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In this paper there are investigated radical classes of directed interpolation groups.
Next, two open problems on abelian directed groups with countable interpolation
{which have been proposed by K. R. Goodeatl [8]) are dealt with.

Radical classes of lattice ordered groups have been introduced in [12] and they
were further investigated in the papers [3], [4], [13]—[16], [18]. The radical classes
of intropolation groups can be defined analogously (cf. Section 1 below).

We denote by ¢ and £ the class of all lattice ordered groups and the class of all
directed interpolation groups, respectively. Next let R(%) and R(#) be the collection
of all radical classes of lattice ordered groups or the collection of all radical classes
of directed interpolation groups, respectively. Both R(%) and R(#) are partially
ordered by inclusion.

Sample results: R(%) fails to be a subcollection of R(#); in particular, 4 € R(%),
but ¢ does not belong to R(F). If ¥, = {G,} . is any class of archimedean linearly
ordered groups, then the radical class in R(%) generated by ¢, belongs to R(5).
This does not hold, in general, for non-archimedean linearly ordered groups. If
AeR(F) and {B;}iq < R(F), then A A (Vier B)) = Vit (A A B,). There exists
an injective mapping of the class of infinite cardinals into the class of all atoms
of R(S).

From the result of [11] it follows that each vaiety of lattice ordered groups belongs
to R(%). In particular, the class of all abelian lattice ordered groups belongs to R(%).
In the case of interpolation groups the situation is essentially different; it will be
proved below that the class of all abelian interpolation groups does not belong
to R(5).

In the last section it is shown that the answers to the questions from [8] under
considerations are ‘“No”.
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1. PRELIMINARIES

The group operation in a lattice ordered group will be denoted additively; the
commutativity of this operation is not assumed.

1.1. Definition. Let f be a cardinal, f & 0. A partially ordered set X is said to
satisfy the f-interpolation property if, whenever Y and Z are nonempty subsets
of X with card Y=< f8, card Z < B and y < z for each y € Y and each z € Z, then
there exists x € X such that y < x < z for each y € Yand each z e Z.

It is easy to verify that in the above definition the condition y < z can be replaced
by y < z.

For B = 2 or B = N,; the B-interpolation property is denoted as Riesz interpola-
tion property or countable interpolation property, respectively.

A partially ordered group satisfying the Riesz interpolation property is called
a Riesz group (cf. [6], [7]) or an interpolation group (cf. [8]). Partially ordered
groups with countable interpolation property have been investigated in [9]; cf. also
[8], Chap. 16.

Let & be the class of all lattice ordered groups. For each G € ¢ we denote by C,(G)
the set of all convex [-subgroups of G; this set is partially ordered by inclusion. Then:
C/(G) is a complete lattice (cf., e.g., [6]); the corresponding lattice operation will
be denoted by Al and V"

1.2. Definition. A nonempty subclass 4 of ¥ is said to be a radical class of lattice

ordered groups if it satisfies the following conditions:
(i) A is closed with respect to isomorphisms.

(i) f G,e A and G, € C,(Gl) then G, € 4.

(iii) If Ge 9 and {G,},; = C(G) N 4, then Vi, G, € A.

Next, let # be the class of all directed interpolation groups. For G € £ let C(G)
be the set of all convex directed subgroups of G; we consider C(G) as being partially
ordered by inclusion. Then (cf. [17]) the set C(G) is a complete lattice. The lattice
operations in C(G) will be denoted by A and v.

Now we can introduce the notion of radical class of directed interpolation groups
in analogous way as in 1.2 (with the distinction that C(G,), C,(G) and Vi, G, are
replaced by C(G,), C(G) and Ve G)).

Let R(%) and R(#) be the collection of all radical classes of lattice ordered groups
or the collection of all radical classes of directed interpolation groups, respectively.
Both these collections are partially ordered by inclusion.

2. BASIC PROPERTIES OF R(f)
Let A,;, be the class of all G € # such that card G = 1. Then 4,,, is the least

element of R(#) and # is the greatest element of R(.5).
We need the following result.
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2.1. Proposition. (Cf. [17].) Let G€Y, Gy, G, € C(G), {G}ia = C(G). Then
Gi A Gy = G, 0 Gy and Gy A (Vir 1) = Vier (Gi A G)).

