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0. INTRODUCTION

All structures appearing in this paper are of class C®. Let M be a connected and
paracompact orientable manifold, dim M = m. As usual we denote by TM the
tangent bundle of M and by A'TM its i-th exterior power. We set

L,=TA*'TM for —1<i<m-1,

where I' denotes the functor of sections over M. In order to avoid technical com-
plications we set moreover

L;=0 for i< —1 or i>m—1.

Obviously for any i € Z L; is a real vector space. To complete our notation we set

If a € L; we call o homogeneous element and write [oz[ = i. Let us notice that L_,
is the vector space of functions on M, and L, is the vector space of vector fields on M.
Using a result of Schouten [2], Nijenhuis [1] defined a bilinear mapping

[,]:LxL->L

which is now called Nijenhuis-Schouten bracket. This bracket is characterized by the
following properties (All elements are homogeneous):

(a) [Li Lj] = Lisj,

(b) [« B] = (=) [B, o],

() (=) Lo [B, 1] + (=), [y a]] + (= )M [, [, BT = 0,

(d) [, f] = (=1)"1¢y o, where f € L_, and ¢ denotes the inner product operator,

(e) [ B A Y] =[o B] Ay + (=)D B A [a, 9]
The properties (b) and (c) show that L is a graded Lie algebra. Further using (b)—(e)
we find easily that for X € L, o € L there is [X, oz] = ZLya, where Ly denotes the
Lie derivative. Consequently for X, Ye L, [X, Y] is the ordinary Lie bracket.

Let us recall that a derivation of degree k € Z on Lis a linear mapping D: L— L
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such that
D[a, B] = [Da, B] + (= 1) [a, DB] .
A derivation D is called local if it has the following property: If e L;,, U =« M is

an open subset and o | U = 0, then Da | U = 0. We shall denote by Der, the vector
space of local derivations of degree k on L. We set

Der = ) Der,.

k=—o
For D, € Der,, D, € Der, we define
[D,, D,] = DD, — (—1)" D,D, .

Obviously [D,, D,] € Der,,, and the graded vector space Der endowed with this
bracket is again a graded Lie algebra. The main goal of this paper is to describe the
graded Lie algebra Der.

Before starting with the study of the algebra Der we shall recall some facts about
forms of higher order. By a k-form on M we shall mean a local skew-symmetric
k-linear (over the reals) mapping

w: Ly x...x Ly > L_,.
k
(w is called local if it has the following property: If X,,..., X, € L,, U = M is an
open subset, and X, l U =0, then o(X,,...,X,)| U =0.) Let xe M be a point.
We shall write ord, w < r if for any X, ..., X, € L, such that ji(X,) = 0 there is

Xy, .0 X)) (x) = 0.

If ord, w < rfor any point x from an open subset U < M we shall write ordy o < r.
Instead of ordy, w we write ord w. If ordy w < r and ordy w £ r — 1 we shall
write ordy w = r. Ordinary forms coincide obviously with forms of order zero.
By virtue of the Peetre’s theorem any k-form on M is locally of finite order (let us

recall that by form we mean always local form). The usual formula
k+ 1

do(X 1, o Xie1) = X (=D Xio(X s o Ry s Xy y) +
i=1

+ 2 ()" o[X X)), Xy K Ky Xir)

i<j

defines the exterior derivative dw of , which is a (k + 1)-form (i.e. it is again local).
If ordy @ < r,then ordy dw =< r. For any X € L, we define as usual the Lie derivative

(£x0) (X4, .., X)) = Xoo(X 4, ..., X,) —
k
= Yol XX X

which is a k-form. If ordy @ < r, then ordy Zyw
if forany fe L_,, Xy, ..., X, € L there is

Cl)(le,Xz, [ERX} Xk) = w(thXZa LERT] Xk)

IA

r. A k-form is called pure

o= o(X Xy, fX)

I
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We shall fix a volume element x on M (i.e. an everywhere nonzero m-form of
order zero). For any X e L, there exists a unique function, which we shall denote
by div X, such that

Lyp = divXu.

The linear mapping div: X + div X is a 1-form of order 1. An easy computation
shows that d div = 0.

1. DERIVATIONS OF DEGREE < —1

We shall investigate separately the derivations of the lowest degree —m. At first
we shall assume m > 2. Let D € Der_,,. For « € L;, i < m — 1 there is obviously
Do = 0. Therefore let us take ae€ L,,_,. For any feL;,, 0 <i <m — 1 we have
[, B] = 0, and consequently D[w, f] = 0. We obtain

0 = D[a, f] = [Da, B] + (—1)"™ "V [a, DB] =
= [Da, B] = (= 1) " [B. Da] = — tans(B) -

It is easy to prove the following lemma.

1. Lemma. Let V be a vector space, dim V = m > 2. Let a € V*, and let us assume
that for any we A*V, 1 < k < m there is t,(w) = 0. Then a = 0.

