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ZDENEK FROLIK
MARCH 10, 1933 — MAY 3, 1989

JAN PELANT, PETR SIMON, Praha

RNDr. Zdenék Frolik, DrSc., died on May 3, 1989. Czechoslovak mathematical
community thus has lost not only one of its greatest scientific personalities but also
a tireless organizer of conferences and seminars, a devoted teacher whom the younger
generation cannot forget, and a man who put honesty in his work and the leve!
of Czechoslovak mathematics above all.

Zden&k Frolik was born on March 10, 1933 in Zlonice. After completing Jungmann
secondary school in the town of Litomé&fice he studied mathematics at the Faculty
of Mathematics and Physics, Charles University in Prague (1952—1957). Then
he continued as a predoctoral student (aspirant) of Prof. Miroslav Katétov, defending
his Ph. D. (Candidate of Science) thesis in 1959. Till 1964 he published 34 papers
and in 1964 received his Doctor of Science degree. He worked at the Faculty till
1965, when he joined the Mathematical Institute of the Czechoslovak Academy of
Sciences. Here he was head of Department of Fundamental Mathematical Structures
since 1976.

Frolik’s deep results in general topology, measure theory and descriptive set
theory soon attracted attention of the mathematical public. He was invited to visiting
professorships at prominent foreign universities (1966 Case Institute of Technology,
1967 Baton Rouge, 1969 —1971 SUNY Buffalo, 1971—-1972 Pittsburgh). He was
awarded State Prize in 1972 and Prize of the Czechoslovak Academy of Sciences
in 1975.
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Since 1961 Z. Frolik led a number of seminars: in measure theory, functional
analysis, general topology, mathematical structures, uniform spaces. He organized
the Prague Topological Symposia and the Winter Schools in Abstract Analysis,
now world-famous scientific events.

His death reached him unexpectedly, in the middle of intensive work. A number
of his projects will remain unaccomplished, as for example his book on the theory
of uniform spaces and their applications.

The next pages are intended to recall some of the most important Frolik’s mathe-
matical results. Naturally enough, our choice is incomplete and has a personal
tinge.

The first results of young Frolik concerned the covering properties of topological
spaces. The motivation came from the descriptive set theory, which will be mentioned
later. The fundamental object was the topological Tichonov space equipped with
a countable system of coverings, on which Frolik studied the properties of the type
of completeness. Within the years 1957 —1963 he penetrated in a remarkable way in
the core of the problems which are described by this situation. The best way how to
describe his results is to illustrate them on the example of Cech complete spaces,
that is Tichonov spaces that are Gs-sets in some of their compactifications. Let us
present several main theorems.

A space X is paracompact Cech complete if and only if it is the preimage of a com-
plete metric space in a perfect continuous mapping.

A countable product of paracompact Cech complete spaces is a paracompact
Cech complete space.

The product of a metrizable and a paracompact Cech complete space is para-
compact.

The crucial role in the proof of the last two results is played by the following
Frolik’s assertion: The product of a continuous and a perfect continuous mapping
is perfect. This theorem can be also viewed as a generalization of the classical
Tichonov theorem on the product of compact spaces.

An open continuous image of a Cech complete space is Cech complete.

A preimage of a Cech complete space in a perfect continuous mapping is Cech
complete.

There are two more results from the above mentioned period that cannot be
omitted: first, the assertion that every discrete or separable metrizable space can
be embedded as a closed subspace into the product of two countably compact
spaces, and second, Frolik’s proof of Glickberg’s theorem: BIIX; = ITAX; if and
only if all subproducts of the spaces X; are pseudocompact. Frolik’s proof has
replaced the original Glickberg’s one in the monographs as it is more elegant,
simpler, and allows for numerous generalizations.

