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1. INTRODUCTION

For a partially ordered set P we denote by Int P the system of all intervals [a, b] =
={xeP:a < x = b}, where a,be P and a < b, including the empty set. The
system Int P is partially ordered by the set-theoretical inclusion.

If P is a lattice, then Int P is a lattice as well. In general, Int P need not be a lattice.

In [1], the following theorem was presented:

(A) Let Lbe a finite lattice. Then Int Lis selfdual if and only if either (i) card L < 2,
or (ii) card L = 4 and Lhas two atoms.

Next, in [1] the author proposed the problem whether there exists an infinite
lattice Lsuch that Int Lis selfdual.

In the present paper it will be shown that the answer to this problem is negative.
Namely, the following result will be proved:

(B) Let P be a partially ordered set with card P > 4. Then the partially ordered
system Int P is not selfdual.

Some questions concerning Int L (where L is a lattice) have been studied in the

papers [2]—[9]. ’
2. PROOF OF (B)

If Qis a partially ordered set and a, b, ¢ are elements of Q, then by writinga v b =
= ¢ we express the fact that ¢ is the least upper bound of the set {a, b} in Q; the
meaning of a A b = ¢ is the dual one. If a and b are incomparable, then we write
a | b; the fact that a is covered by b will be expressed by writing a < b.

Q is said to be selfdual if there exists a dual automorphism of Q. If f is a dual
automorphism of Q and a, b, c € Q, then

avb=cefla)a f(b) = f(c),
and dually.

In what follows, P denotes a partially ordered set. Let X € Int P.
X is an atom of Int P if and only if there is a € P with X = {a}.
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Let X = [a, b]. Then X is a dual atom of Int P if and only if there is [u, v] € Int P
such that [u, v] = P, and either (i) a = wand b < v, or (i) u < a and b = v,

Let X = [ay,a,] and Y = [by, b,] belong to Int P. Then X A Y does exist
in Int P if and only if either X N Y = @ (and in thiscase X A Y = 0), orbotha; v b,
and a, A by exist in P (and then X A Y = [a; v by, ay, A by]).

Similarly, X v Y exists in Int P if and only if both a, A b, and a, v b, exist
in P;insuchacase X v Y = [a1 Abya, v bz].

In particular, if [a, b] € Int P, then

[a, b] = {a} Vv {b} .
Next, if a. b,ce P and a < b < ¢, then
[a, b] N [b, c] = fb}.

2.1. Lemma. Assume that the system Int P is selfdual. Then there are u,ve L
with a < v such that P = [u, v].

Prooi. There exists a dual automorphism f of Int P. Since 0 is the least element
of Int P, f(0) must be the largest element of Int P. Clearly f(@) + @ and hence
there is [u. v] € Int P such that [u v] = P.

In proving (B) we proceed by way of contradiction; suppose that card P > 4 and
that the partially ordered system Int P is selfdual. Let f be a fixed dual automorphism
of Int P. In view of 2.1 there are u, v € P such that P = [u., v],

2.2. Lemma. Let [a, b] € Int P, [a, b] * P. Then there are dual atoms X and X,
in Int P such that X; A X, = [a, b].

Proof. There is [ay, b;] € Int P such that f([ay, b,]) = [a, b]. Put f({a,}) = X,
and f({b,}) = X,. Since {a,} nad {b,} are atoms of Int P, both X, and X, are dual
atoms of Int P. Next, {a,} v {b,} = [a,. b,]. By applying the dual automorphism f
we obtain that X; A X, = [a, b].

2.3. Lemma. Let [a, b]eIntP,a + b, a # u, b & v. Thenu < a and b < v.

Proof. Let X, and X, beasin 2.2. Thereare ¢;, d; € P(i = 1,2)with X, = [¢,.d,]
and X, = [c;,d,]. If ¢; = ¢, = u, then a = u, which is a contradiction. Thus,
without loss of generality we can suppose that ¢; = u and ¢, # u. Then d, = v,
d, <vand u < c,. Since X; n X, = [a, b], we infer that « = ¢, and b = d,.

2.4, Lemma. Let C be a chain in P. Then card C < 4.
Proof. This is an immediate consequence of 2.3.
Denote f({u}) = X and f({v}) = Y. Then

{up v {e} =P, {u} A {o} =0,

whence
(1) XNnY=0,
(2) XvY=P.
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There are x; and y; in P (i = 1,2) such that X = [x;,x,] and Y = [y, y,]. From
the fact that X and Y are dual atoms of Int P and from (1), (2) we infer that some of

the following conditions is valid:

() xp=u, x,<v, u<y;, y,=v, x| ys;
B) vi=u, y<v, u<x;, xX,=0, ¥ “ Xy .
Next, let z e L, f({z}) = [11, 1,]. We have either

() &y =u and 1, <v,
or

(By) u<t; and 1, =v.
From the relation [u, z] n [z, v] = {z} we obtain
S, z]) v ALz 0]) = f{z)) -
Because of [u, z] = {u} v {z} and the analogous relation for [z, v], we get

(3) () A S v (P A FD) = 1D -

2.5. Lemma. Assume that (o) and (o;) yre valid. Let w % z. Then y; £ t,.

Proof. In view of (3) we ha_ve
(4) ([u, x2] A [u, 2] v ([us t2] A [yrs0]) = [u.12]
Then

[, x5 ] A [u,15] = [u, x; A 15].
Next,

[ to] A [rae] = [y ta] if yy S0,
and [u, 1,] A [y, v] = 0 otherwise.
First we consider the case when y; £ f,. Then (4) yields

[, x2 A 1] = [u, 15],

whence 1, £ x,. The case ¢, < x, is impossible, since both f, and x, are covered

by v. If 1, = x,, then z = u, which is a contradiction. Hence y; < t,.