Using this lemma we can immediately see that dDa = 0, i.e. Da € L_, is a constant
function. Further for any X € L, and fe€ L,,_, we have

D[X, ] = [DX, B] + [X, DB] = (dDB)(X) = 0.
But we have at our disposal the following lemma.

2. Lemma. Any o« € L,_, can be locally expressed in the form a = [X, f] with
XeLy,and feL,, ;.

Proof. Using a local chart (x4, ..., x,,) We can write
0 0

=f— A..A—.

g f@xl 0y,
Taking X = 0/0x, we have
of 0 0

X, =%p=—— A ... AN—.

[ Al P 0x, 0x, 0x,,

Now the lemma immediately follows.
By virtue of this lemma the above equality shows that Da = 0 for any a € L, _;.
We shall now pass to the case dim M = 2. Let us take an everywhere nonzero
element fe L, _,.
We obtain

0 = D[, B] = [DB, B] + [B, D] = 2[B. DB] = 2 (—1)"" tuny(B) -
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From this it follows easily dDf = 0, i.e. Df is a constant function. Along the same
lines as above if can be shown that D = 0. For arbitrary a € L,,_, we get

0 = D[a, B] = [D, B] + [ DB] = [B, Do] = —upi(B),
which again implies Do = 0. We have thus proved

3. Propeosition. If dim M = m > 1, then Der_,, = 0.

It remains to consider the case dim M = m = 1. But this case will be included
in the investigation of Der_;.

We shall now consider derivations of degree —k, where | < k < m. Let De
€ Der_,. This derivation determines a pure k-form w;, on M by the formula

op(Xy, .. X)) = DXy A A X))

Let us compute the Lie derivative #yw, with respect to an arbitrary vector field
X €L,
(Zxwp) (Xq, ..., X,) =

k
= X(op(Xy, ..on Xp) — le,,(xl, L [X X LX) =

— [X, wp(Xss oo X,)] _é,“"’(x“ o[ X X)) =

= [X.D(X, A oo A K] = T DXy A oo A XX A A X)) =
= [X, DX, A ... A X,)] —';)L[X,Xl AAX]=

—[X.D(X, A o A XQ)] = [X.D(X, A oo A XJ)] = 0.

A k-form o for which Zyw = 0 for any X € L, is necessarily trivial. Because we do
not know any reference to this assertion, we shall present a proof here. We remark
that our proof works for pure forms only.

4. Lemma. Let o be a pure k-form on M such that for any X € L, there is £y =
= 0. Thenord w £ 1.

Proof. We shall consider an open subset U < M on which ord o < r, where
r=2 Let xeU, Ee TYM, & # 0, and let v, v,, ..., v, € T,M. We take fe L_,(U)
such that f(x) = 0, df, = &, and X, X,, ..., X, € Ly(U) such that X, = v, X,, =
= U5 ..., X = 4. Because £y = 0 we obtain

(fX) w(erl’ Xz, ceey Xk) = a)([fx,frxl]’ X2, ...,Xk) n
k
+4'§2w(f'X1, Xo oo [[X,X], .00 X)) =

=ro(f" . X X1, Xgs oo Xi) — O(f7 . Xof . X, Xay ooy X3) +
+ o(fX, X, ], Xp, .., X)) +
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k
+ X o(fX L X XX LX) -

)
—iiw(f'Xl,Xz, X X, LX),

Evaluating at x we obtain for the symbol ¢,,(¢) of w at ¢ the equality
0 = r0,(¢) (¢(0) 11, 25 -+, 1) = 0,(E) (E(04) 0, vz, -, 0) —
S TCI A PR

(1) r&(v) 04(8) (v, - 0) —
~ 3 E0) 0E) €1 0 ) = 0.

If &(vy) = ... = &) =0 we can choose v such that &(v) + 0, and we get
(&) (01, ..., v) = 0. If this is not the case there is j such that &(v;) # 0. Setting
v = v; we obtain

r f(”j) "'w(é) (015 - 0) = é(v,-) ou(£) (045 - v) =0
0u(&) (vys..s) = 0.

We have thus proved that for any x e M, & e T*M, & + 0 there is aw(é) = 0. Now
the lemma easily follows.

The preceding lemma leads us to the investigation of a pure k-form w of order <1
such that for any X € L, there is #yw = 0. The equality (1) with r = 1 gives

0 = &(6) (&) 0, 0) -

—iié’(v,-) To&) (V1s eos By, 0, 0 gy s B) =

= (1) (&) (- 0) ~

= 3 (1 €0 (100E) (01, ) =

= (1) 0ul&) 0120 ) = (& A (1o D) o1 y) =
 C X)) AR

Because v is arbitrary we get & A 6,(¢) = 0. One can easily prove the following
lemma.

5. Lemma. Let V be a vector space, dimV =m. Let a:V—> AV, 1 <k < m
be a linear mapping such that for any veV there is v A o(v) = 0. Then there
exists a unique a € A*~'V such that

o(v)=aAv.

Using this lemma we can see that there exists a unique (k — 1)-form 7, ord 7 = 0
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on M such that
6o(§) =T AE.

