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INTRODUCTION

In [13] Zelinka conjectured that if G is a connected infinite locally finite graph,
and 7 an end of G then:

Conjecture 1. If m(r) is the maximum number of pairwise disjoint rays in t,
then, for any cardinal k with 1 < k < m(x), there is a spanning tree of G having
exactly k ends included in <.

Conjecture 2. Any spanning tree T of G contains a ray which belongs to the end 1.

He proved Conjecture 2 in the case where 7is afree end,i.e. 7can beseparated from
any other end by a finite set of vertices; and Conjecture 1 in the case where 7 is also
free with m(t) finite. Actually Zelinka used the concept of degree of an end t rather
than that of m(7), but it turns out that these two notions coincide when the graph
is locally finite.

In this paper we prove these conjectures, and even improve the first by replacing the
local finiteness of G by the assumption that G has a coterminal spanning tree, i.e.
a spanning tree having exactly one end included in each end of G; this condition is
always satisfied by locally finite graphs. We recall different partial results about the
existence of coterminal spanning trees, a problem which is still far to be entirely
solved, and we give a new one by showing that: a connected graph having exactly
one end has a coterminal spanning tree if the set of vertices, which cannot be
separated from this end by a countable set of vertices, is countable. For infinitely
connected graphs, this condition turns out to be equivalent to a recent one given
by Seymour and Thomas [12]. Finally we characterize some classes of connected
infinite graphs such that if G is one of them and if, for every end t of G, k() is a fixed
cardinal <m(t), then there is a spanning tree of G having, for any end 7, exactly k(t)
disjoint rays belonging to 7.

To prove these results we almost essentially use the concepts and results of [1 1].
So the terminology and notation will be for the most part that used in that paper.
Besides, since most of the results of the different papers [6] to [ 10] are recapitulated
in [11], we will, for simplicity, only refer to [11] when possible.
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1. PRELIMINARIES

1.1. Each ordinal o is defined as the set of ordinals less than «. If X is a set we
denote by | X]| its cardinality and, for a cardinal n, by [X]" (resp. [X]<", [X]*")the
set of its subsets of cardinality n (resp. <n, gn).

1.2. A graph G is a set V(G) (vertex set) together with a set E(G) = [V(G)]*
(edge set). For x € V(G) the set V(x; G):= {y € V(G): {x, y} € E(G)} is the neigh-
borhood of x, and its cardinality is the degree of x. A graph is locally finite if all its
vertices have finite degrees. H is a subgraph of G if V(H) and E(H) are subsets of
V(G) and E(G), respectively. H is an induced subgraph if H is a subgraph such that
E(H) = [V(H)]* n E(G). For A < V(G) we denote by G — A the subgtaph of G
induced by V(G) — A4; and if H is a subgraph of G, then we set G — H:= G —
— V(H). For B = E(G) we denote by G\ B the smallest subgraph of G with
E(G\B) = E(G) — B. The union of a family (G,);;; of graphs is the graph U, G;
given by V(Ui G)) = Uit V(G) and E(Uier G;) = Uier E(G;). The intersection
is defined similarly. If H is a subgraph of G, and X a subgraph of G — H, the bound-
ary of H with X is the set B(H, X) := {x e V(H): V(x; G) n V(X) * 0}. The set
of components of G is denoted by €;, and if x is a vertex, then (EG(x) is the com-
ponent of G containing x. A path W:= {(xo,...,x,> is a graph with V(W) =
= {Xo, ... X}, x; # x; if i % j, and E(W) = {{x;, x;4,}: 0 £ i <n}. A ray or
one-way infinite path R := {(xq, Xy, ...y is defined similarly. A path <{x,, ..., x,
is called an xyx,-path. For A, B < V(G), an AB-path of G is an xy-path of G whose
only vertices in A U B are x et y, with x € 4 and y € B.

1.3. The ends of a graph G (this concept was introduced by Freudenthal [1] and
independently by Halin [2]) are the classes of the equivalence relation ~ defined
on the set of all rays of G by: R ~; R’ if and only if there is a ray R” whose inter-
sections with R and R’ are infinite; or equivalently if and only if €5_g(R) = €;_¢(R’)
for any S e [V(G)]=® (where €;_g(R) denotes the comiponent of G — S containing
a subray of R). We will denote by [R]G the class of a ray R of G modulo ~, by
Cs-s([R]g) the component €;_g(R), and by I(G) the set of all ends of G. Notice
that if G is a tree, then two rays of G are equivalent modulo ~ if and only if they
have a common subray; hence two disjoint rays of a tree correspond to different
ends of this tree.

