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Throughout, m = 1 is a fixed integer. The set of all real numbers is denoted by R,
and the m-fold cartesian product of R is denoted by R™. For x = (&4, ..., £,) in R"™
we let le = max {]fli, e I&f,,,|}, and in R™ we use exclusively the metric induced
by the norm ]x] The distance from a point x € R™ to a set E = R™ is denoted by
dist (x, E). If E = R™, then E°, 0E, d(E), and |E|k, k =0, ..., m, denote, respectively,
the interior, boundary, diameter, and the k-dimensional Hausdorff measure of E
(as is customary, a ‘“measure’” means an ‘“‘cuter measure”). We define the Hausdorff
measure as in [1 Section 2.10.2, p. 171], so that ]E’k is the counting measure..of E
if k = 0, and the k-dimensional Lebesgue measure of Eif k = 1 and E < R" Instead
of ‘E|m we write |E| ‘

A k-plane, k = 0,....m — 1, is a k-dimensional linear submanifold H of R"
which is parallel to k distinct coordinate axes. When the dimension k of H is not
specified, we talk about a plane H, whose dimension is denoted bydim H. A régz@lator
is a pair (e, #) where 0 < ¢ < 1/2 and J is a finite family of planes.

An interval is a set A = [/~ [a;, b;] where a;, b;eRand a; < by, i =1,...,m
Intervals are nonoverlapping if their interiors are disjoint. Given a regulator (z‘ H),
we call an interval 4 an (g, o)-interval whenever

s<sup{J———}iL’i“H'He%u {R™}, AnH#(D}.
[d(4)]""
A figure is a finite union of intervals. A division of a figure F is a finite collection
{A;, ..., 4,} of nonoverlapping intervals whose union is F. A partition of an interval
Ais aset P = {(Ay, x,),...,(4,, x,)} such that {4,,..., 4,} is a division of 4 and
x;€A;,i=1,..,p. When all 4, ..., A, are (&, #)-intervals for a regulator (¢, #),
then P is called an (¢, #)-partition. If § is a positive function on A and d(4;) < &(x;),
i=1,..., p, we say that P is d-fine.

Let f be a function on an interval A and let P = {(4,, x,), ..., (4,, x,)} be a parti-
tion of 4. We set

o(f. P) =§1f(xi) 14
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and say that f is integrable on A if there is a real number I satisfying the following
condition: given a regulator (s, '), we can find a positive function é on A4 so that
lo(f, P) — I| < & for each d-fine (¢, #)-partition P of A. The number I, which is
uniquely determined by f (cf. [6; Corollary 2.5]), is called the mtegral off over 4,
denoted by [, f-

It was estabhshed in [6] that over intervals, the integral is a well behaved extension
of the Lebesgue integral which yields a very general divergence theorem (see [6
Theorem 5.4]). Our goal is to show that under suitable conditions, the integrability
on an interval A follows from the integrability on intervals contained in the interior
of A. In dimension one, such a result was established by H. Hake for the Perron
integral (cf. [2] and also [8; Chapter VIII, Lemma (3.1), p: 247]), whose Riemann-
like definition was given by Kurzweil (see [6]) and independently by Henstock (see
[3]). A direct proof for the one-dimensional generalized Riemann integral can be
found, e.g., in [7; Lemma 7, (v)].

If C and D are nonempty compact subsets of R™, the posmve real number

o(C, D) = max {sup dist (x D), sup dist (y, C)}

yeD
is called the Hausdorff drstance between C and D. We say that a sequence 1F,,, of
figures converges to an interval 4 if F, < A%, n = 1,2, ..., limo(F,, ) =0, and

sup laFn‘m 1 < + 0.

Let f be a function on a set E = R™ such that f is integrab]e on each interval
A < E.If F < Eis a figure, we set

fFf = Z IDf
De2

where 2 is a division of F. By the additivity of the integral (see [6; Proposition 3.6]),
the number [ f does not depend on the choice of . Using this observation, we can
conveniently formulate our result.

Proposition. Let f be a function on an interval A which is integrable on each
interval B = A°. If a finite lim [y, f exists for every sequence {F,} of figures con-
verging to A, then all these limits have the same value I, f'is integrable on A, and
Lif =L .

Proof. If {B,} and {C,} are sequences of figures converging to A, then so is the
sequence {B,, Cy, B,, Cs, ...}. By our assumption

lim [y, f=lim ¢ f=1,

and it remains to show that f is integrable on 4 and [,f = I. According to [6;
Corollary 4.2], we may assume that f(x) = 0 for each x € 94.