In the years 1965—1967 Frolik several times visited the United States, where he
made friends with W. Rudin and his wife M. E. Rudin, and intensively worked in the
theory of ultrafilters. His results in this field have become classical.
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It was already in Prague that Frolik together with Miroslav Katétov studied
a relation on types of ultrafilters on a countable set, now called the Rudin-Frolik
ordering. Frolik’s assertion on the cardinality of cuts in this ordering was of funda-
mental importance: For every type 7 of an ultrafilter on N the cardinality of all types
less than 7 is at most continuum, while the cardinality of all types greater than 7
is 2. Using this result Frolik then proved, without any additional axicms on the
set theory, that the space of all uniform ultrafilters on a countable discrete set, that
is fw — w is not homogeneous. Let us note that the same result, however, with the
assumption of the Continuum Hypothesis, had been proved by W. Rudin in 1956.
Now we know that the Continuum Hypothesis cannot be avoided in Rudin’s proof,
and that the more general result required an essentially new idea.

In a very short time Frolik realized that his technique enabled him to prove more;
his series of papers on nonhomogeneity eventually culminated with his theorem on
nonhomogeneity: No infinite compact F-space is homogeneous (an important step
was dcne by Kunen’s proof of existence of two noncomparable ultrafilters).

Naturally, when dealing with the nonhomogeneity of compact F-spaces, Frolik
necessarily reflected on the properties of their continucus mappings into themselves.
Also in this case his publications started with the study of one typical example,
namely the space SN, and culminated with the second {amous theorem from this
period of Frolik’s creative work: Every one-to-one continucus mapping of an
extremally disconnected compact space into itself has a clopen (i.e. simultaneously
closed and open) set of fixed points. This theorem is a consequence of Frolik’s result
asserting that for every one-to-one continuous mapping f on an extremally discon-
nected compact space X into itself there exists a decomposition of the space X
into four clopen sets X,, X, X,, X3 such that f[X,] = X, and f[X;]n X, =0
for i =1,2,3.

Frolik’s fixed point theorem is again the best possible. Frolik himself showed that
neither the requirement of the mapping f being one-to-one nor the requirement of X
being compact can be weakened. Ten years later J. van Mill gave an example of an
autohomeomorphism of the space SN \ N which has a nonwhere dense set of fixed
points, thus demonstrating that in Frolik’s theorem the extremal disconnectedness
cannot be replaced by the property of being an F-space.

As we have mentioned above, the descriptive set theory was Frolik’s life-interest.
As will be seen from some examples, also here he was attracted by its relations
with the other branches of mathematics.

Zdenék Frolik was one of the founders of modern descnp’uve theory of sets and
spaces in the fifties and sixties.

The classical theory, usually connected with the names of Suslin and Luzin, could
not go beyond the framework of separable metric spaces. The key problem was to
find appropriate concepts and to prove their viability; the fundamental notion was
that of the analytic space (more precisely, from the historical point of view, we should
call it the K-analytic space). There existed definitions introduced by G. Choquet
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and M. Sion, nonetheless, Frolik suggested other definitions (by the way, as was
shown much later by Jayne, all these definitions coincide even for Hausdorff spaces).
Frolik’s approach turned out to be of considerable impact, it facilitated the develop-
ment of an elegant theory and became the origin for many further works in the field.

In order to define the analytic space Frolik made use of a parametrization: A space
X is called analytic if there is an upper semicontinuous compact-valued (usco) cor-
respondence F: N¥ - X. (Note thai the mapping from the classical definition
of the analytic set is replaced by a muliivalued mapping.)

For an equivalent déscription he used the notion of complete covering (a countable
system of coverings is complete if every filter which is Cauchy with respect to this
system has an accumulation point): A space X is analytic if and only if there is
a complete sequence of countable coverings of the space X.

If we assume that the multivalued mapping in the definition of the analytic space
has disjoint values for distinct points (i.e. a generalization of a one-to-one mapping)
we obtain the definition of the Luzin space. Later Frolik proved the important fact
that Luzin subspaces of a completely regular space are finitely additive (obviously
Luzin spaces are o-disjoint additive and not s-additive).

As an illustration of the first separation principle let us introduce its consequence:
Let P be an analytic space. Then X < P s a Baire sct if and only if both X and
P — X are analytic. (Note that the Borel sets from the classical theorem are
replaced by Baire sets.) Another elegant and deep result is formulated in the
following theorem:

Let A be an analytic space, M a metrizable space, and let the mapping f: 4 - M
be Baire measurable. Then Gr(f) and f[A4] are analytic (hence f[A] is separable)
and f: 4 — f(A) is a measurable quotient (hence Z = f[A] is a Baire set if and only
if f7'[Z] is a Baire set). (Note that this implies, for instance, that a completely
Baire-additive disjoint system in an analytic space must be countable.)