A subgraph H of G is terminally faithful (resp. terminally full, coterminal) if the
map ¢y6: T(H) —» I(G) given by e,6([R]y) = [R]g for every ray R of H, is injective
(resp. surjective, bijective). We denote by Tj(G) the image of éyg, i.e. the set of
ends of G having rays of H as elements.

1.4. An infinite subset S of V(G) is concentrated in G if it has the following equi-
valent properties [ 11, Theorem 1.4]:
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(i) there is an end 7 such that S — V(€g_g(r)) is finite for any Fe[V(G)]=®
(S is said to be “concentrated in t”);

(ii) for all infinite subsets T and U of S there is an infinite family of pairwise
disjoint TU-paths in G.

1.5. A set S of vertices of G is dispersed if it has the following equivalent properties
[11, 2.5]:

(i) for every T € T(G) there is an F € [ V(G)] = such that S n V(€s_ (1)) = 0;

(i1) S has no concentrated subset.

1.6. For Q < I(G) let m(Q):=sup {|R|: N is a set of pairwise disjoin ele-
ments of UQ}. If Q = {1}, we write m(z) for m({t}), and we call it the multiplicity
of 7. By [10, 11.5] the supremum is attained, i.e. there is a set of pairwise disjoint
rays in UQ of cardinality m(Q). This was alrcady proved by Halin [3, Satz 1] and
[4, Satz 1] when Q@ = (G) and |Q| = 1, respectively.

For a subgraph H and an end 7 of G, we will set my(7) := m(eyg-1(t)). By the
remark in 1.3 about ends of trees, notice that if H is a tree, then my(t) < |egg-1(7)|,
with the equality in particular if mpy(t) is finite.

In [13] Zelinka defined the degree of an end 7 of a locally finite graph G as follows.
For a non-empty finite subset 4 of V(G), let ¢(4, t) := min {|S|: Se [V(G) — 4]<®
and 4 N V(€g_g(t)) = 0}. Then the degree of Tis d(t) : = sup {¢(4, 7): Ae[V(G)]“}.

A particular case of the Mengerian theorem [11, Theorem 1.9] states that: For
any non-empty subset A of V(G) and any end t of G, ¢(4, 7) is equal to the maximum
number of raysin T originating in A and having at most their endpoints in common.
With this result we easily see that, for a locally finite graph, the multiplicity and
the degree of an end coincide.

1.7. A vertex x is a neighbor of an end 7 if x € V(€4 _g(7)) for any S e [V(G) —
— {x}]°°. We denote by V, the neighborhood of . The cardinal v(z) := |V;| is
called the valency of .

1.8. A multi-ending of a graph G is an inducted subgraph M of G satisfying:
M1. M is connected;
M2. the boundary of M with every component of G — M is finite;

M3. any infinite subset of V(M) which is concentrated in G is also concentrated
in M;

M4. M contains a ray;
MS. Vigyye = Virye for any ray R of M;
M6. for any family (R;),; of pairwise disjoint rays of G such that {[R;]g: iel} =

54



< Ty(G), there is a family (R'i),.e, of pairwise disjoint rays of M such that R; n R;]
is infinite for every i e I.

A multi-ending M is an ending if |TZ(M)| = 1; it is a discrete multi-ending if each
end 7 of M is free, i.e. there is a finite subset S of V(M) such that €;_g(1) + C4_4(7')
for any end 7" % t of M. By M3 a multi-ending is terminally faithful; and by M6
m([R]y) = m([R];) fro any ray R of M.

By (11, Theorem 2.1] for every end t of G there is an ending M of G such that
Tyu(G) = {7}. By [8, 1.4.2] for every discrete multi-ending M of G, there is a dis-
persed set S of G such that €;_g(t) + €g_s(t') for distinct 7,7 € Ty(G).

1.9. Let G be a connected graph having no subdivision of the dyadic tree (3-
regular infinite tree) as a terminally faithful subgraph. By [11, Theorem 2.6] there
is a sequence (G,),»o of multi-endings of G, called a terminal expansion of G,
satisfying the following conditions: for every n = 0,

El. G, is an induced subgraph of G, ;;

E2. any component of G, — G,_; (with the convention G_, := 0) is a discrete
multi-ending of G — G, _q;

E3. G = U,20 G, and (G) = U,»0 T,(6).

