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FACTORS OF CLAW-FREE GRAPHS 

ZßiGNiEW LoNC, Warszawa and ZnENËK RYJÁČEK, Plzeň 

(Received March 3, 1990) 

1. INTRODUCTION 

Recently, many papers have been concerned with the properties of claw-free 
graphs. In the present paper we follow up with the study of factors of the claw-free 
graphs which originated from the following well-known result by Sumner [5]. 

Theorem. Every connected claw-free graph having an even number of vertices 
has a perfect matching. 

If the number of vertices of G is odd then obviously a perfect matching does not 
exist. One can easily see that such a graph always has a factor, referted to as an almost 
perfect matching, whose all components are single edges except for one which is 
a (no t necessarily induced) path of length 2. Nevertheless, such a graph can fail to 
have some other types of factors which can be of interest, e.g. a factor which, besides 
single edges, contains a triangle, a bull or an induced path of length 2 as its com­
ponents. In this paper we given full characterizations of such classes of graphs. 

We consider simple graphs, i.e. graphs without loops and multiple edges. In general, 
we follow the terminology of Harary [2]. In particular, V(G) and E(G) stand for the 
set of vertices and the set of edges of G, respectively, <M> is the induced subgraph 
on M ç= 7(G), G\Gt = (V(G)\V(Gi)y for Gt Ç G and G - x = <7(G)\{x}> 
for x є V(G). 

Throughout the paper we denote by E the complete graph on 2 vertices, by Tthe 
triangle, i.e. the complete graph on 3 vertices, by P the three-vertex path, by S the 
claw, i.e. the three-edge star and by B the bull, i.e. the graph depicted in Figure 1. 
By a factor in a graph we mean a spanning subgraph of G. If all components of 
a factor are isomorphic to E then the factor is called a perfect matching. 

Let Hu ..., Hk be graphs, By an {Hl9 ..., #J-subgraph of G we mean a subgraph 
each component of which is isomorphic to one of the graphs Hl9 ...,Hk. An 
{H l 5 . . . , #fc}-factor of G is an {Hx,..., Hj-subgraph which is a factor of G. By an 
# i , {H2}-factor of G we mean a factor with exactly one component isomorphic to Ht 

and all the othersisomorphic to # 2 . A factor whose every component is an induced 
subgraph of G is called strong. Clearly, a T,{£}-factor is a strong T, {£}-factor. 
A graph is said to be claw-free if it contains no copy of the claw as an induced 
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subgraph. Clearly, every induced subgraph of a claw-free graph is claw-free, too. 
For short, we call a graph odd if it has an odd number of vertices. Otherwise we call 
it even. If G is an odd connected claw-free graph and x is a cutvertex of G then 

Figure l. Thebull 

G — x consists of exactly two components which are either both odd or both even. 
The cutvertex x is called odd or even according to the parity of the components of 
G — x. The trivial graph is the graph with one vertex only. 

In our terminology, an almost perfect matching is a P, {£}-factor and, as mentioned 
above, it exists in every odd connected claw-free graph. Its component isomorphic 
to P is either an induced subgraph or a subgraph of a triangle. Consequently, every 
odd connected claw-free graph has a strong P, {£}-factor or a (strong) T, {£}-factor. 

In Section 2 we prove that every odd connected claw-free graph has either a T, {E)-
factor or a strong B, {£}-factor. In Section 3 we give full characterizations of odd 
connected claw-free graphs with a T, {£}-factor, and odd connected claw-free graphs 
with a strong P, {£}-factor. 

As a byproduct of the former result we get a characterization of all odd connected 
claw-free graphs with a perfect2-matching. A perfect 2-matching is a factor whose 
components are isomorphic to either an odd cycle or the graph E. This concept is 
an analogue of the perfect matchingand plays an important role in the matching 
theory (cf Lovász, Plummer [3]). Our result strengthens one of the results of [4] 
on the existence of a perfect 2-matching in claw-free graphs. 

In Section 4 we examine connections between our results and some edge-partition 
problems studied by Favaron et al. [ l ] . Our results are, in a sense, generalizations 
of some theorems in [ l ] . 

2. EXISTENCE 

Theorem 1. Every odd connected claw-free graph with at least one^ triangle 
has an {E, T,B]-factor. 