2.6. Lemma. Assume that (o) is valid. Let te P, t < v, t % X,. Then y; < t.

Proof. Since [u, ] is a dual atom in Int P, there is z € P such that f({z}) = [u, t].
From t # x, we infer that z # u. Therefore according to 2.5 the relation y; £t

is valid.

2.7. Lemma. Assume that (o) and (B,) hold. Let = # v. Then t, < x,.
Proof. By virtue of (3), the relation

5) (53] A [l v ([rae 0] A Do) = [r1,0]
is valid. We have
[, x2] A [t 0] = [t, x,] if 1; £ x5, and

[, x2] A [f;, 0] =0 otherwise .
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Next, [15,0] A [y, 0] =[t; vy, v].
If t; £ x,, then (5) implies that
[t1 VvV Y1, U] = [t1»U]
is valid, whence y, < t,. The case y; < t; cannot occur, since u < y; and u < t,.
If y, = t{, then z = v, which is a contradiction. Therfeore ¢t; < x,

2.8. Lemma. Assume that (o) is valid. Let te P,u < t,t + y;. Thent < x,.
The proof is analogous to that of 2.6 with the distinction that we apply 2.7 instead
of 2.5.

2.9. Lemma. Assume that (oc) is valid. Let t be an element of P which does not
belong to the set {u, v, x,, yi}. Then either u <t < x, or y; <t <v.

Proof. In view of 2.4 we have either u < t or t < v. Now it suffices to apply 2.6
and 2.8.
Under the assumption that («) holds we denote

A={teP:u<t<x,}, B={teP:y <t<v}.

2.10. Corollary. Assume that (oc) is valid. Then An B £ 0.
This is a consequence of 2.9 and of the fact that card P > 4.

The result of the above corollary can be sharpened by the following consideration.

2.11. Lemma. Let («) be valid and let b € B. Then there is a € A such that a < b.
Proof. In view of 2.2 there are dual atoms [z, z,] and [z3, z4] of Int P such that
[b,v] = [z, z,] A [23. z4]. Since [b, v] is not a dual atom of Int P we infer that
[z, z2] # [23, 24]- Hence z; = z, = v and z; # z;. Next, z; and z; must belong
to the set A v {yl}. Thus either z; or z; belongs to A. Clearly z; < b and z3 < b.

2.12. Lemma. Let () be valid and let a € A. Then there is b € B such that a < b.
The proof is analogous to that of 2.11.

2.13. Lemma. Let (o) be valid. Then A + 0 and B = 0.
Proof. This is a consequence of 2.10, 2.11 and 2.12.

2.14. Lemma. The condition () cannot hold.

Proof. By way of contradiction, suppose that () is valid. Then we have {u} <
< [u, x5], whence f([u, x,]) < f({u}) = [u, x,]. Since [, x,] is a dual atom of
Int P, f([u, x;]) must be an atom of Int P. Thus we have three possibilities:

(a) S([w x2]) = {u};

(b) there is a; € A such that f([u, x,]) = {a,};

(¢) f([u, x;]) = {x,}.

Next, the relation

©) Il x,0) = f({u} v (x2}) = £({}) A S({x2})

is valid.
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First, suppose that (a) holds. Then in view of (6), u € f({x,}). Because f({x,}) is
a dual atom of Int Land since f({x,}) + f({#}) = [u, x,], there is b, € B such that

f({x2}) = [u, by]. Thus (6) yields
{u} = [u,x,] A [u, by].
Hence no element of A is less than by, contradicting 2.11.
Next, assume that (b) is valid. In view of (6) we infer

() {a} = [w. x2] A f({x2}).

Thus a; € f({x,}). Since f({x,}) is a dual atom of Int L distinct from [u, x,], we
have either

®) f({x2}) = [as, 0],

or there is b, € B with a; < b, such that

©) J({x2}) = [w, b1] -

If (8) were valid we would have

[, 521 A S(EY) = [ %] A [ ] = fxs}
contradicting (7). If (9) holds, then a €[u, x,] A f({x,}) and in view of (7) we
arrive at a contradiction.

At last let us consider the case (c). Thus, according to (6),

(10) {x2} = [, x2] A f({x2}) -

Therefore x, € f({x,}) #* [u, x,]. Since f({x,}) is a dual atom of Int L, there exists
a, € A such that f({x,}) = [ay, v]. Then

[u, x2] A f({x2}) = [u, x2] A [ay, 0] 2 {a,};

in view of (10) we arrive at a contradiction.

2.15. Lemma. The condition () cannot hold.

The proof requires steps analogous to those which were applied in 2.5.—2.14.
The details are omitted.

In view of 2.14 and 2.15 the proof of (B) is complete.

The following assertion is obvious.

2.16. Lemma. Let P be a partially ordered set having the least and the largest
element, and let card P < 4. Then P is a lattice.

Theorems (A), (B) and Lemmas 2.1, 2.16 yield:

(C) Let P be a partially ordered set. Then the following conditions are equivalent:

(i) The partially ordered set Int P is selfdual.

(ii) P is a lattice such that either card P < 2, or card P =4 and P has two atoms.
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