Z. Frolik also investigated the Closed Graph Theorem. The result was the thcorem
on Suslin graph:

Let £ be a topolegical linear space which is inductively generated by linear homo-
morphisms from topelogical spaces that are not of the Ist category in themselves,
and let F be a locally convex space whose topology is analytic (these assumptions
are satisfied for Banach spaces). If f: E — F is a linear homomorphism whose graph
is a Suslin set in E x F, then f is continuous. (Recall that Suslin sets in a given
space are the sets resulting by the Suslin operation from closed sets, and that analytic
subspaces are Suslin spaces.)

Z. Frolik devoted much effort to the development of nonseparable descriptive
theory (more precisely, the descriptive theory in topological spaces that are not
Lindeldf spaces). Here Hansell’s lemma provided an important technical tool:
A completely Suslin-additive disjoint system in a complete metric space is o-discretely
decomposable (a system o/ of subsets of a set X is o-discretely decomposable if
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every A € o7 can be expressed as A = (J A4, so that the system {4,: 4 € o/} is discrete
in X for every n € w. nee

In cooperation with P. Holicky, Z. Frolik developed a theory based on the dis-
creteness defined in terms of uniformity, mainly the fine uniformity. They defined
that a space X is analytic (more precisely, Z-analytic) if and only if there exists an
usco correspondence F: 1” — . X preserving the g-discretely decomposable systems
(here A denotes both the cardinality and the discrete topological space of this car-
dinality).

They proved theorems analogous to the classical ones, and also the following
result: X is A-analytic for some A if and only if X is paracompact and there are
G c pX, A c fX suchthat X = An G, Gis Gy in X and A is Suslin in fX.

We may say that Z. Frolik and P. Holicky develeped the thecry of paracompact
analytic sets (recall that analytic sets in the separable theory are Lindelof and that
the just presented characterization complies with the scheme suggested by Frolik
for the construction of nonseparable concepts before Hansell’s lemma was discovered).

It is evident that in the parametric definition of analyticity it is necessary to preserve
some kind of discreteness. Using different types of discreteness (generating however
identical o-discretely decomposable systems in metric spaces), numerous authors
(among them also Z. Frolik} introduced and studied various concepts of analytic
sets. The works of R. Hansell, J. Jayne and C. A. Rogers suggest that the development
of the theory and its applications is not yet concluded.

Finally, let us mention Cech analytic spaces. This notion was introduced by
D. H. Fremlin: A space X is Cech analytic if it results by the Suslin operation applied
to Borel sets in fX. Frolik studied the problem whether the Cech analytic spaces
are preserved by periect mappings. He proved that the answer is affirmative if the
range is metrizable, and conjectured that generally the answer is negative (which has
been neither proved nor disproved yet).

Although the above survey of mathematical resulis of Zdenék Frolik is far from
being complete, it perhaps gives a sufficient view of his stature. Nevertheless, we
cannot neglect another one of his achievements: the seminar on uniform spaces.

In carly seventies Z. Frolik collected a group of young people in a seminar on
uniform spaces. Graduates and predoctoral students from various directions (com-
binatorics, topology, mathematical analysis) formed under his guidance a team that
was working in a unique creative atmosphere till the year 1979 and produced results
which M. D. Rice at Prague Topological Symposium in 1981 appreciated in the
following way: ““You have got ahead of the rest of the world by at least ten years.”

When founding the seminar, Frolik himself had in mind mainly the applications
of uniform spaces in the measure theory and the descriptive theory of sets and spaces;
his works and those of his students contain a fine and general theory of uniform
measures. However, soon he realized that the seminar was able to cover a much
wider dom.ain. Frolik supported its progress with enthusiasm, inspiring the parti-
cipants with ever new motives and suggestions. Theory of categorial refinements,
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thecry of uniform atom and theory of combinatorial complexity of uniform
coverings — these are only some of the fruits of the seminar.

The Fate niggardly assigned to Zden€k Frolik merely fifty six years of life. The
memory of his will accompany his numerous students, and his achievements bind
them to continue his work. ‘
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