Let us also remark that the relation Aier G; = Nicar G; need not be valid in general
(cf. [17]).

For a nonempty subclass .#, of # we denote by

Sub £, — the class of all G € # having the property that there exists G; € #;
such that G is isomorphic to some element of C(G,);

Join 4, — the class of all G € # having the property that there exist subgroups
G,€C(G) and G} € #, (i€l) such that G = V,; G; and for each iel, G; is iso-
morphic to G}.

2.2. Lemma. Let § + 4, < 4. Denote #; = Join Sub #,. Then

(i) #1 e R(H);

(ii) for each A € R(F) with #, = A we have ${ < A.

Proof. It is obvious that £ is closed with respect to isomorphisms.

Let G, e #; and G, e C(G,). There exist G;€ C(G), G,€ #, and H;e C(G})
(i €I) such that G, = V,; G; and for each i €I, G; is isomorphic to H,. Hence in
view of 2.1 we have

G, =G, AG =G, A (Viel Gi) = Vier (Gz A G:)-

Then G, A G; e Sub 4, for each i €I and thus G, € #7.

Next let Ge . and {G,};; S C(G) nI;. Put VG, = H. Then we have H e
€ Join #{ = Join Join Sub .#; = Join Sub £, = F|. Hence (i) holds. The as-
sertion (ii) is an immediate consequence of the definition of R(.%).

2.2.1. Remark. In the second part of the above proof we have verified that
Sub Join Sub £, = Join Sub 4, for each nonempty subclass &, of 4.

In view of 2.2 we say that £ is a radical class of directed interpolation groups
generated by #,; we also put 4, = T(F,). If #, is a one-element set, #, = {G},
then we denote T(S,) = T(G).

It will be proved below that there exists an injective mapping of the class of all
cardinals into R(f). In this sense, R(.ﬁ) is a ““large” collection. Nevertheless, we shall
apply for R(#) the terminology of partially ordered sets, e.g., the notions of sup and
inf. If I is a nonempty class, 4; € R(F) for each iel, AeR(F), A = sup {A;}ics>
then we write also 4 = Vg 4;. The symbol A 4; stands for inf {Ai}ie,.

2.3. Lemma. Let I be a nonempty class and for each i€l let A;e R(F). Then
we have

(i) Nier 4i = Nier 435

(i1) Vier 4; = Join Ujer 4.

Proof. Put B = (i A;- Then B = 0, since A, € A; for each i el. If D e R(S)
and D = A, for each i €I, then B < D. It is obvious that B € R(#). Thus (i) holds.

Denote E = Join U;er 4;. We have Sub A4; = A4; for each iel, hence E =
= Join Sub Ujes 4;- Thus according to 2.2.1, SubE = E. Clearly Join E = E.
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Therefore from 2.2 we obtain E€ R(F). If Fe R(#) and F = A, for each i€l,
then clearly F 2 E. Hence (ii) is valid.

2.3.1. Corollary. R(f) is a complete lattice.
2.4. Proposition. Let A€ R(S), {A;}ic; S R(F). Then
A A Vi A4;) = Via (A A 4).

Proof. We have A A (Vier 4i)) = Vi (4 A A;). Let Ge A A (Vi A;). Hence
in view of 2.3, Ge A and Ge V; A; = Join U; 4;. Thus there exist Hk(keK)
in C(G) such that G = Vx Hy and each H; belongs to some A, (i(k) € I). Next,
because of G e A we infer that H,e A and hence Hy e A A Ay, for each ke K.
Therefore G € Vier (A A A;), completing the proof.

3. SOME FURTHER PROPERTIES OF R(f)

Since the basic properties of R(f) are analogous to those of R(%) the natural
question arises what are the relations between R(#) and R(%). In particular we can
ask whether R(%) is a subclass of R(.#). The following consideration shows that the
answer.is “No”".

3.1. Example. Let Q be the additive group of all rational numbers with the natural
linear order, Y = X = Q and let Z be any nonzero lattice ordered group. Put

G=(XxY).Z,

where x and o have the usual meaning (the operation of the direct product and the
operation of the lexicographic product). It is obvious that G is an abelian directed
group. We shall verify that G belongs to #.

