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INTRODUCTION

In Definition 1 we introduce the product S*-integral, a multilinear generalization
of the Kolmogoroff integral for countable partitions, see Section 1 in Part VII and
[27]. According to Theorem 1, roughly speaking, product S*-integrability implies
integrability, and the integrals coincide. (For d = 1 we stated this fact in Theorem
VIL1 only for Z-measurable functions, nonetheless the proof given there works for
#2-measurable functions.). By Theorem 2 the converse holds at least for (f;) € &,(T').

In Theorem 12 we prove the finiteness of the multiple L;-gauge I'[(+), (T;)] on
K7 1(1‘ ), promised in Part XI, and already used many times since then. Our rather
long proof is based on a Fubini Theorem 4 in the case of assumption a) in its for-
mulation. From Theorem 4 we easily obtain not only Theorems V.9—V.12 on
integration by substitution, see Corollary 2 of Theorem 4, but also their multilinear
generalizations, see Theorems 5—8. Theorem 9 is a generalization of Theorem V.8,
while Theorem 11 gives characterization of %,(I).

We note that interesting and deep results have been obtained recently in harmonic
analysis of bimeasures, see [20]—[24] and [31]. Highly mterestmg is the approach
and the results of R. C. Bleiin [1] and [2].

1. INTEGRABILITY AND PRODUCT S*-INTEGRABILITY

Definition 1. Let f;: T; » X;, i = 1,...,d, and let (4;) € Xo(2;). We say that
a d-tuple (f;) is product S*-integrable, shortly XS*-integrable on (4;), if there is
a y € Yand for each ¢ > 0 a product of countable 2 -partitions Xn} (4;) € XIT}(4;)

«

'p(1) ©p(d)

such that Y ... Y TI(4;;)(ft:;)) converges iteratedly unconditionally
Jp1y=1 Jp(ay=1

in Y for each permutation p of {1, ..., d}, for each product of countable 2 -partitions

Xnf(4;) = Xnf(4), (4) = {4, i=1,...,d,

11.“ 1>
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€ A;

@p(1)

| 2 . % T(40) (Ft50) = <.

Jph=1 Jjp=1
In this case we write
XS&‘)(fi) dlr =y.
The following simple facts are immediate:
Let fi: Ty = X;, i =1,....d, let (N;) e Xa(2;) and let [(N;) = 0. Then (f;) is
XS*-integrable on (N;) and XS(Ni)(f,) dr = 0.
Let f: T, > X, i=1,....d, let g.: T, - X,, let (f;) and (g,, 5. ..., f;) be XS*-
integrable on (4;) € Xo(2;), and let a, b be scalars. Then (af, + bgy, f5, ..., fJ) is
XS*-integrable on (4;) and

XS¢ip(afy + bgy, fa .. fa) AT = a . XS§ (f) dI +

+b. XS?A;)(gl’fZa o fa)dr.
If (f;) is XS*-integrable on (4;) € Xo(2;), then

and each t, ;, wipi=1...d j,=1,...,0; £ co, and

d
IXS::A-')(fi) drl = iljl ”fi"Ai F(Ai) >

and (f;) is XS*-integrable on each (B;) e X(4; n o(2;)). Hence if fi: T, > X, is
#-measurable and F, = {t;e T;, fi(t;) £ 0} ea(2,), i =1,....d, then (f}) is
XS*-integrable on (F;) if and only if it is XS*-integrable on each (4;) € Xa(2;).

The assertions of the next lemma are also evident.

Lemma 1. 1) Let f;: T, > X, i = 1,....d, let (4;) € Xo(2,) and let (f;) be XS*-
integrable on (A;). Then the indefinite XS* integral XS{(f;) dI': X(4; N o(2,)) -
— Y is a vector d-polymeasure, i.e., it is separately countably additive.

2) Let (f)) e X5(2:, X)) 0 £ (), let (4;) € Xa(2,), and let [(A;) < + 0. Then
(f:) is XS*-integrable on (A;), (fix4,) € #+(T') and

XS(*B',)(f,.) dr = f, (f;)dr
for each (B;) € X(4; 0 o(2,)).

3) Let(f;) € XE(2;, X;). Then (f;) is integrable if and only if it is XS*-integrable
on (F;), where F; = {t,e T, f{t;)) + 0} € a(2,), i = 1, ..., d. In this case (f;) € F4I)
and

(At)S(fl) ar = I(A i) (f.)
for each (4;) € Xo(2;).