Proof. Let C be the largest {T)-subgraph of G and A = G\C. If V(A) = 0 
then we are done, so suppose that V(A) is nonempty. No vertex of A has degree 
greater than 2 in A since otherwise, as this vertex cannot centre a claw, it would 
belong together with two of its neighbours to a triangle in A which contradicts the 
maximality of C. Hence A consists of paths, cycles and isolated vertices only. 
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Let the largest {T)-subgraph C in G be chosen such that the number of odd com­
ponents of A is minimal. 

Since in each component of A at least one vertex is adjacent to some vertex in C, 
we can easily see that there is a largest {£}-subgraph H in A such that 

(i) V(H) contains all vertices belonging to even components of A, and 
(ii) in each of the odd components of A the only vertex which does not belong 

to V(H) has a neighbour in V(C). 
This is seen from the following simple observation. If z є V(A) is of degree 2 in A, 
z± and z2 are the neighbours of z in A and u є V(C) is a neighbour of z in G then 
since z cannot centre a claw, u is adjacent to z1 or z2. 

Denote X = V(A) \ V(H). We prove that every vertex of C has at most one neigh­
bour in X. Let, on the contrary, ye V[C) be adjacent to xux2eX. Denote by 
yl9 y2 the two neighbours of y in C. Clearly, xl9 x2 are non-adjacent but then, con­
sidering <{*!, x2, у, Уі}>, we see that yt is adjacent to xt or x2. By symmetry we 
can assume, without loss of generality, that yt is adjacent to xt. Consider 
<{*i> x2> y> Уі\У- We see that y2 is adjacent to xt or x2. If we replace in C the 
triangle <{j, yu у2}У by <{xb j l 5 y2}> in the first case and by <{xl5 y, j J > in the 
latter case, then in both cases the number of odd components of A is decreased 
which contradicts the choice of A. 

Hence every vertex of C has at most one neighbour in X. Joining every vertex 
of X to one of its neighbours in V(C) with an edge and considering the resulting 
subgraphs together with the components of H and the remaining components of C, 
we get a factor of G each component of which is isomorphic to either £, Tor one of 
the graphs depicted in Figure 2. As the second graph in Figure 2 is the bull and the 

Figure 2 
Ô 

first and the third have a perfect matching, we can easily construct an {E, T, £}-
factor in G. Ш 

We turnourattentiontotheexistence offactors with components oftwo types only. 

Proposition 2. Let G be an odd connected claw-free graph. Then 
a) G has an {E, T)-factor ifand only if G has a T, {E)-factor and 
b) G has an {E, Bj-factor if and only if G has a B, {E)-factor. 
Proof. Theassertion follows immediately from the following lemma, proved in [4]. 
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Lemma. Let G be an odd connected claw-free graph and suppose that F is afactor 
of G each component of which is either a single edge or odd. Then there exists 
afactor F' in G such that the only odd component ofF' coincides with some of the 
odd components ofF, and all the other components ofF' are single edges. Ш 

Corollary 3. Every odd connected claw-free graph with at least one trianglehas 
a T,{E)-factor or a strong B, {E]-factor. 

Proof. Suppose that G does not have a T, {E]-factor. By Theorem 1 and Lemma 
in [4] (see the proof ofProposition 2), G has a J3,{E)-factor. Denote by H the 
component of G isomorphic to B. Moreover, denote by ot± and a2 the vertices of 
degree 1, by bt and b2 the neighbours of oc1 and a2, respectively, and by c theonly 
verteX of degree 2 in H. 

The vertices ax and a2 are non-adjacent since otherwise, replacing H by <{a1? a2}> 
and <{bi, b2, c}> we get a T,{£}-faetor in G. For the same reason the vertex c is 
adjacent to neither ax nor a2. The vertex ax is not adjacent to b2 since otherwise b2 

would centre a claw. Similarly, a2b1 ф E(G). Hence, H is an induced subgraph of G 
and we have a strong Б, {E)-factor in G. • 

Example . The graph in Figure 3a has a T, {E)-factor but has no B, {£}-factor. 
Thegraph in Figure 3b has a strong £,{£}-factor but has no T,{E)-factor. The 
graph in Figure 3c has both a Г, {£}-factor and a strong Б, {£}-factor. 

i i ^ x 7 

Figure 3 

3. CHARACTERIZATIONS 

In this section we give full characterizations ofclasses of odd connected claw-free 
graphs which fail to have a T, {£}-factor, a perfect 2-matching, and a strong P, {E)-
factor. 
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We first prove two auxiliary assertions. 

Lemma 4, An odd connected claw-free graph G has a T, {E]-factor if and only if 
there is a triangleTin G such that all components of G \ Tare even. 