We shall now compute the symbol of the k-form div (t A Id), which is obviously
a pure k-form of order <1.Let xe M, ¢ € T*M, & # 0, vy, ..., v, € T.M. We choose
again feL_, suchthat f(x)=0,df,=¢, and X,,..., X, € L, such that X, =
=0, ..., Xpe = V. We get

(div(t A 1d)) (fX 1, X5, .., X)) =

=div((r A 1d) (f Xy, X5, ..., X)) =

=div(f(z A Id) (X, ..., X)) =

= fdiv((x A Td) (X, ..., X)) + df((x A Td) (Xy, .0 X))

Let ‘) denote the symbol of div (v A 1d). Evaluating at x we obtain
o) (v, ... vp) = &((x A 1) (vy, ..., 1) =
f ‘
= é(lzl(— D 1oy, o e, 1) 0) =

=£:1(— D {01, vy B oo 03) E(03) =
= (T A £) (vl’ s U) = (&) (045 -5 1) -

This shows that there exists a k-form ¥ of order zero such that
(2) o=div(t AId) + y.

6. Lemma. Let w be a pure k-form on M such that for any X € L, there is
Lo = 0. Then o = 0.

Proof. Let K be a vector valued k-form of order zero on M. For the Lie derivative
Zx(div K) of the k-form div K with respect to a vector field X € L, we find easily
the following formula.

(Zx(divK)) (X, ..., X,) =
= (K(X,, ..., X,)) (div X) + div ((£xK) (X3, ..., X)) -

For any X, X, ..., X, € L, we have (Zyw)(X,,...,X,) = 0. Using this, (2) with
K = 7 A Id, and the above formula, we get for any fe L_,

0= (L30) (fX1, X3, X)) =

= (ZLx(divK)) (fX,, X5, ..., Xo) + (Lx¥) (X1, X3y .., X)) =
= K(fXy, X3 ..., X,) (div X) + div (ZxK) (X1, X5, - Xi) +
+ (Zx¥) (X1, X5, .. X)) =

= f(K(Xy, ..., X)) (div X) + fdiv (ZxK) (Xy, ..., Xp)) +
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+ df(ZxK) (X 1o - X)) + F(Zx0) (Xp o0 X)) ©
From this result we can easily conclude that #yK = 0. Therefore we have
0=YPyK =Pyt Ald) = (ZLy1) AId,
which implies £yt = 0 for any X € L,. Consequently t = 0 and o = 0, which
finishes the proof.

7. Proposition. [f 1 < k < m = dim M, then Der_, = 0.

Proof. Let De Der_,. We shall prove by induction on i = —1,0,...,m — 1
that Do = 0 for any « € L;. The assertion is obvious for i < k — 1, and is valid
for i = k — 1 by virtue of the preceding lemma. Let us assume now that it is valid
forany j < i, where i = k — 1,and let a € L;, ;. For any f e L_, there is [oc,f] eL;
so that

0 = D[ /] = [Do, /] = (= 1)+ 14,(Da),

which implies Do = 0.

2. DERIVATIONS OF DEGREE —1

Let D € Der_,. We shall prove first that D is determined by its values on L.

8. Lemma. Let D € Der_, be such that D I L, =0. Then D = 0.

Proof. We shall prove by induction on i = —1,0,..., m — 1 that D ] L;=0.
Obviously D ] L ,®Ly,=0.Leti =0, and let us assume that D | L; = 0 for all
Jj < i. Further let w € L;, ;. Then for any f € L_, there is [«, f ] € L;,and consequently

0 = D[o,f] = [Da, /] = (—1)" tg;(Dr) ,

which implies Dx = 0.
The above lemma shows that it is useful to describe derivations of degree — 1 on the
graded Lie algebra L=° = L_, @ L,.

9. Proposition. There is a bijective correspondence between derivations of degree
—1 on L=° and closed 1-forms on M.

Proof. Let E be a derivation of degree —1 on L=°. We define an 1-form w
on M by the formula

wg(X) = EX, XelL,.
For arbitrary vector fields X, Ye L, we get
E[X, Y] = (X, Y))
[EX, Y] + [X,EY] = —[Y, EX] + [X,EY] =
= X wlY) — YogX).
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Because E[X, Y] = [EX, Y] + [X, EY] we obtain dw; = 0. The mapping E - oy
is obviously injective. On the other hand if w is a closed 1-form, then we define

Ef =0  forf eL_,,
EX = o(X) for XelL,.

Il

A direct verification shows that E, is a derivation of degree — 1 on L=°. Consequently
the mapping E — wy is surjective.

The above proposition describes Der_, in the case m = 1. If m > 1, as we shall
see later, it is not always possible to extend a derivation of degree —1 on L=° to
a derivation of degree —1 on L. But we can prove at least the following proposition.
From now on we shall assume that m > 1.