Using these facts we now prove

Theorem 1. Let f;: T, > X; be 2 ~-measurable, let F; = {t;e T,,f{t;) * 0] € 6(2)),
and let X, =sp{f(T))}, i = 1,...,d. Suppose either I'(...)(x;): X(F;n 2;) - Y
has locally a control d-polymeasure for each (x;) € XX, or f(T;) = X, is relatively
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o-compact for each i = 1, ...,d. Let finally (f;) be XS*-integrable on (F;). Then
(fye () = #4(I') and

XSE"A‘)(f,.) dr = [, (f)dr
for each (4;) € Xo(2,).

Proof. We prove the theorem under the assumption that I'(+) (x;): X(F; n 2;} > Y
has locally a control d-polymeasure for each (x;) € XX ;.. The case when f{(T}) < X;
is relatively o-compact for each i = 1, ..., d can be treated similarly using Theorems
X.1 and X.5.

Clearly we may replace X; by X ; foreachi = 1, ..., d, see Assertion 2) of Theorem
XIL3, and I' by I = I': X(F;n 2,) > L%X,,; Y). By Theorems VIIL.17 and
VIIL19 there is a control d-polymeasure, say A; X ... X Az X(F; 0 o(2;)) - [0, 1]
for the semivariation I X(F n o(2;)) - [0, +0]. Since I < I on X(F; n o(2))),
and since by assumption I is o-finite on X(F; N o(2;)), see the beginning of Part IX,
there are (F;;)e X(F;n o(#;)), k =1,2,... such that F;, » F; for each i =

wdyand I'(F;,) < [(F; ) < +o for each k = 1,2, .... Hence I" is o-finite
on X(F; n o(2))).

According to Assertion 2) of Theorem XIL.3, for each i =1,...,d there are
fin€S(Fin 2,X,), n=1,2,...such that f;,(t;) > f{t;) for each t;e T;. By the
Egoroff-Lusin theorem, see Section 1.4 in Part I, there are N;€ F;n a(g’i) and
FiyeF,n®, i=1,...d, k=1,2,... such that 4(N,) = 0 and F}, #F, — N,
foreach i = 1,...,d, and on each F;,, k = 1,2, ... the sequence f;,,n =1,2,...
converges uniformly to f;, i = 1,....,d. Put Ff)y = F,, nFj,, i=1,...,d, k =

=1,2,.... Then ["(N,F,,..,F))=...=I"(Fy,..,F;_y,N;) =0 and
Ffy 7 F,— N, for each i=1,...,d, and (fixs},) € XS(F;n 2, X;) and
I'(Fiy) < +o0 for each k=1,2,.... Hence (fixs,)e#y(I) for each k =

=1,2,... by Corollary 3 of Theorem IX.4.

Since (f;) is XS*-integrable on (F;) by assumption, it is also XS*-integrable on
each (F;,), k =1,2,.... Let ke {1,2,...} be fixed. Assertion 1) of Theorem XIL3
and Definition 1 easily yield that

Sean Sixrs,) AT = XSEo(fixet ) AT

for each (4;) € Xo(F; n ;). But then assertion 1) of Lemma 1 and Corollary 2 of
Theorem IX.4 immediately imply that (fixr,-n,) € #(I"), hence also (f;)e S(I"),
and

XSEiop() Al = [y (f) I = [y (fi)dl

for each (A4;)e X(F;n o(2;)), hence also for each (4;)e Xo(2;). The equality
J(I') = #(I') is a consequence of Theorem X.3.

A partial conversion to Theorem 1 is the following

Theorem 2. Let (f;) € £,(I'). Then (f;) is XS*-integrable on each (A;) € Xo(2,)
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and
(1) XSEFA.-)(fi) ar = j(Ai)(.fi) ar
for each (A;) € Xo(2)).