Let uy, uy, vy, v, € G such that u; < v; for i, j = 1, 2. We have to show that there
exists 1€ G with u; <t < v; for i,j = 1,2. The case when either u; and u, are
comparable or v, and v, are comparable is trivial. Thus it suffices to assume that u,
is uncomparable with u, and that v, is uncomparable with v,.

Let u; = (xp Vi, 21), U, = (Xz, Va2, Zz), vy = (xsa VED) Za)’ Uy = (xla Vi Zl)' If
(x1, ¥1) = (x5, y,), then we take t = (xy, y;, z; V z,). In the case (xy, y;) * (2, ¥2)
we put t = (x; V X5, y; V ¥, Z3 A z,). Then t satisfies the desired condition.
Thus Ge J.

Let G, = {(x,y,2)eG:y =0}, G, = {(x,y,z)€G: x = 0}. Thus G, and G,
are convex directed subgroups of G, G, is isomorphic to X o Z and G, is isomorphic
to Yo Z under a natural isomorphism. Both G, and G, are lattice ordered groups,
G, is isomorphic to G, and in the lattice C(G) the relation G = G; v G, is valid.
It is obvious that G ¢ 4.

3.2. Corollary. Let X be as in 3.1 and let Z be a nonzero lattice ordered groups.
Then T(X o Z) fails to be a subclass of 4.
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Proof. Let G, G; and G, be as in 3.1. Both G, and G, are isomorphic to X o Z,
hence they belong to T(X ° Z). In view of G; v G, = G we obtain that G is an
element of T(X o Z). Since G ¢ ¥, the relation T(X o Z) < ¢ is not valid.

3.3. Corollary. G ¢ R(S).

Proof. Under the same denotations as in 3.2 we have X o Z € %, hence T(X o Z) <
S T(%). Next 3.2 yields that 4 =+ T(%). Therefore ¢ ¢ R(5).

Since Y € R(@), in view of 3.3 we can ask whether there exists an element A in
R(%) with A # A, such that A belongs to R(#). In the next section it will be shown
that the answer to this question is positive.

4. ARCHIMEDEAN LINEARLY ORDERED CONVEX SUBGROUPS

For {0} + G € # we denote by A(G) the set of all elements G, € C(G) such that G,
is linearly ordered and archimedean.

4.1. Lemma. Let G,, G, € A(G), G, * G,. Then G, n G, = {0}.

Proof. By way of contradiction, suppose that there exists g € G; n G, with
g #+ 0. Then without loss of generality we can assume that g > 0. Let 0 < g, € G,.
Because G, is archimedean there is a positive integer n such that g, < ng. Now
from ng € G, we infer that g, € G,, which implies that G, < G,. Analogously we
obtain G, & G, whence G; = G,, which is a contradiction.

Let {G;} . be a nonempty subset of A(G) such that G; % {0} for each iel. We
assume that for distinct elements i(1) and i(2) of I the groups G;(;,and G, must also
be distinct. Put H = V;; G

4.2. Lemma. Let i(1) and i(2) be distinct elements of I, a € G;(yy, b € Gy5). Then
a+b=>b+a.

Proof. It suffices to consider the case when a > 0 and b > 0. Since the mapping
@:t— —a + t + a, (where t runs over G) is an automorphism of the partially
ordered group G, the subgroup —a + G;,) + a is an element of A(G). Put b’ =
= —a+ b+ a. Then b+ a =a + b" and b’ > 0. There exist a; and by in G
such that ¥ = b; + a; and 0 £ b; £ b,0=a, £ a.

At first suppose that —a + G;;) + a F G;,y. Then in view of 4.1,

(—a + Gizy + a) 0 Gyz, = {0}. This yields that b, =0 and hence 0+ b’ =
= a, € Gy(). Therefore b’ € G;;, and hence, by applying 4.1 again, G,y = G,
which is a contradiction. Thus —a + G;;) + a = G;;) and so b’ € G;;,. Then
a,; = 0 which implies that b’ = b, and hence b’ < b. By analogous reasoning we
obtain that b < b’, completing the proof.

4.3. Lemma. Let 0 3 h € H. Then there exists a finite nonempty subset I of I
and elements g;€ G, (i €1,), g; *+ O such that

(i) g = Zg; (iel,);
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(i) if i and i(1) are distinct elements of I, then g; ¢ Gy).
Next, H is abelian.
Proof. This follows from [17], Hilfsatz 4, and from 4.2.