Proof. If G has a Г, {E]-factor then G \ Thas a perfect matching. Consequently, 
all components of G \ T are even. Conversely, if all components of G \ T are even 
then taking a perfect matching in each of them (its existence follows by the Sumner 
Theorem) and adding Г, we get a T, {E)-factor in G. Ш 

Lemma 5. Let G be an odd connected claw-free graph having no T, {E)-factor. 
Thenfor every triangle C Ç G at least one vertex of C is a curvertex of G. 

Proof. For triangle-free graphs the theorem is trivial so we can suppose that G 
contains at least one triangle. Let, on the contrary, C Ç G be a triangle no vertex 
of which is a cutvertex of G, and denote by Gl5 ..., Gk the components of G \ C. 
Then, by Lemma 4, k ^ 2 and for every j , 1 <£ j ^ k, at least two distinct vertices 
of C have a neighbour in Gj. 

If k ^ 4 then some vertex of C has two neighbours in three distinct components 
of G \ C and hence centres a claw; thus k ^ 3. 

At least one ofthe G/s is odd since otherwise, by Lemma 4, G would have a T9 {E}-
factor. From the fact that G is odd we then see that exactly two of the components 
of G \ C (say Gt and G2) are odd and, if k = 3, the component G3 is even. In the 
latter case, G3 is an even connected claw-free graph, so by the Summer Theorem 
it has a perfect matching. Clearly, the graph G \ G3 cannot have a Г, {£}-factor 
since otherwise it could be extended to a Г, {E)-factor of G. Therefore it is sufficient 
to consider the case k = 2. 

Choose vertices x and xt of C such that x has its neighbours in both Gx and G2 

and x1 has a neigbour in Gx (such vertices exist since none of the vertices of C is 
a cutvertex of G). Denote by x2 the third vertex of C and by z{ the neighbours of x 
in G,-, i = 1,2. If x2 has no neighbour in G2 then x1 is adjacent to some vertex 
in G2 and, since x cannot centre a claw, x2 has a neighbour in Gt; in this case we 
interchange the notation of xx and x2. Hence, in each case we have vertices dl 

and d2 such that dt є Gř and d,oc,- є £(G), і = 1, 2 (not excluding the possible cases 
d1 = zx and d2 = z2). 

We prove that, for i = 1, 2, x has a neighbour in Gt which is not an odd cutvertex 
of Gj. Suppose, on the contrary, that in some of G/s (say in G^ each of the neigh­
bours of x in Gt is an odd cutvertex of Gv Let z}, ..., z\ be all neighbours of x 
in G1. The subgraph Kx = <{zJ, ..., z^}> is a clique for, if z[z{ $E(G) for some 
i, j , і Ф j , then {z[, z{, z2, x} induces a claw. For i = 1, . . . , fc denote by Bl the only 
component of GjL \ zi which contains no vertex of Kx (if there were two such com­
ponents then z\ would centre a claw). In every Bl choose a vertex bl adjacent to z[. 

If there is a vertex in Gx which is neither in Kt nor in any of B1,..., Bk then it 
cannot be adjacent to any vertex of Б1 , . . . , B \ Thus, we can find j and a vertex 
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а ф Bj u Kt such that az{ e E(G). Since bJx ф E{G) (otherwise bJ would be some 
of z{'s and, consequently, Ь]еКх) and similarly, ахфЕ(в), we see, observing 
<{a, bj, x, z{}>, that abj e E(G) which implies a e B\ a contradiction. Thus Gx = 

k 

= <K(Xi) u U 7(B'')>. This implies that V(Gt) is the union of the disjoint even sets 
i = l 

V(BJ) u {z{} (; = 1, ..., fc) and hence it is even. This contradiction proves that at 
least one ofthe vertices z{,..., z\ (say z{) is not an odd cutvertex of Gt. 

Similarly we can show that some of the neighbours of x in G2 (say z\) is not an 
odd cutvertex of G2. 

Now, if z\xleE{G), then all components of G\<{zJ ,x l 5 x}> areeven.Thus 
z\xx ф E(G) and, consequently, z\xx є E(G) (otherwise {z{, хъ z\, x} induces 
a claw). Similarly we get z\x2$E(G) and, conseuently, z\x2eE(G). Finally, it is 
easily seen that each component of G \ <{z}, x2, *}> is even and hence G has a T, {£}-
factor. This contradiction completes the proof of the lemma. • 

Now we can proceed to the main goal of this section, i.e. the characterizations of 
classes ofgraphs which fail to have some types offactors. 