10. Proposition. Let D': L_, ®@ L,y ® L, »> L be a local linear mapping of
degree —1 such that for any ae L;, feL; with i 1, j<1,i+4 j =1 there is
Do, B] = [D'a, B] + (—1)" [, D'B] .
Then there exists a unique derivation D on L of degree — 1 such that
D|L.,®Ly®L, =D".
Before starting the proof of this proposition we need two lemmas.

11. Lemma. Let V be a vector space, dim V = m, and let
A: V> AV* |
1 < k £ m— 1, be a linear mapping. There exists a € A 'V* such that
A(v) = t(a) forany veV
if and only if for any v, v' € V there is
(3) t, A(v') + 1, A(v) = 0.
If a € A" 'V* exists then it is uniquely determined.

Proof. The uniqueness is obvious. We must therefore prove the existence. The
condition (3) is obviously necessary. We are now going to prove that (3) is also
sufficient.

Let A: V— A*V*, 1 < k < m—1 be a linear mapping satisfying (3). Let vy, ..., 0,
be a basis of V, and let &, ..., &,, be the corresponding dual basis. We set

1 m
a=-Y¢& A Al).
k i=1
Using (3) and the Euler formula Y &; A ¢,(b) = [. b, which holds for any b e A'V*,
i=1
0 < I £ m, we find easily that there is ¢,(a) = A(v).
Let us consider now a local linear mapping

k
D Y Li»L, 1sksm-1

i=—1
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of degree —1 such that for any ae L;, Be L; with i < k, j = k, i + j < k there is
Dk[“a B] = [Dk“a ﬁ] + (_ ])i [oc, Dkﬁ] .

We shall consider an element a e L,,,;. We take arbitrary xe M, and ¢ e TM.
Let f € L_, be such that df, = &. Then we define

A(Dy. @) (&) = (D, /1) (%)
We must show that the value (D[« f]) (x) does not depend on the choice of fe L_,
satisfying df, = &. Obviously it suffices to prove that dg, = 0 implies
(D [, 9]) (x) = 0. First let us notice that for arbitrary g, h € L_, we have by virtue
of the Jacobi identity

(4) [ g]. h] + [[o, k], 9] = 0.

Using this we get easily
tan(D 9]) (x)) = (= 17" [Dif[, 9], 1] (x) =
= (=1 (D[ ], 1]) (x) = (= 1) (D[ [, ], g]) (x) =
= (=1 [Dufo. 1], 9] (x) = — tag (D, B]) (x)) = 0.

Because h e L_ is arbitrary, we get (D,[o, g]) (x) = 0, which is the desired result.
Now it is easy to see that & — A(D,, «) (¢) defines a linear mapping

A(Dy, 0): TYM — AT M .

12. Lemma. For any &, &' € TXM there is
teA(Dy, @) (&) + 1o A(Dy, ) (£) = 0.

Proof. Let us choose g, h € L_, such that dg, = &, dh, = &'. Using (4) we obtain
A(Dy, @) (&) + e A(Dy, @) (£) =

tag ((Dil, 1) (x)) + tan (Dl 9]) (%)) =

11 [Dfo, k], g1 (x) + (= 1) [Dfo, g1, 1] (x) =
= (=) (Dif[ £]. 91) () + (= 1) (Dul[. 91 B]) (x) =
= (=) (D[« g1. k] + [[2 1], g])) (x) = 0.

Let us consider again « € L, ,. By virtue of Lemma 11 and 12 we can find for
every xe M a uniquely determined element & e A*** T .M such that for any & eT*M

there is
A(Dy, @) (&) = (= 1) ¢() -

One can easily verify that the family {oc,cJ xeM determmes an element & € L, and that
the linear mapping o +— & is local.

Proof of Proposition 10. The uniqueness is obvious by virtue of Lemma 8.
We shall construct inductively linear mappings

D Lf*>s L, 1sksm-—1,
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k
where L** = Y L, such that D, = D', and

i=—1

(i)k Dy | L=t = Dy,

(ii), For any ae L;, fe L; with i £ k, j S k, i + j < k there is

Dyfa, B] = [ Dy, B] + (—1)' [«, DB],

where the condition (i), is empty. Setting D; = D’ we can immediately see that the
conditions (i), and (ii), are satisfied. Let us assume that we have already constructed
Dy, ..., Dy, where k < m — 1. We shall construct D,,,. For a e L; with i < k we
set Dy,,a = D,a so that the condition (i), is satisfied. If « € L, then by virtue
of Lemma 11 and 12 there exists a unique & € L, such that for any fe L_, there is

(& f] = Do f]-
k+1
We set Dy, o = &. It can be easily seen that D,;: Y, L; » Lis a linear mapping.
i=—1
We shall now prove that D, satisfies the condition (ii)kH. Let e L;, peL;
If i £k, j=<k, i+ j= kthen (ii),+, holds by virtue of the definition of D,
and by the induction assumption. Let us assume now that i <k, j <k, i +j =
=k + 1. For any fe L_, we get

(= 1) taf(Dicss[a, B) = [Des [, B1. /] = D[ 81,11 =
= Dy((—= 1) [ f]. B] + [ [B.1]]) =