2. SPANNING TREES

2.1 Theorem. Any spanning tree of a connected infinite locally finite graph is
terminally full.

Proof. Let G be a connected infinite locally finite graph and T a spanning tree
of G. Let 7 be an end of G. We have to prove that 7€ T4(G),i.c. that T contains a ray
R e 1. By 1.8 there is an ending M of G such that T,(G) = {1}. Let T’ be the smallest
subtree of T'containing T n M. Since M is infinite, T’ is then an infinite locally finite
tree. Thus it contains a ray R. For any component X of G — M, Rn X is finite
by the definition of T’; hence €;_p(R) + X where B := B(M, X); notice that B
is finite by 1.7.M2. Therefore [R]s € Tp(G) = {1}. O

This result generalizes Lemma 1 of [13], and thus proves Conjecture 2 of this
same paper. '

2.2 Lemma. [8, 3.1]. Let G be a connected graph, T a spanning tree of G, Ty any
tree of G, and a a vertex of T,. Then )

T, := Ty, 0 (T~{{x, y} e E(T): ye V(T,) and x <,y})

where <

=a

is the natural partial order on V(G) induced by T in which a is the
least element, is a spanning tree of G.

2.3. Lemma. Let T be a spanning tree of a connected infinite graph G. Let 1,
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be an end of G, and k a cardinal such that m(t,) < k < m(to). Then G has a span-
ning tree T, such that mp(to) = k and mr(t) = my(z) for every end t % 1.

Proof. We can suppose that k > my(t,), otherwise T would have the required
properties. For simplication we will still denote by k the function which maps every
end to a cardinal such that k(to) = k and k(1) = my(z) if T * 7,.

Let R be a set of pairwise disjoint rays in 7, such that my,yn(te) = k(to). This is
possible since k(to) < m(t,) and since, by 1.6, the supremum m(,) is attained.
And let R’ be a set of cardinality k(t,) of pairwise disjoint rays of T U®R belonging
to the end 7,. Denote by T’ a tree of G containing UR’, and which is minimal with
respect to inclusion. By the minimality of 7', any ray of T, belongs to 7, since all
element of R’ belong to 7, and furthermore 7" — YR’ is finite if so is k(t,). Hence,
in both cases, my(to) = k(t,). Besides my,r(to) = k(o). Indeed, this is obvious
if k(to) is infinite, and when it is finite this is a consequence of the fact that
mroun(to) = k(to) and that T — YR’ is finite. On the other hand, for any end
T % 15 of G, my,r(t) = k(1) = 1 since, for any ray R of TU T’ which belongs
to 7, there is a finite set S of vertices such that € _g(R) = €g_g(1) + C4_s(7o), hence
€;_s(R) N T’ is finite by the minimality of T"; this proves that R has a subray
in T — T’, hence that my (1) = me(7).

Then, by Lemma 2, for a € V(T") the tree

Ty:= T U (TN{{x,y} € E(T): ye V(T') and x <,})

is a spanning tree of G such that my(t) = k(z) for any end  of G, since k(1) =
= my(t) £ my(t) £ mrop(t) = k(z). Consequently T, has the required properties.

O
We get immediately:

2.4. Theorem. Let G be a connected infinite graph having a coterminal spanning
tree. Let 1y be an end of G, and k a cardinal such that 1 < k £ m(z,). Then G
has a spanning tree T such that m(t,) = k and mq(t) = 1 for every end t * t,.

2.5. Remarks. The problem of determing which infinite connected graphs have
a coterminal spanning tree is still unsolved. Recently Seymour and Thomas [12]
proved that there is a one-ended connected graph without coterminal spanning tree;
more precisely they showed that: There is an infinitely connected graph G of car-
dinality wq such that every spanning tree contains a subdivision of the w,-regular
tree as a subtree. We recall the following partial results:

A connected infinite graph G has a coterminal spanning tree if: (i) G is countable
(Halin [2, Satz 3]); (ii) G contains no subdivided infinite complete graph as a sub-
graph (Halin [5, Theorem 10.1]); (iii) G is infinitely connected and contains no
subdivision of the w,-regular tree as a subgraph (Seymour and Thomas [12, (1.7)]);
(iv) G is one-ended and its end has countable multiplicity or valency (Polat [11,
Theorem 2.11]).