44. Lemma. Let h, I, and g; be as in 4.3. Then h > 0 if and only if g; > 0
foreachiel,.

Proof. The “if” part is obvious; let us investigate the “‘only if” part of the as-
sertion. Let card I; = n. We proceed by induction on n.

For n = 1 the assertion obviously holds. Suppose that n > 1 and that the as-
sertion is valid for n — 1. By way of contradiction, suppose that g;;, < 0 for some
i(1)eI(1). Put I, =I,\{i(1)}, b’ =Zg; (iel,). We have 0 < h = g,y + I,
hence A’ > 0. Thus in view of the induction assumption the relation g; > 0 must
be valid for each i e I,.

According to

0< —gi1y <Zg; (iel,)
there exist elements h; € G (i €I,) such that 0 < h; < g, is valid for each i € I, and
—giy =Zh; (iel,).
Let i el,. Then from the convexity of G; we obtain that h; € G;; moreover, 0 <
< h; £ — iy, hence h;e Gy,y. Thus according to 4.1, g; = 0 for each iel,
implying that —g;, = 0, which is a contradiction.

By an obvious modification of the proof of 4.4 we obtain:

4.5. Lemma. Let he H. Let I, be a finite subset of I and let g;€ G; for each
iel, such that h = Xg; (i€l,). The following conditions are equivalent:

(i) h 2 0;

(i) g; = 0 for each iel.
The corresponding dual assertion is also valid.

4.6. Corollary. Let h, I, and g; be as in 4.5.If h = 0, then g; = 0 for each i el,.

4.7. Corollary. Let he H, h # 0. Then the set I, and the elements g, (i €I,) (the
existence of which was proved in 4.3) are uniquely determined.

From 4.3, 4.5 and 4.7 we infer

4.8. Lemma. H is a weak direct product of the system {G} .

Now let 4, = {G;} (je€J) be a class of archimedean linearly ordered groups
which is closed with respect to isomorphisms. Then Sub 4, = 4, U A;,. Thus 4.8
yields:

4.9. Proposition. Let ¥, = {G;} (jeJ) be a nonempty class of archimedean
linearly ordered groups. Let G € #. Then the following conditions are equivalent:

(i) G €Join Sub ¥,.
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(ii) Either G = {0} or G is a weak direct product of some elements belonging
to 9,.

From 4.9, 2.2 and [12], 2.1 and 2.2 it follows:

4.10. Theorem. Let ¥, be a nonempty class of archimedean linearly ordered
groups. Then Join Sub ¢, € R(#) N R(%).

Let us remark that the above theorem need not hold for linearly ordered groups
which fail to be archimedean (cf. Example 3.1).

4.11. Theorem. Let G, be a nonzero archimedean linearly ordered group. Put
%, = {G,}, A = Join Sub %,. Then A is an atom of the lattice R(5).

Proof. In view of 2.2 we have AeR(f). Since G, € A4, the relation A4 # Ay,
is valid. Let A, + Be R(F), B < A. Thus there is Ge B with G # {0}. Then
G e A = Join Sub {G,}. Hence there are G; (j € J) in C(G) such that G = V,; G;
and each G; is isomorphic to G;. Therefore G; € B and so B = A.

If G, and G, are nonzero archimedean linearly ordered groups and if G; is not
isomorphic to G;, then G, ¢ Join Sub {G,}. Since there are infinitely many nonzero
archimedean linearly ordered groups which are mutually nonisomorphic, we obtain

4.12. Corollary. The lattice R(f) has infinitely many atoms.
This result will be sharpened in the next section.

5. A FURTHER TYPE OF ATOMS IN R(J)

We denote by A, the class of all nonzero archimedean linearly ordered groups G,
such that no element of G; covers 0. Next let # be the class of all groups K with
a trivial partial order (i.e., for ke K € # we have k 2 0 iff k = 0). For G, € 4,
and K, € & we put H(G,, K;) = G, - K,. Then H(G,, K,) € #. Let us denote by #
the class of all H(G,, K;) which can be constructed in this way (where G, runs over 4,
and K, runs over X').