Proof. Let (f;)e Z,(I) and let F;, = {t,e€ T, filt) £0, i=1,....d It is
sufficient to show that (f;) is XS*-integrable on (F;) and that (1) holds for (F,).
According to Theorem 12 below F[(f:),(T;)] < +oo. Let & > 0. Take & >0
such that &1 + &'~ " dI[(f,),(T;)] < &. By Assetion 1) of Theorem XIL3, for
each i = 1, ...,d there is a countable 2-partition 7} o(F;) = {F; ;} jes, such that for
any points t;, ;€ F; ;. i = 1,...,d, j e J;, the inequality

Ifi(’f) _j;;fi(ti.j) XF.-,j(ri)[ < (¢2) Ifi(ti)l

holds for each t; € F;.
Let {F}} e = nf(F;) 2 77 (F;), take t; ;€ F;;, i =1,....d, jeJ; and put
hiy=Y fiti;) xe., for i = 1,....d. Then h; e E(?;, X;) and |h;,| < (1 + &) (f)
JjeJi’
for each i = 1, ..., d. Hence (h; ) € #(I') by the definition of #(I'), see Definition
X1.3, and the assumption (f;) € & (I'). Clearly
[fro (F) Al = [y (hiw dT| £ |firy (fs = hue o ) dT| + o
oo Jeen (Byses ooy hazy o fa = hg ) dT| £
< el[(f), (T)] + (1 + &) P[(f2). (T))] + -~
o+ oE(l + g PI(f),(T)] < &(1 + ¢! df[(f,.),(T,-)] <eég.
The separate countable additivity of the indefinite integral
_‘.(.) (hi,s) dar: X(F‘l N 0(9,)) ->Y
implies that
j(Fi) (h’i,s) dar = Z s Z F(F;.ii) (fi(t:',j)) >
Jpep(1y’ Jp(@ed 'p(ay
where we have iterated unconditional convergence for any permutation p of { L ..., d}.

Since ¢; > 0 was arbitrary, the theorem is proved.
It remains an open problem whether Theorem 2 holds for arbitrary (f;) € #(I').

2. SOME FUBINI THEOREMS AND INTEGRATION BY SUBSTITUTION

In Theorem XI.6 we showed that ,S,”l(F) is one of the natural classes, in author’s
opinion the most important one, for the validity of the Fubini theorem for integration
with respect to polymeasures, i.e., of multilinear integration. Trivially the Fubini
theorem holds for elements of XS(2;, X;). The next theorem is also evident.

Theorem 3. Let (f;) € XS(2,, X,) let (4;) € Xa(2,), and let [(A4;) < + 0. Then all
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assertions of Theorem X1.6 and its Corollary 1, i.e., of the Fubini theorem, hold
for (f iXA‘)'

Since for finite dimensional X; a bounded #,-measurable f;: T; - X; belongs
to S(2;, X;), and since the scalar semivariation of a separately countably additive
vector d-polymeasure on a Cartesian product of o-rings is bounded, see Assertion 4)
of Theorem VIIIL.3, we immediately obtain the next corollary. Let us note that this
corollary also follows from Theorem XIL.6.

Corollary. For each i = 1, ...,d let X; be finite dimensional, let 2; be a o-ring,
and let f;: T; - X; be a bounded ?-measurable function. Then all assertions of
Theorem X1.6 and its Corollary 1 hold for (f;).

Let us recall that Theorem XI.6 was proved under the additional assumption
of finiteness of the multiple L,-gauge I'[(g,), (T;)] for (g;) € £,(I'). In Section 3 we
will prove this finiteness. Our proof is based on the Fubini type result of Theorem 4
below. First we need some notions. ‘

For 2, measurable f;: T, > X;, i = 1,...,d, put X, =35p{f(T)}, F, = {t,e T,
fi{t) £ 0}, and Z;, = U {t;e T, |f(t)| S k™ '} n 2.,
k=1

Definition 2. Let I';: X2, » LX; Y), 1€ 7, be separately additive. We say
that the semivariations I',, 7 € 7, are locally uniformly o-finite on Xo(2;) if the set
function (4;) — sup ['(4,), (4;) € Xa(2)), is o-finite on X(F;n o(2;)) for each
(F)) e Xa(2). =7

Theorem 4. Let d > 1, let f;: T, » X; be P;-measurable for each i =1, ..., d,
and suppose either a) or b) or c) below:

a) I'(+) (x;): X2;, = Y has locally a control d- polvmeasurefor each (x;) € XX,

where X; =X

b) f(T;) = X, is relatively o-compact for each i = 1,...,d;