= (= 1) [Difoe. /1. B] + (= 1) [[o. /1. D] +

+ [Dk“’ [ﬂyf]] + (_1)i [“’ Dk[ﬂ:f]] =

= (=1 [[Dyr. £1. BT + (= 1) [ /1. D] +

+ [Dos [B,£1] + (= 1) [, [DiB, f]] =

= [[Dk“, ﬁ]sf] + (_l)j [Dk“, [f’ ﬁ]] +

+ (=1 [ DS + (= 1) [« [f, DB]] +

+ [De, [B. /1] + (= 1) [, [ DiB, 1] =

= [[Di. 1. /] = [Dat, [B, 1] + (= 1) [[o. D] /] +
+ (=17 [, [DiB, S]] + [Dae, [B. S]] + (= 1) [, [DiB, f]] =
= [[Dur, 1. /1 + (= 1) [ D] f] =

= [[Dws12 B1. /1 + (= 1) [, DyssB]. S =

= (= 1)" tg([Des1% BT + (= 1) [ Dys18]) -

Further we shall investigate the case i = k + 1, j = —1. (The case i = —1, j =
= k + 1is analogical.) We shall write g instead of f.

Dk+1[“, g] = Dk[(x’ g] = [Dk+1°‘» g] =
= [Dyr1o g] + (= 1) [, Dy, 9]
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It remains to consider the case i = k + I, j = 0. (The case i =0, j =k + 1 is
again analogical.) We shall write Y instead of . For arbitrary f e L_; we obtain

(=1)" tap(Dicss[ot, Y]) = [Dicss[er, Y], /] = D[, Y], /] =
= D[[o.f]. Y] + Dyfe, [Y.f]] =
= [P /1 Y] + (= 1) [[% /1, DeY] + [Divs [V /1] =
= [[Pusso /1, Y] + (=)' [[o, DY ] +
+ (=) [o [/, DY) + [Dicw s Y1, /] + [Y, [Desao S]] =
= [[Dissot, YL, f] + (= 1)*"" [[o DY], /] =
= (=D} g ([ Dys12, Y] + (= 1) [, Dy, Y]) .
We have thus shown that D, satisfies the condition (ii),+;. To finish the proof
it is obviously sufficient to set D = D,,_;.
Inspired by the result of Prop. 10 we shall now investigate local linear mappings

D:L_,®Ly,® L; —> Lof degree —1. We shall denote by w, the 1-form defined
by the formula wy(X) = DX, X € L.

13. Lemma. The correspondence D — w), defines a linear isomorphism between
local linear mappings D: L_; @ Loy @ L, — L of degree —1 satisfying the con-
dition (ii), and closed 1-forms w on M with the property:

For any a € L, the differential operator Zy: L_{ — L_, defined by the formula

) Z3(f) = ([« 1)
has order <1.
Proof. Let D: L_; @ L, ® L, — Lsatisfy (ii),. By virtue of Prop. 9 w), is closed.

Further for any fe L_,, « € L; we have
D[a./] = [0,/ - [ Df]
wp([2 f]) = tag(Dar),

which shows that Z7 is a differential operator of order <1. Moreover Prop. 10
together with Lemma 8 show that the correspondence D — w), is injective.
Conversely let w be a closed 1-form on M with the property (5). We define a local

linear mapping D: L_, @ L, @ L, —» L by the formulae

Df =0 for feL_,,

DX = o(X) for XelL,,

Da = Z7 for a« €L,.
It is only necessary to verify that Zy is really a vector field, i.e. an element from L.
By (5) Zy is a linear differential operator of order <1, and obviously Zg(1) =

= of[a, 1]) = 0. Consequently Z7 € L,. By virtue of Prop. 9 D satisfies the property
(i), i.e. for any aeL;, feL; with i £0, j <0, i +j <0 there is D[a, ] =
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= [Da, B] + (—1)' [0, DB]. For feL_,, ae L, we get

Dlw, /] = (o f]) = Z2(f) = [Z2./] =
= [Da, f] = [Da, f] — [, Df].

Further for X € L, a € L, and arbitrary f e L_, we obtain

(DL, X1) f = Zp xof = o[[o, X].1]) =

= o([[0./]. X]) + ([ [X.f]]) =

= [0, /] o(X) = Xoo([ot. £]) + oo([o, X1])

([Da, X] = [, DX]) f = (Do) (Xf) = X(Da) f — [[o, DX], f] =

= Z7(Xf) = X(23f) + [[«.f]. DX] =

= o[o, Xf]) = Xoo{[0. /]) + [o. [T 0(X) .
We have thus shown that D satisfies the property (ii);. Obviously w, = w, which
finishes the proof. ‘

We shall now start to study closed 1-forms  satisfying the condition (5). Because
every form is locally of finite order, we may assume without loss of generality that
ord w < r, where r = 1 is an integer. Let us denote by o, the r-th symbol of w.
If xe M and ¢ e TSM, then o,(¢) e T,"M. Moreover the mapping ¢ > a,(¢) from
TXM into T)M is a homogeneous polynomial mapping of degree <r. Further it
can be easily seen that for a € L, the first order linear differential operator

feL_—[a,f]eL,
has the Ist symbol (corresponding to x e M and & € TM)
I —eo, .