See [ 11, Section 2.10] for some extensions of this last result. Any connected infinite
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locally finite graph has a fortiori a coterminal spanning tree. Hence 2.4 proves and
even improves Conjecture 1 of [13]. We will give another condition for the existence
of a coterminal spanning tree in a one-ended graph which will generalize the above
mentioned two. First we recall three results.

2.6. [11, Theorem 2.10] Let G be a one-ended connected graph, and let t be its
only end. Then G has a rayless spanning tree if and only if v(t) # 0 and G has
a coterminal spanning tree.

2.7 [11, Corollaries 2.1 and 2.2] If m(¥(G)) is countable, and if the neighborhood
of every end is not empty, then G has a rayless spanning tree.

2.8 [10, Theoreme 12.3] Let G be a connected graph, and let Q = I(G) be such
that m(Q) = x for some regular uncountable cardinal x. Then the set

Vg = {xeV(G): €s_s(x) contains a ray belonging 1o UQ
forany Se[V(G — x)]™*}

is non-empty. Besides, on the one hand either ]V;;[ =% or the set I' of components
of G — Vg containing an element of UQ is of cardinality = »; and on the other
hand m({{R]x: R is a ray of X belonging to UQ}) < x for every X e T.

2.9. Theorem. Let G be a one-ended connected graph with T(G) = {t}. If V" is
countable, then G has a coterminal spanning tree.

Proof. This is a consequence of 2.6 if m(t) < w. Suppose m(7) > w. V' is
countably infinite. Indeed, suppose that V,*'is finite, then, since G is one-ended,
there is just one component of G — V*! containing a ray, but this is a contradiction
with 2.8.

(a) First we show that V;*'is contained in a ray of G. Let V"' = {x,: n < w}.
We define by induction a sequence (W,),<,, of finite paths of G such that x, € V(W,)
and W, < W,,,. Let W, :=<x,), and n = 0. Suppose that W, = (yo, ..., 3>
is defined such that y, = x,, y, = x; for some i <n, and x, = y; for some
j < kIf x,. € V(W,), then W, := W,. Assume x,. ¢ V(W,). The vertices y, and
X,+; belong to the same component of G — (W, — y), since W, is finite and
Vi» Xu41 € V21 Thus there is a (yy. x,,+1)-path P having only y, in common with W,.
Then define W, ., := W, u P. Finally, U,<, W, is a ray which contains V;*'.

(b) Let X be a component of G — W. By 2.8, m(¥(X)) = w. Let a ¢ V(G), and let

X*:i=XouU{a,v,x):(v,x)e V(W) x V(X) and {v,x}eE(G)}.

If I(X) = 0. then denote by Ty any spanning tree of X *. Suppose I(X) = 0. Then
m(T(X ")) is countable, and a is a neighbor of every end of X*. Hence, by 2.7,
X" has a rayless tree Ty.

Thus clearly T:= WU U {Ty — a: X e €;_y} is a spanning tree of G which is
also coterminal since any ray of T has a subray in W. O
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This condition of existence of a coterminal spanning tree is stictly weaker than
condition 2.5 (iv), since if m(t) or v(t) are countable then so is V;**, but the converse
is false in general. Furthermore, Theorem 2.9 with next result show that condition
2.5 (iii) given by Seymour and Thomas for infinitely connected graphs only, also
holds if this restriction is replaced by the weaker one of one-ended graphs.

2.10. Proposition. Let G be a one-ended graph, with ¥(G) = {t}. Then V' is
countable if and only if G has no subdivision of the w,-regular tree T, as a sub-

graph.
We need the following lemma.

2.11. Lemma. Let G be a one-ended graph, with (G) = {t}, and V' % 0.
Then (VE€_o(x)) 0 (V' — {x}) & 0 for any xe V', and any Se[V(G — x)]=°.

Proof. Let X := €;_g(x). Suppose that m(¥(X)) is countable. Let 4 be a sct of
pairwise disjoint rays of X, which is maximal with respect to inclusion, and such
that x ¢ 4 := V(U 4). Then €;_ s, 4(x) is rayless, with S U A countable; a contra-
diction with x e V**. Hence m(Z(X)) is uncountable, thus Vg(x, & 0 by 2.8, and
this proves the result since Vgly, S V. O

2.12. Proof of Proposition 2.10.

(a) If G has a subdivision T of T,,, as a subgraph, then every vertex of T whose
degree in Tis > 2, hence equal to w,, clearly belongs to V;**. Therefore V;** is un-
countable.

