bd. n Bdj = 0. 
Next, for each dt є D5 partially order Bd. so that Bd. is order-isomorphic to B in 
such a way that ldf is the greatest elernent in Bdi. For each dte D, with dt ф 1, 
l e t / j . denote an order-isomorphic mapping from Bx to Bdi and le t / j denote the iden­
tity mapping from B1 to Bx. Let S = U Bd.. Let x, 3; є 5 and suppose x є Bd. and 

dicD 

yeBdj. Define Xoy =fdidjUd*(x) 'fd/{y)]> where " • " denotes the greatest lower 
bound operation in Bt. 

By direct computation, (S, 0) is an idempotent distributive groupoid. Next, we 
want to show that (S,0) is left separative. Suppose x, у є S such that x = x 0 y 
and y = yox. Then, for exactly one dx,d2eD, xeBdl and yeBdl. Thus x = 
= Xoy = f^[f^{x)-f^(y)] and y = yoX=f^[f^(y)'f^(x)l Hence 

/w , (* ) = Л 'Д*) " / Л ' М a n d / w . M = /*VO0 - / d V ( 4 Now, each o f / 7 / ( x ) , / , ; ^ ) 
is a member ofthe boolean lattice B1 and, since " • " denotes the greatest lower bound 
operation in Bl9 we thus have that fďX(x) = / i i iO0- Hence, for some ueBu 

fdidJi14) == x a n d /d2d1W = ^ Hence xeBdld2 and j e B ^ . T h u s x e ^ n B ^ 
and y e Bd2 n Bdldi. Since the sets Bd. are disjoint, we obtain that d1 = dxd2 and d2 = 
= ^2^!. Therefore, by property (iv), dx = d2 and this implies that x=fdl(u) = 
= jd2(u) = y. Consequently, (S, 0) is left separative and, by Theorems 1 and 2, 
Abian's order relation is a compatible partial ordering of S. 

In (S, 0), a pseudo-complementation operation (') is constructed in the following 
manner. Let xeS. Then xeBdi for exactly one ^ e D . D e f m e x' = [/<T/(*)]*> 
where "*" denotes the complement in the boolean lattice Bx. Also, let 0 denote the 
least element in Bt. Then x o x ' = / ^ J / 7 / W ' / r ' [ ( / d " / W ) * ] ) = / i [ / d ; 1 ^ ) * 
*(/*4*))*] = / d V W " [ / d V W ] * = ° ' ЪУ P r°P e r ty (0- N o w > suPPOse xoy = 0 
for some y e S. Then у є Bd2 for exactly one d2 e D and x о у є 2*dld2. Hence 0 є B1 n 
n Bdld2 which implies that dxd2 = 1. From property (ii), we thus have that d2 = 1. 
Therefore yeBv Thus 0 = X o ^ = / a , ! [ / 7 / W . / r V ) ] = / i ^ d V W . / r V ) ] = 
= / i [ / * 4 * ) • 3>] = / d / W • J7 = fd,\x) ° J7 by property (i) and since "0" and " • " 
coincide on Bx. Consequently, by Abian's order relation and since "0" and " • " 
coincide on Bt, y S x'. As a consequence of the preceding statements, the set of 
closed elements in S is exactly the elements ofBj^ and, as a result ofthe construction 
of Bl from above, the set of closed elements, namely B1? is order-isomorphic to B. 

Next, suppose x є D', where D' denotes the dense elements of S. Then 0 = x' = 
= [/d"/W]* implies that f^(x) = 0* = 1. Thus x =fdi{l) = Ux from the defini­
tion offdl, and this implies that x є D. Hence D' c D. Now, let de D. Then, by 
property (iii), there exists exactly one d2 e D such that d = \d2. Hence d' = 
= [/dl4^)]* = 1 # = ° a n d t h i s i m P l i e s that i l e D ' . Thus D я D' and, therefore 
D' = D. Last, it will be shown that if du d2 є D', then dx 0 d2 = dxd2. By property 
(iii), there exists exactly one d3, d4 є D such that ld 3 = dj and ld4 = d2. Hence 
<*i » d2 = / ^ [ / d V ( ^ i ) -fVià2)ì = /<w<[l • 1] = / * J l ) = l(d3d4) = (ld3)(ld4) = 
= dxd2. Consequently, (D', 0) coincides with the given groupoid D whose binary 
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operation was indicated by juxtaposition. Consequently, by property (iv), no two 
distinct members of D' are comparable with respect to Abian's relation ^ . 

Finally, for part (3) of the proof, we proceed as follows. Let x e S. Then x є Bdí 

for exactly one dx e D. Also, by property (iii), there exists exactly one d3 e D such 
that ld 3 = dt. From the definition of the pseudo-complement, x" = / J ^ ( x ) . Thus 

*" » d, = / u 3 { [ / r U V M ) ] • /-V(<*i)} = A[/<T.4*) • 1] = fälfäMi = *• Now, 
suppose x" 0 d2 = x for some d2 e D. Then, by property (iii), there exists exactly 
one d4 e D such that \dA = d2. Thus x = x" 0 d2 = fuA&VlS(*))l -fcW} = 
= fdIfaA*) • 1] = / d , [ / 7 / W ] . Hence /7 / (x ) = / i* (x ) . This implies that fdl{u) = 
= x =fdl(

u) fof some u e B i . Therefore x e B d l and xeBd2 which thus implies 
that dt = d2 since Bdi n £d2 = 0 for dl ф d2-
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