Thus the composition f > o([a, f]), which is a priori a linear differential operator
of order <r + 1, has the (r + 1)-th symbol

1 0,(8) (—eety) -

Because o satisfies (5) there is 6,,(¢) (¢,0,) = O for any xe M, (e TPM and a e L,.
The following lemma will clarify the situation.

14. Lemma. Let V be a vector space,dim V < oo, letage V*, Ee V*, & £ 0, and let
us assume that for any o€ A*V there is

oft) = 0.
Then there exists a unique A € R such that
g=21.¢&.

Proof. If 6 =0 or dimV =1 the lemma is obvious. Thus let ¢ =% 0,
dim V > 1. Let us assume that there does not exist any 4 with the above property.
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Then o and & are linearly independent, and we can find v, w € V such that
o) = 1. o(w) =0,
oy =0, &w)=1.
Fora = v A w we get
o(to) = o(t(v A W) = o(—v) = —1,
which is a contradiction. This proves the lemma.
Thus we can see that for any & # 0 there is a unique ,(¢) € R such that o,(¢) =
= 2,(&) & Further we set 2,(0) = 0. Then 0,,(¢) = A,(¢) & for any ¢ € TS'M. In this

way we have defined a function /. T*M — R. Further information about this
function is contained in the following lemma.

15. Lemma. Let o: V* — V* be a homogeneous polynomial mapping of degree
<r. Let us assume that there exists a function A: V¥ — R such that

o(&) = M&)E forany EeV*,
AM0) =0.
Then A is a homogeneous polynomial of degree <r — | or the zero polynomial.

Proof. The assertion is obvicus if dim V = 1. Therefore we shall assume that
dim V' > 1. For arbitrary v, w e V' we have

(6) a(¢) (v) &(w) = 4(&) &(v) &(w) = (&) (w) &(v) -

We shall consider o(&) (v), a(&) (w), &(v) and &(w) as homogeneous polynomials in .
Let veV, v % 0 be arbitrary. We choose w € V such that v and w are linearly in-
dependent. Consequently the polynomial &(v) of degree 1 does not divide the poly-
nomial &(w) of degree 1, and vice versa. The equality (6) then shows that &(v) divides
(&) (v), i.e. there exists a homogeneous polynomial P,(¢) of degree <r — 1 (or zero
polynomial) such that

o(&) (v) = Py(¢) ¢(v) .
Taking v, we V, v & 0, w # 0 arbitrarily, and substituting into (6) we get
(Po(&) = Py(¢)) &(v) é(w) = 0,

which implies P(£) = P,(¢). We have thus proved that there exists a homogeneous
polynomial P(£) = P,(&) of degree <r — 1 (or zero polynomial) such that for any
veV, v+ 0 there is

a(¢) (v) = P(¢) &(v) -

But this equality obviously holds for » = 0. Because evidently A(¢) = P(¢), the lemma
is proved.

16. Lemma. Let w be a 1-form of order <r. Then ord Z < r for any a €L,
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if and only if the r-th symbol o, of  has the form

(7) 00(¢) = 4(§) ¢
where A € TS*T*M for some k < r — 1.

Proof. Necessity is obvious from the above considerations. (It suffices to take
A, = 2..) In order to prove the sufficiency let us assume that o, has the form (7).
Then the (r + 1)-th symbol of Z{ is

—A(8) (1) = —A(8) g = 0,
which proves the lemma.

We shall now continue the investigation of an I-form w satisfying (5). Let us
assume that ord w = r, where r = 2. Then the r-th symbol of Z; vanishes. We shall
now follow an alternative way of computing this symbol. Let be again x € M,
e TM, & + 0, and let us choose f € L_; such that f(x) = 0 and df, = &.

First let us notice that for the 1st symbol ay;, of the 1-form div we obtain

aai(€) (v) = div (fX) (x) = f(x) (div X) (x) + df(X,) = &(v),
where ve T,M, and X € L, is such that X, = v. We have thus proved that

Udiv(f) =¢.
Further let D: L_; — L_, be a linear differential operator of order <r — 1 such
that its (r — 1)-th symbol o has the form o,(¢) = — A(&). We shall consider the 1-form
D div. Obviously ord (D div) < r. For its r-th symbol we find easily

Uodiv(f) = —A(f) .
This shows that

o= Ddiv+ o,
where ' is a 1-form of order <r — 1. Let us compute now the r-th symbol of Z¢.
(0, Will denote the (r — 1)-th symbol of w'.)