If H(G,, K;) and H(G,, K,) belong to s and are isomorphic, then G, is iso-
morphic to G, and K, is isomorphic to K ,.

If H e #, then C(H) = {H,{0}}. From this fact we obtain (by the same argument
as in the proof of 4.11)

5.1. Lemma. Let He #, A = T(H). Then A is an atom of the lattice R(F).
Let H = (G, K,) € #. Put B = max {card G,, card K,}. Then we have
5.2. Lemma. Let 0 < h e H. Then card [0, k] = B.

This can be generalized as follows:

5.3. Lemma. Let H be as in 5.2 and let {0} + H' e T(H), 0 < k" € H'. Then"
card [0, k] = B.
Proof. There exist G;€ C(H') (j€ J) such that H = V;; G; and each G; is
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isomorphic to H. Next there exists a finite subset J; of J and elements 0 < g; € G;
for each j € J, such that i’ = Zg; (j € J,). According to 5.2 we have card [0, g;] = B
for each j e J,. Hence card [0, k] = B. Next, it is clear that the cardinal f is infinite.
For each x € [0, h'] there exist elements x;€[0, g;] (j€J,) such that x = Zx;
(jeJ,). Hence there exists an injective mapping of the set [0, h'] into TI[0, g;]
(j € Jy). Since J, is finite we have card [0, h'] < card II[0, g;] (je J,) = B.

5.4. Lemma. Let H be as in 5.2. Let H, = H(G,,K,) € #,card K, > B. Then H,
does not belong to T(H).

Proof. This is a consequence of 5.2 and 5.3.

Let G be a fixed element of A,. For each infinite cardinal §, there exists K(f;) € #
with card K(B,) = B,. Put H(B,) = H(G,, K(8,)).

5.5. Proposition. The mapping B, — T(H(G,, K(B,))) of the class of all infinite
cardinals into the class R(F) is injective.

Proof. This follows immediately from 5.4.

Next, 5.1 and 5.5 yields

5.6. Corollary. There exists an injective mapping of the class of all infinite
cardinals into the class of all atoms of R(F).

For A € R(#) we denote by «#(A4) the collection of all B € R(#) such that B covers 4
in R(#) (i.e., A < B and there is no Cin R(#) with 4 < C < B).
In view of 5.6, the collection &/(Ay;,) is ““large™. Next, from 5.6 and 2.4 we obtain

5.7. Proposition. Let n be a positive integer and let A, A,, ..., A, be atoms
of R(F). Then there exists an injective mapping of the class of all infinite cardinals
into L(A; v Ay vV ...V 4,).

For each infinite cardinal f we denote by A, the collection of all G € # such that
card [0, h] = B whenever 0 < heG.
5.8. Lemma. Let § be an infinite cardinal. Then 4; € R(4).

Proof. If Ge Ay and H e C(G), then clearly He 4, Let G €4, {G}iaq S
S C(G) n Ay and Vi G; = G;. Then by the same method as in the proof of 5.3
we can verify that G; belongs to A;.

5.9. Proposition. Let 8 be an infinite cardinal. Then there exists an injective
mapping of the class of all infinite cardinals into o/(Ap).

Proof. It suffices to verify that there exists an injective mapping of the class of
all cardinals greather that into &/(4,). For each cardinal ; > B let T(H(G,, K(B,)))
be as above. Put

f(By) = T(H(Gy, K(By))) v 4 -
From 5.1, 5.3 and 2.4 it follows that f has the desired properties.
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6. ABELIAN INTERPOLATION GROUPS

We denote by 4 and A; the class of all abelian lattice ordered groups or the class
of all abelian interpolation groups, respectively.

From the result of Holland [11] it follows that the relation A € R(%) is valid.
In this section we shall investigate the question whether A4; belongs to R(#).

6.1. Example. As usual, we denote by Q the additive group of all rational numbers
with the natural linear order. Put X = Y= Z = Q. Let G be the set of all triples
(x,y,z) with x € X, y € Yand z € Z. We define the operation + in G as follows. For
(x, y. z) and (xy, yy, zy) in G we set

(x,y,2) + (x, v, z) = (X + X35 ¥y + yi, 2 + 24 + x,9).
Then (G; +) is a nonabelian group with the neutral element 0 = (0, 0, 0). Next we
put (x, y, z) = 0 if some of the following conditions is valid:
(i) x>0 and y 2 0;

(i) x 20 and y > 0;

(i) x =y =0 and z 2 0.
Then G turns out to be a non-abelian interpolation group.