We call a vertex of a graph simplicial if the neighbours of the vertex induce 
a clique in a graph. 

Let G and H be graphs and let CG and CH be either the set of vertices of a maximal 
clique or a one-element set the only element of which is a simplicial vertex in G 
and Я, respectively. By a gluing of the graphs G and H we mean a graph obtained 
from the disjoint union of the graphs G and H by adding a new vertex x and the 
edges xy for every y e CG u CH. 

Let sé be the minimal class ofgraphs closed under gluing and containing the trivial 
graph and every odd cycle different from T. 

Clearly, all graphs in sé are odd and connected. Although, in general, gluing of 
two claw-free graphs need not be claw-free, one can easily see that there is a system 
of cliques in each G є sé such that every edge of G lies in exactly one and every 
vertex of G lies in exactly two of the cliques. Hence every G є sé is a line graph and, 
consequently, is claw-free. 

Theorem 6. Let G be an odd connected claw-free graph. The graph G has a T, {£}-
factor if and only if G ф sé. 

Proof. Necessity follows immediately from the observation that neither an odd 
cycle different from T nor the trivial graph has a T, {E]-factor. Moreover, every 
gluing of two odd graphs without a T,{£}-factor yields an odd graph without 
a T, {£}-factor. Thus, there is no graph with a T, {E)-factor in sé. 

To prove sufficiency suppose, on the contrary, that there is an odd connected 
claw-free graph Gфsé without a T,{£}-factor.Assume that G has the smallest 
possible number of vertices. 

Notice that odd cycles and odd paths are the only odd connected claw-free graphs 
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without a triangle. All these graphs belong to sé, so by Lemma 5 there is a cutvertex 
in G. Consider two cases. 

Case 1. At least one of the cutvertices of G, say x, is odd. 
Let Gt and G2 be the components of G — x. Clearly, both G1 and G2 areodd, 

connected and claw-free. Moreover, they have no T, {E)-factor since otherwise it 
could be easily extended to a T, {E]-factor of G. By the minimality of G, G1? G2 є sé. 

Denote by N the set ofneighbours of x in Gx. Clearly, <iV> is a clique for otherwise 
there would be a claw in G. 

We claim that N is either the set of vertices of a maximal clique in Gx or a one-
element set the only element of which is a simplicial vertex in Gx. 

If N consists of at least 3 vertices then according to Lemma 5 at least oneof its 
elements, say y, is a cutvertex of G. If <iV> were a subclique of some larger cliqué 
in G1 then y would centre a claw. Thus, <iV> is a maximal clique. 

IfiV is a one-element set, say N = {z}, then z must be simplicial in Gt for otherwise 
z would centre a claw. 

It remains to consider the case when N consists of 2 vertices, say u and w. Suppose 
that <JV> is a proper subgraph of some maximal clique K in G. Clearly u and w are 
not cutvertices since otherwise we should get a claw with the centre at u or w, respec­
tively. Consequently, by Lemma 5, each vertex in K \ <iV> is a cutvertex. If some 
vertex v ф V(K) u{x} is a neighbour of w then v must be adjacent to every vertex 
of K — w to avoid claws. Finally, v and w must be adjacent because every vertex 
in K \ <iV> is a cutvertex and Gx is claw-free .Hence (V(K) u {p}> is a clique, which 
contradicts the maximality of K. Thus, all neighbours of u (and similarly all neigh­
bours of w) in G1 belong to V(K). Let Lbe the block in G1 containing K and suppose 
that V(L) - V{K) Ф 0. Then some-vertices t є V{L) - V(K) and s є V(K) - {u, w} 
are adjacent in Gx which again yields a claw centred at s. Thus L = K. For every 
v є V(K) — {u, w) let Cv be the component of Gl — f disjoint from K. Since Gt 
is odd and V[Gt) is the disjoint union of the set {u, w} and the sets F(Cy) u {v} for 
all иє V(K) — {w, w}, at least one of the graphs Cy, say Cp, must be even. The 
graph <{w, w, p]y is a triangle and all components of G \ <{w, w, p}> are even, so by 
Lemma 4, G has a T, {£}-factor which contradicts the definition of G. Thus, <iV> is 
a maximal clique as claimed. 

We show analogously that the set N' of neighbours of x in G2 is either the set of 
vertices of a maximal clique or a one-element set the only element of which is 
a simplicial vertex in G2. 

By the defmitionof the class sé, G є sé. We have come to a contradictionin the 
case 1. 