—of[o f7]) (%) = @(tapr) (%) = (rf"™"1as2) (x) =

= Ddiv(rf" " legpe) (x) + o' (rf" " egp0) (x) =

= D(rf"" " div(tgpo) + d(rf" ") (tas0)) (X) + 7 6,(&) (eete) =
= r D(f"71) (x) div () (x) + (r(r = 1) /772 df (1a) (x) +
+ ro (&) () =

—r A(&) div (t,0) (x) + 7 0,(&) (eey) -

In order to obtain a more explicite formula, let us set « = X A Y, where X, Ye L,,.
Then we have

div (tgp0) = div (tgf(X A Y)) =div(Xf. Y- Y. X) =
— Xf.div Y+ YXf— Y .divX — XYf =
=divY.X —divX.Y—[X,Y])f.

I
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Substituting into the above formula we get
o[ X A Y N(x)=rA)&divY.X —divX.Y—[X,Y]),) -
— r 0, (O (6(X A V).

Because o satisfies (5) we find that for any X, Ye L, there is

(8) AQ) &(div Y. X = divX . Y = [X, Y])) = 00(&) (t(X A Y),) = 0.
It is not difficult to see that we can find a chart (x,, ..., x,,) around x with x,(x) = ...
. = x,(x) = 0 such that with respect to this chart there is
u=dx; A... Adx,,
& = (dxy), -

Taking X = 9[0x,, Y = x, 0/0x, we have
divX =divY=0,
(X AY),=0, [X,Y]=20[ox,,
and the equality (8) implies
AE) =0.
This shows that ord D < r — 2, and consequently ord w < r — 1. Proceeding by

induction we obtain easily the following lemma.

17. Lemma. Let w be a 1-form satisfying the condition (5). Then
ordw =< 1.
18. Lemma. The correspondence D +— wy, defines a linear isomorphism between
Der_,, and the vector space of all closed 1-forms w of order <1 the 1st symbol
of which has the form o (&) = AE, where Ae L_;.
Proof. Let D € Der_,. Using Prop. 10, Lemma 13 and Lemma 17 we can see
that wj, is a closed 1-form of order <1. Furthermore Lemma 16 shows that o,,,(¢) =
= A, where A€ L_,. By virtue of Lemma 13 the correspondence D — wy, is in-
jective.
Conversely let @ be a closed 1-form of order <1 with the symbol om(f) = A&,
where A € L_,. The previous considerations show that we can express w in the form
w=Adiv+ o,

where o' is a 1-form of order zero. For fe L_; and X, Ye L, we obtain
—o[X A Y f])=Xf. Y- Y.X) =
=Adiv(Xf. Y- Y.X)+ o'(Xf. Y- Y X) =
=A.XfdivY+ A.YXf— A.YfdivX — 4. XYf +
+ Xf.0'(Y) - Y. 0(X) =
=[AdivY.X —divX. Y- [X,Y]) + 0(Y). X — 0(X). Y]S.
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From this we can easily conclude that the [-form w has the property (5). This shows
that the correspondence D +— w), is surjective.

19. Lemma. Let w be a closed 1-form of order <1 the symbol of which has the

Sform (&) = A. &, where Ae L_,. Then A is a constant and w can be uniquely
expressed in the form

o= Adiv + o
where ' is a closed 1-form of order zero.
Proof. We have already seen that w can be expressed in the form
w=Adiv + ',
where A € L_, and o' is a 1-form of order zero. From the above equality we obtain
0=da4 Adiv + do'.

Let x € M be arbitrary. We shall again use a chart (xy, ..., X,,) around x such that
xi(x) =...=x,(x) =0,
u=dxg A ... Adx,.

For i # j we obtain

. 0
0= (@4 div) (=, %2 () + do (2, x, 2 () = 249
0x; 0x; 0x; 0x; 0x;
which shows that dA, = 0. Consequently A is a constant function. Finally we have
0 =daA A div + do =do,
i.e. the 1-form ' is closed. The uniqueness of the decomposition w = A div + ',
where A is a constant and o’ is a 1-form of order zero, is obvious.

Combining the preceding two lemmas we get easily the following proposition.

20. Proposition. Let dim M > 1. The correspondence D+ wp defines a linear
isomorphism between Der_ and the vector space of the 1-forms
cdiv + o',
where ce R, and ' is a closed 1-form of order zero. (Let us remark that the case
dim M = 1 is covered by Prop. 9.)

21. Remark. Using Lemma 8 we can easily see that the correspondence D — wp
maps inner derivations of degree —1 onto the subspace of exact 1-forms.

22. Proposition. For any derivation D € Der_, there is D*> = 0.

Proof. ¥(DD — (—1)"2YDD) = D? is a derivation of degree —2. Since
Der_, = 0 we get D? = 0.
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3. DERIVATIONS OF DEGREE 0

Let D € Der,. Obviously D l L, is a derivation on L. It is well known (see e.g.
[3]) that any such derivation is inner, i.e. there exists a unique X, € L, such that
for any X € L, there is

DX = [Xp, X].

Let Zy, denote the Lie derivative with respect to X,. Obviously Zy,_ can be con-
sidered. as a derivation of degree zero on L. We denote D' = D — Zy . There is
D' € Derg, and D' | Ly = 0.