¢) ot Y.
Let further d, 1 < dy < d, be a positive integer, and let (fy, ..., fa,, Xa,+ 1 Xag + 15 ---

o Xafag) € F(I) for each (Xgpqy...,Xg)€Xy 41 X ... X Xj, where X; =X,
and for each (Agi1s.... As) € Pryy, X ... X Pp,. For these arguments put
r(A‘,...,Ad,)(Ad1+17 Ad) (xdl-!-l’ cees xd) = j(Ai)(fh --~~fap Xay+ 1L Adgy 10 o> deAd) dar
for (Ay, ..., Ay)ea(?;) x ... x o(%,). Then for any given (A, ..., Ay)€
ea(?;,) x ... x o(Py,) we have Ty, 4.y Pro, X oo X Py, =
- LY7(X, 1y, .., X5 Y), where X = X, it is separately countably additive
in the strong operator topology, and has a control (d — d,)-polymeasure provided
a) holds.

Suppose finally that the semivariations [y, 4., (A1, ... As) €0(Pp) x ...

. x a(?;,,), are uniformly o-finite on a(.@fd”l) x ... x o(?g,). In Particular,
this happens if P[(f,), (T,)] < + 0. Then (f;) e #(I') if and only if (fa,+1, ... fu) €
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€ I(Tiay,....aan) Jor each (Ay. ..., Az) € o(P;) % ... x o(2;,). In this case

§eao (1) AT = Jiagysitor Gaists s £2) AT ay,ota
for each (4;) € Xa(2,,).

Proof. According to Assertion 2) of Theorem XIL3, f;: T; - X[, is 2, -measurable
for each i =1,....d. Put I'" = I': X?;, - L[X,; Y). Since F;no(?;) =F;n
N a(2P;,) for each i = 1,...,d, the semivariation [" is o-finite on X(F; n o(Z;,))
by the assumed local o-finiteness of the semivariation I' on Xo(2;), see the beginning
of Part IX. Hence we may replace I' by I"". Take (F;,) e X2, k =1,2,... such
that F;, ~ F, for each i = 1,...,d and I"(F;,) < +oo for each k =1,2,....

Consider now the first assertion of the theorem.

Assume a). Since X, is separable for each i = 1,...,d, according to Theorems
VIIL.17 and VIIL19 there is a control d-polymeasure, say A; X ... x A;: Xo(2;) >
- [0,1], for the semivariation [': Xo(#;) — [0, +0]. For each i=1,...,d
take a sequence f;,e S(%,.X;), n =1,2,... such that f;, — f;. Applying the
Egoroff-Lusin theorem coordinatewise, see Section 1.4 in Part I, there are N, € o(Z;,)
and Fj,e?,, i=1..d, k=12,.. such that ["(Ny,F,,...,F)=...=
(Fy,...,F;_;,N) =0, Ff, 7 F, — N, for each i =1, ...,d, and on each F},,
= 1,2, ... the sequence f;,, n = 1,2, ... converges uniformly to the function f;,
=1,..,d. For i=1,...,d and k=1,2,... put F;; = F;, 0 F},, and for
kyn=1,2,... and (A....,A4y)€0(P;) % ... x o(P;,) define Ty, 4. 400
similarly as I'(4, .. 4, Teplacing fi, ..., fa, OY f1uXr, o o> SaymdFa 0 TESPECtiVELY.
Then by Theorem VIII.1 and Corollary 4 of Theorem IX.4 we obtain

Il

r(A,,...,Ad.)(Aa,Hs e Ad) (xd1+1’ xd) =
= [ean(f1e oo fap Xa 4 1 Xday s -+ > Xada) AT =
= J(A,-—Ni)(fh oo S Xag 41X darers - o x,,xAd) dr’ =

= lim j(A.nF;,k,‘(flﬂ . "sfdx’ xdx+1XAd|+|’ AR xlIXAd) ar’ =

k=0

= lim .[(A;)(fllﬂ,,a s Ja X Fag o X+ 1 XFay o o anFd,,‘) dar' =

k— 0

= hm lim j(A.') (fi,nXFl,k’ .. '9flllynXFd.,k" xdx+1XFd FLLEY T xdde,k) ar =

k= n—o

= lim lim rk.n.(Al,...,Adl)(Adl+l* s Ay) (Xd,+1, ooy Xg)