Case 2. Every cutvertex in G is even. 
Let x be a cutvertex in G such that one of the components of G — x, say Gl5 is 

a block. The graph H = <K(G^ u {x}> is odd, connected, claw-free and without 
a T, {£}-factor. By minimality of G, H e sé. Moreover, H does not have a cutvertex 

126 



because all cutvertices in G are even. By the definition of the class sé, the only graphs 
without cutvertices in sé are the oddcycles different from Tand the trivial graph. 
Thus, H is an odd cycle and H Ф T. Then, however, Gt is not a block. This contradic­
tion completes the proof. • 

From this theorem we obtain the following characterization of odd connected 
claw-free graphs having a perfect 2-matching. 

Let & be the minimal class of graphs closed under gluing and containing the trivial 
graph. 

Qbviously, J1 c sé and every G є $ is odd. 

Theorem 7. Let G be an odd connected claw-free graph. Thefollowingstatements 
are equivalent: 

(i) G has a perfect 2-matching, 
(ii) G has a strong perfect 2-matching with at most one odd cycle, 

(iii) G ф Я. 
Proof. For every even graph G the theorem follows immediately from the Sumner 

Theorem, so suppose that G is odd. 
(i) => (ii) If G has a perfect 2-matching, then, by Lemma of [4], G has a perfect 

2-matching with exactly one odd cycle. The rest ofthe prooffollows from the observa­
tion that every odd cycle with a chord has a perfect 2-matching with exactly one 
smaller odd cycle. 

(ii) => (///) Let, on the contrary, G e $. First observe that if two graphs F and H 
fail to have an induced cycle of length greater than 3 then so does their gluing. This 
proves that if G є $ then the only induced cycles in G are triangles. Hence, by (ii), 
G has a T, {£}-factor which, by Theorem 6, contradicts the fact that & c sé. 

(iii) => (i) Let G ф J*. If G ф sé then we are done by Theorem 6. Suppose that 
G є sé \ @l is an odd connected claw-free graph without a perfect 2-matching and 
with the smallest possible number of vertices. By the definition of sé and J1, G is 
either an odd cycle or a gluing of some odd connected claw-free graphs F and H. 
In the former case G itselfis a perfect 2-matching while in the latter one F has a perfect 
2-matching, by the minimality of G. This 2-matching can be extended to a perfect 
2-matching in G because G \ F is even, connected and claw-free. • 

We pass on to the graphs with a strong P, {JS)-factor. 
Let G and H be vertex-disjoint graphs. A graph obtained by identifying a vertex x 

of G and a vertex y of H is a sticking of G and H provided that the vertices x and y 
are not cutvertices of G and Я , respectively. 

Let ^ be the minimal class of graphs closed under sticking and containing all 
odd complete graphs. Clearly, all graphs in %> are odd, connected and claw-free. 

Theorem 8. Let G be an odd connected claw-free graph. The graph G has a strong 
P, {E)-factor if and only if G ф <€. 

We first prove the following simple auxiliary assertion. 
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Claim. Let an odd connected claw-free graph G be a sticking of Gx and G2. Then G 
has no strong P, {E)-factor if and only if both Gi and G2 are odd and have no 
strong P, {E]-factors. 

Proof of Cla im. Suppose that G has no strong P, {£}-factor. If both Gt and G2 

are even then there is a perfect matching Mt in Gt and M2 in G2. The components 
of Mx and M 2 which contain the common vertex x of Gt and G2 in G apparently 
determine an induced path in G which together with the remaining components ofiV^ 
and M 2 forms a strong P, {£}-factor in G. 

Hence both G t and G2 are odd. If one of them (say G^, has a strong P, {£}-
factor jR, then G2 — x is an even connected claw-free graph, so it has a perfect 
matching which, together with P , forms a strong P, {£}-factor of G. 

Conversely, suppose that both Gt and G2 are odd and have no strong P, {£}-factor. 
If G has a strong P, {E)-factor P, then the only vertex of degree 2 in R coincides 
with the common vertex x of Gi and G2. One of the neighbours of x in P , say j , 
belongs to Gx and the other one, say z, belongs to G2. This is, however, a contradic­
tion because the graphs Gt \ <{x, y}} and G2 \ <{x, z}> are odd so that they do not 
have a perfect matching. 

P roo f of T h e o r e m 8. To prove necessity, we observe that no odd complete 
graph has a strong P, {£}-factor and hence, by the claim, neither does any graph 
from <g. 