Choose a regulator (s, Jf) with 04 = |Jo#, and construct a locally finite countable
family {K;,K,,...} of nonoverlapping intervals with Uy, K, = A% If xe A°
then the collection o, = {K,: x€K,} is finite and xe (UK ,)°. For n = 1,2,...,
let o, be a finite collection of planes which is closed with respect to nonempty
intersections and assume that # < #, and 0K, < Ua#’,. By Henstock’s lemma
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(see [6; Lemma 4.3]), there is a 6,: K, — (0, 1) such that
14
i;1|f(Xi) |Ail - jA;fl <

for each ,-fine (¢, #,)-partition {(4y, x,), ..., (4,, x,)} of K,, n = 1,2, .... Making
the J,’s smaller, we may assume that the following conditions are satisfied:

(1) 8,(x) < dist (x, H) for each H € #, and each x e K, — H;

(2) 84(x) < dist(x, A — U',) for each x € A°;

(3) 8.x) = 5,/(x) whenever x e K, n K,..
Let h = Y e |4 O H|aimu, and find an 5 €(0, 1) so that |[zf — I| < &2 for each
figure F < A° with o(4, F) < n and |0F|,-, < 2mh[e. In view of condition (3),
we can define a §: 4 — (0, 1) by setting

_ f6,(x) if xeK,, n=1,2,...,
5(")“{7, if xedd.

Let P be a d-fine (¢, o)-partition of 4, and let
Q={B,x)eP:xedd}vU{(BnK, x):K,eH,, (BNnK,) + 0} .
xeA°

€
2n+1

Then Q is a d-fine partition of 4 and o(f, P) = o(f, Q). Using [6; Lemma 3.5 and
Corollary 2.5], it is easy to verify that the collection Q, = {(C,x)e Q: C < K,}
is a subset of a d,-fine (e, #,)-partition of K,, n = 1,2, ... ; in particular,

X f)e] - fefl <
©mee

by the choice of d,. The interval A4 is the union of nonoverlapping figures

:
2n+1

n

F=U(U{C:(Cx)e0)) and F = {B:(B x)eP, xcid).

Now ¢(4, F) < n and
|0F |-y < |0F |-y < Y. {|0B|n-1:(B,x)eP, xed4} <Y |0B|,-,,
beB
where # = {B: (B, x)e P, Bn (U#) #+ 0}. Since each Be % is an (¢, #)-interval,

there is a kp-plane Hpe o such that BN H + 0 and |Bn Hy|y,/[d(B)]*" > ¢
(cf. [6; Section 2.1]). As d(B) < 1 and ky < m — 1, we see that

|0B|,-y < 2m[d(B)]"~* < 2m[d(B)]** < 2m |B ~ Hys,
&

and consequently,

2 2
Y [0Blu-s < == Y |BA Haliy 72 % 3 By Hlgius =
Be# € Bex € Be® HeX

_imoy z|BnH|dim,,§3;fh.

€ HeX BeR
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It follows that
o, P) =11 S |3, T AWl = o]+ lles - 1) <

<82 +:§=1(Cz 1) [c] = fef| <&,

»X)EQn
and the proof is completed.

Remark. The reader may compare the Proposition with [4; Theorem (6_3)],

If f is integrable on an interval 4 and {4,} is a sequence of intervals converging
to A, it follows from [6; Proposition 4.10] that lim _[A"f = [4f. However, in the
Proposition a sequence of figures cannot be replaced by a sequence of intervals.
Indeed, for (x, y) € R? set

f(x,y) ={

and let 4 = [0,1] x [—2,2]. Then f is integrable on each interval B = A° and
lim [4,f = O for every sequence {4,} of intervals converging to A. Yet, f is not
integrable on A because it is not integrable on [0, 1]°.

On the other hand, the next example shows that if f is integrable on an interval 4
and {F,} is a sequence of figures converging to A, a finite lim [, f may not exist.

ly|[xy if x+0 and 0<|y| <1,
0 otherwise ,

Example. Let m = 2, 4 = [0,1]% and for k = 1,2, ..., let
A, =[3.27% 1,271 ] x [27F71, 274,
A =[27%1,27F] x [3.27% 1 27k 1]
By [6; Example 6.2], the function f defined by

+22k+ D[k if xed,,,
/() = e xed,
0 if xed— U= 4y, ,
is integrable on A. If F, = [272""',1]*> — U=, (4,_.)° then ¢(4, F,) < 27" and
|0F,|; <6, n=1,2,.... Thus {F,} is a sequence of figures converging to 4, and

lim [, = + oo since

2n 2n
e f =k§ I"‘*f=k§ (I/n) 2 logn, n=1,2,...
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