23. Lemma. Let D' € Der, be such that D’ | Ly = 0. Then there exists a unique
c € R such that :

Do = ica for ael;, —-1ism-1.
Proof. For any fe L_;, X € L, we have
D'[X,f] = [X,Df],
D'(Xf) = Xx(Df).
Let us assume that f(x). = 0. Then we can easily find g, ..., g, § € L_; and
X, ...y X € Ly such that

(i) g vanishes in a neighborhood of x,
(i) Xpp = .. = Xpy = 0,

(iii) £ =:le,-9,~ +3.
Then we obtain
(D)) = (D(ZXig:+ 8) (5) = (O (X)) () + (09) (5) =
=R @) = Txu0) =0
We can see that there exists a unique h € L_, such that
Df=h.f forany feL_,.

_ Forany X e L, we have
D'(X1) = X(D'1),

0=Xh,
which shows that h is a constant function. Let us write h = —c, ¢ € R. Obviously
we have
D'a = ica for a€l;, i=—-1,0.

Further we shall proceed by induction on i. Let 0 < i < m — 1, and let us assume
that the assertion of the lemma holds for k = —1,0,...,i. For ae€ L;;; and ar-
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bitrary f € L_; we obtain

D'e, f] = ic[o, f] = (= 1) i tg(o) = (= 1)** "eq,(ic o)

[D'a,f] + [, Df] = (=) (D) + [, —cf] =

= (=)™ D'0) + (=) iy~ ca),
which implies t4;(D'e) = tq{((i + 1) cat), and consequently D'a = (i + 1) ca.. This
proves the lemma.

24, Proposition. Let D € Der,. Then there exist unique X, € Ly, and c € R such
that
Do = Ly o0 + ice, ael;, —-1Zi<m-—1.

Conversely for any X € L, and ¢ € R the formula
Do = Lyo + ica, aeLl;, —-1=i<m-—1

defines a derivation of degree zero on L. ,
Proof. The first part of the assertion follows from the previous lemma. The
second part can be verified by an easy calculation.

4. DERIVATIONS OF DEGREE >0

Let us consider a derivation D € Der,, where k > 0. We are going to prove that
for any fe L_; such that df, = 0 there is (Df)(x) = 0. Let g € L_, be arbitrary.

We obtain
(= 1) "eag (D) (x)) = [Df. 9] (x) = (D[/. g]) (x) - (= 1)* [/ Dg] (x) =
= —[Dg.f1(x) = (= 1)'%,((Pg} (x)) = 0.

This result enables us to define for any x € M a linear mapping
A TIM - AT .M

in the following way. Let ¢ € TSM, and let us choose fe L_, such that & = df,.
Then we define

448 = (Df) (x) .
25. Lemma. For any &, & € TXM there is

e ALE) + e A(E) = 0.
Proof. Let us choose f, f' € L_, such that ¢ = df,, & = df.. We obtain

1 AE) + t A(8) = 14 (Df') (%) + tap (D) (%) =

= (=021 f1(x) + [A1] () =

= (=) U([DAS1(x) + (- Y[/, D' 1(x)) = (= 1)* " (D[£.f D) (x)=0.
Using Lemma 11 and Lemma 25 we find easily that there exists a unique «;, €L,

such that

Df = (= 1)'typ(ep) = [op. /]
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Let us consider now the derivation D' = D — ad ay. Obviously D' | L_; = 0.

26. Lemma. Let D' € Der,, k > 0 be such that D' | L_; = 0. Then D' = 0.

Proof. We shall prove by induction on i = —1,0,...,m — 1 that D'a =0
for any o € L;. The assertion holds for i = —1. Let now —1 =i < m — 1, and let
us assume that the assertion holds for I = —1,0,...,i. For a € L;+; and arbitrary
feL_, weobtain 0=D"[a, f]=[D'et, f] + (= 1)** D [, D'f] = (= 1)"*** 14y (D),
which implies D'ac = 0.

Now we get easily the following proposition.

27. Proposition. Every derivation D € Der,, k > 0 is inner.

Added in proofs: 1. It can be proved that every derivation on the Nijenhuis-
Schouten bracket algebra L is local. 2. Using riemannian metric we can define the
1-form div even on a non-orientable manifold. In this case all results of the paper
remain valid.

References

[1] Nijenhuis, A.: Jacobi-type identities for bilinear differential concomitants of certain tensor
fields I, Indagationes Math. 17 (1955), 390—403.

[2] Schouten, J. A.: Uber Differentialkonkomitanten zweier kontravarianter Grossen, Indaga-
tiones Math. 2 (1940), 449—452,

[3] Takens, F.: Derivation of vector fields, Compositio Math. 26 (1973), 151—158.

Author’s address: Mendelovo nam. 1, 662 82 Brno, Czechoslovakia (Matematicky ustav
CSAV, pracovisté€ Brno).

689



		webmaster@dml.cz
	2020-07-03T07:51:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