Denote

Gy ={(x,y,z)eG:x =0}, G,={(x,y,2)eG:y=0}.
Both G, and G, are directed convex subgroups of G; next, both G, and G, are abelian.
We cbviously have
() G, vG,=G.
6.2. Lemma. Join Sub A4; + A4,.

Proof. Let G, G, and G be as in 6.1. Then G, and G, belong to 4;. Hence in view
of (*) the relation G € Join A, is valid. Clearly Sub 4; = A; thus G € Join Sub 4,.
Since G is nonabelian, it does not belong to A4;.

6.3. Corollary. A4; fails to be a radical class of directed interpolation groups.
Proof. This is a consequence of 2.2 and 6.3.

7. DIRECTED GROUPS WITH COUNTABLE INTERPOLATION

All partially ordered groups considered in the present section are assumed to be
abelian.

For the following three definitions cf. [8].

7.1. Definition. Let G be a partially ordered group and let n be a positive integer.
We say that G is n-perforated if there exists an element x € G such that nx = 0
but x % 0; otherwise, G is n-unperforated. If G fails to be n-perforated for each
positive integer n, then G is said to be unperforated.
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7.2. Definition. Let G be a directed unperforated interpolation group. Then G is
said to be a dimension group.

7.3. Definition. A partially ordered group G is said to be monotone g-complete
provided that every ascending sequence x; < X, < ... in G which is bounded above
in G has a supremum in G.

In [8], p. 320 the following open problems were proposed:

(A) Is every directed group with countable interpolation unperforated?

(B) Is every directed group with countable interpolation isomorphic to a quotient
group of a monotone g-complete dimension group?

Let « be an ordinal. We recall some notions concerning #,-sets (cf., e.g., [10] or
[19]).

Let X be a linearly ordered set and let P & @, Q + 0 be subsets of X. The sets P
and Q are said to be neighbours in X if p; < g, for each p; € P and each g, € Q,
and there does not exist any x € X such that p < x < g for each (p,g)e P x Q.

X is said to be an 7,-set if it satisfies the following conditions:

(i) If Y = X and card Y < N,, then X is neither cofinal nor coinitial with ¥;

(ii) If Y, and Y, are subsets of X, card Y¥; < N, for i = 1, 2, then Y; and Y, fail
to be neighbours in X.

Linearly ordered groups or fields Lavirg the property that the underlying sets
are n,-sets were investigated in [1], [2], [5], [19].

7.4. Proposition. (Cf. [2].) For each infinite ordinal there exists a linearly
ordered group G(o) which is an n,-set.

Let H be a group with a trivial partial order and let G{«) be as in 7.4. We put
G = {(x,y): x€ G(«) and y e H}. The operation + in G is defined compentwise.
For (xy, y;) and (x,, y,) in G we put (xy, y;) < (X3, y,) iff x; < x,. Then G turns
out to be a directed group. Next, since G(a) is an #,-set, it obviously satisfies the S-
interpolation property for each cardinal f with f < N,. Hence for each such 8, G
satisfies the f-interpolation property as well.

Now let H = {0, 1,2, ...,n — 1}, the operation + on H being defined as addition
mod n. Put z = (0, 1) € G. Then the relation z = (0, 0) fails to be valid in G, but
nz = (0,0). Thus G is n-perforated. Hence we have

7.5. Proposition. Let o be an ordinal and let n be a positive integer. Then there
exists a directed n-perforated group G satisfying the p-interpolation property
for each cardinal B with f < N,.

As a corollary we obtain that the answer to the question (A) above is “No”."

7.6. Proposition. (Cf. [8], Proposition 3.1.) If K, is an ideal in a dimension
group K,, then the quotient group K,|K, is a dimenion group as well.

7.7. Proposition. Let « be an ordinal and let B be a cardinal with B < N,. There
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exists a directed group G satisfying the B-interpolation property sucli that G is not
a quotient group of any dimension group.

Proof. Let G be as above. Since G fails to be a dimension group, it suffices to
apply 7.6.

This proposition yields that the answer to the question (B) above is negative.
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