(b) Assume now that ¥ is uncountable. We define by induction the sequence
(Tp)a<w, Of countable trees of G, such that T, is a subtree of T, if o < 8, and the
sequence (X,), <, of pairwise distinct elements of V;*! such that x, € V(T,) if and only
if B < 2* (ordinal exponentiation). Let x, be any element of V%, and T, := <{x,),
and let « < ®,. Assume that T and x, are defined for every f < e and y < 2”.

If o is a limit ordinal, then T, := U<, Ty. Suppose that « =  + 1. We define by
induction on 7, with —1 <y < «, the countable tree 4, and the vertex x,.,€
eV(4,)n V' Let A_y:= T, and x,_; = x;. Let y be an ordinal <a. Suppose
that 4; and x,.; are defined for all 6, —1 £ 6 < y. By the hypothesis x, is a vertex
of A<, := Us<, 45. Since A, is countable, there is, by Lemma 2.11, an element y
of ¥ distinct from x, and belonging to the component of G — (A<, — x,) containing
x,. Denote by W an x,y-path of this component, and define x,,,:= y and 4, :=
i= A., U W. Finally let T, := U_,<,<, 4,

Then, by the construction, the tree T : = Uq<, T, is a subdivision of the w,-regular
tree; the vertices x, being the vertices of T of degree w;. |

We conclude this paper with a result which partially extends Theorem 2.4.

2.13. Theorem. Let G be a connected infinite graph having no subdivision of the
dyadic tree as a terminally faithful subgraph, and such that each of its endings
has a coterminal spanning tree. Let k be a function which maps every end © of G
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to a cardinal k(t) £ m(z) with k(t) > 0 if v(t) = 0. Then G has a spanning tree T
such that my(t) = k() for every end t of G.

Proof. (a) Suppose that all ends of G are free. By 1.8 there is a dispersed set S of G
such that €;_g(t) + C€¢_s(v') if 7 #+ 7'. Since S is dispersed, for every end 7, there
is a finite set A, of vertices of G such that S n V{€g_ (7)) = 0. The set §' := Su
U Ueez(g) 4. is obviously dispersed. Then, by the connectivity of G, there is a tree Ty
of G containing S’ and every rayless component of G — S’, and such that Tgn
N € 4(7) is finite for every end 7. V(T) is then dispersed, and the boundary of Ty
with every component of G — Ty is finite. Let X be such a component, and By :=
:= B(T, X). Then the subgraph My of G induced by V(X) U By is an ending of G.
Let ty be its only end. By the axioms M5 and M6 of multi-endings, 7y and the corre-
sponding end of G have the same multiplicity and the same valency. Thus, for
simplicity, we will still denote by 7 this end of G. By the hypothesis My has a coter-
minal spanning tree. Thus, by 2.6 if k(tx) = 0, and by 2.4 if k(ty) > 0, My has
a spanning tree Ty such that my(7x) = k(tx). Now denote by Ey a subset of the
set of of edges of Ty which are incident with both By and V(X), so that, for each
component C of Ty — By, there is exactly one edge in Ex which is incident with C.
And let Fy be the spanning forest of My whose set of edges is E(Ty — By) U Ey,
Then clearly

T:=Tsu U{Fx: X eCq_r}

is a spanning tree of G such that m(t) = k(t) for every end 7 of G.

(b) Suppose now that some end of G is not free, and let (G,),», be a terminal
expansion of G (see 1.9). By 1.9 E2, each component X of G, — G,_; (G-, := 0)
is a discrete multi-ending of G — G,_;. As in (a) denote by By the boundary of G, _,
with X. This is a finite set, thus the subgraph My of G induced by V(X)u By is
a discrete multi-ending of G. Then all ends of My are free and have, by the axioms
of multi-endigs, the same valencies and the same multiplicities as the corresponding
end of G. Thus, by (a), M has a spanning tree Ty such that my (t) = k(t) for every
end t e Ty, (G). Finally denote by Ey a subset of the set of edges of Ty which are
incident with both By and V;(X), so that, for edch component C of Ty — By, there is
exactly one edge in Ey which is incident with C. And let Fy be the spanning forest
of My whose sct of edges is E(Ty — Bx) U Ex. Then clearly

Ti=Tgu U {Fy:XeCq ._}

is a spanning tree of G such that my(t) = k(t) for every end t of G. O
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