We prove sufficiency by induction on the number of vertices in G. The assertion 
is true for the trivial graph, so assume that G ф Я> is a nontrivial odd connected claw-
free graph without a strong P, {£}-factor. 

Suppose G has a cutvertex x. Denote by Gx and G2 the components of G\x 
and let Gi = G \ G2 and G2 = G \ Gx. Then G is a sticking of G[ and G2 and hence, 
by the claim, both Gi and G2 are odd and have no strong P, {£}-factor. By the in­
duction hypothesis, both Gi and G2 belong to ^. Thus, by the definition of ^ , we 
have G є ^7, a contradiction. Hence G is a block. 

As G ф <%, G is not a complete graph. We prove that G contains an induced sub­
graph H isomorphic to P such that G \ H is connected. 

If the connectivity of G is 2 then there is a vertex v є F(G) such that the graph 
G — u has at least two different terminal blocks, say Lk and L2. Moreover, for some 
vertices vt e F(Li) and v2 є V(L2) that are not cutvertices in G — t;, there are edges 
vvx and vv2 in G. The graph H = <{ul5 ü, ^2}> is isomorphic to P and G \ Я is con­
nected. 

If the connectivity of G is 3 then let H' be any induced path <{y, v, z}> in G. 
If G \ # ' is connected then we are done. Otherwise, denote by Ft and F2 any two 
components of G \ H'. If the middle vertex v of the path H' is not adjacent to at least 
one vertex of F1 and at least one vertex of P 2 then the set {y, z] is a cutset in G, and 
consequently the connectivity of G is at most 2. Hence the degree of v in G is at 
least 4. The connectivity of G — v is 2, so by the argument given above there is 
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a path Я in G — v such that (G — v) \ Я is connected. Since the degree of v is at 
least 4 in G, G \ Я is connected, too. 

Finally, if G is 4-connected then G \ H is connected for any subgraph Я of G 
isomorphic to P. 

Since G \ Я has a perfect matching, G has a strong P, {JE)-factor. • 

4 .LINE GRAPHS 

Favaron et al. [ l ] considered some edge-partition problems for graphs. A de­
composition of a graph G into subgraphs G l 5 . . . , Gn is a partition of the edge set of G 
into subsets Eu ..., En such that Gf is induced by Et for i = 1, ..., rc. To make the 
terminology of [1] consistent with ours let us define, for a graph Я, and Я, {P}-
decomposition of a graph G to be a decomposition of G into such subgraphs that 
exactly one of them is isomorphic to Я and the others are isomorphic to P. 

In [1] the authors give full characterizations ofthe graphs with an S, {P)-decom-
position (recall that S denotes the claw) and the graphs with a P' , {P}-decomposition, 
where P' is the four-vertex path. 

Notice that every decomposition of a graph G defines a factor in the line graph 
L(G). For example, a P' , {P}-decomposition in G gives a strong P, {E)-factor in L(G). 
Conversely, a strong P, {£}-factor in a line graph L(G) gives a P' , {P}-decomposition 
in G. Clearly, this correspondence between decompositions and factors is not always 
one-to-one. For example, a T, {£}-factor in a line graph L(G) corresponds to either 
a T,{P)-decomposition or an S, {P)-decomposition of G. 

The results of Favaron et al. [ l ] can be reformulated in terms of line graphs as 
follows. 

(i) A connected graph G with an odd number ofedges has a P' , {P}-decomposition 
(or, equivalently, an odd connected line graph L(G) has a strong P, (£}-factor) if 
and only if L{G) ф <g. 

(ii) A connected graph G with an odd number of edges has an 5, {P)-decomposi-
tion if and only if L(G) ф sé', where sé' is the minimal superclass of sé containing 
the triangle Tand closed under gluing. 

Since the class of line graphs is a proper subclass of the class of claw-free graphs, 
(i) is a special case of our Theorem 8. On the other hand, our Theorem 7 and the 
above remark give the following proposition. 

Proposition 9. A connected graph G with an odd number of edges has a T, {P]-de-
composition or an S, {P]-decomposition if and only if L{G) ф sé. Ш 

The following problem is still open. 

Problem. Give a characterization of the graphs with a T, {P]-decomposition. 
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Notice that both sé and ^ consist of line graphs only. This observation together 

with our Theorems 7 and 8 give the last proposition. 

Proposition 10. Ifan odd connected claw-free graph is not a line graph ofa graph 

then G has both a T, {E]-factor and a strong P, {E]-factor. Ш 
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