k= n— o

for each (4;)eXo(#;) and each (x441,...,%)€ Xy, ,, % ... x X, Since
evidently Tyn ooy Praer X oo X Ppy = L7(Xp .., X5 Y) for each
k,n=1,2,... and each (A, ..., A,)€e0d(?;) x ... x o(#,), we conclude that
Toprns): Praer ¥ oo X Pp, > L7(Xyp, o ... Xp,3 Y) by the Banach-
Steinhaus theorem for each (4, ..., 44,) € 9(Z;,) X ... x o(Zy,). Since :
Tiomihs oty Pravas X oon X Py L7 Xy, Xp,5 Y) is separately count-
ably additive in the strong operator topology for each k,n = 1,2, ... and each
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(Ags .. Ag) € o(Py) x ... x o(P4,), Tay,...a0 has the same property for each
(Ay, ..., Ag)€o(2;,) x ... x o(2,,) by the (VHSN) theorem for polymeasures,
see the beginning of Part VIIL. Obviously A, X ... X A 0(Z,.,) %X ...

. x a(#;,) = [0, +0) is a control (d — d,)-polymeasure for each
Fiagoans (Ags ooy Ag) €0(2;) % ... x o(Py,).

Assume b). We take f;,€ S(%;, X,,) and F}, in accordance with Theorem X.1
and proceed as in a) above.

Assume c¢). For each i =1,...,d take fi,,,eS(Qfl.,Xf‘_), n =1,2,... such that
fin—fi and |fi,| 7 |fi|, and put F,p = Fi o {t;eT, |f{t)| <k} for k =
=1,2,.... Since F[(f),(F;.)] < +oo for each k =1,2,..., we obtain that
(fixg, ) € Z4(I') = #(I) for each k =1,2,... by Theorem XI5. Now the first
assertion of the theorem follcws similarly as in a) above.

Let the semivariations Iy, 4.y 0(Pras,) X --- X o(2,) = [0, + 0],

(Ay, ..., 4,)€a(?;,) x ... + o(2,,,), be uniformly o-finite. Then there are
(Gays10 s Gap) € Py, X oo X Py k'=1,2,... such that G, » F; for each
i=dy+1,....dand sup {F 4, . 40)(Gais1.60 - Gan)s (A1 .-y Ag) € 0(Py,) X ...

. x 0(?,)} < +ooforeachk =1,2,....Fori=d; +1,...,dandk = 1,2, ...
put Hyy = Fi 0 G,y Then (fi,41Xuassp - SaXtas) € P(Fiay,...o4ay) fOr each
k =1,2,... and each (4, ..., 44) € 6(2?;,) x ... x a(Z,,), and

I(Adl+l....,/1d)(fd1+1XHdl+1_k’ .o "deHd,k) dr(A[ ..... Ag) =

= lim j.(Adx-#l,...,Ad)(fd]*)'l,nXHdl+l,k’ o "f‘l:kXHd,k) dr(Ax ----- Aa) =

n—oo

= lim j(A.-) (fh "'9fdlafd1+l,nXHd1+1,k’ "'5fd,nXHd,k) dr
n—oo

for each (A4;) € Xo(2,) and each k = 1, 2, ... by Corollary 4 of Theorem IX.4 in the
cases of assumptions a) and b), and by Theorem XIL.10, i.e. by LDCT, in the case of

assumption c). Hence (f1, ..., fa,s fas+ 17Hays 1000 - JaXtta,.) € () and
j(Af) (f1, oo Sap Fay+ 10 gy 100 ‘--»deHd,k) ar =

= j(Adl+1,---,A4)(fd1+IXl{dn.l,k’ --wdeH.,,k) dr(Al,;..,A,,,)

for each (4;) € Xo(2,,) and each k = 1,2, ... by Theorem IX.4. If now (f;) € #(I'),
then

Sean(F)dr" = 1im foa(fs oo fas fars i Kbty s o s Jadlara ) AT =
k=
- kllm j(Adl +1 ,...,Ad)(fd1+ lxlldn-l,k’ e d"Z"dyk) dr(A‘ """ Aa))
for each (4;) € Xa(2,,) by Theorem VIIL1. Hence (fy, 1 1. .- fa) € #(L 4, ..., 4a)) and

§(A.11+1,...,Ad)(fdl+1’ -~'7fd) dF(AI ..... Aa)) = _f(A,-)(fi) dar’

for each (4;) € Xo(2,,) by Theorem IX.4. .
The converse assertion follows analogously by using Theorems. VIIL.1 and [X.4
and Corollary 4 of Theorem IX 4.
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Corollary 1. Let the assumptions of the theorem be fulfilled and suppose moreover

that (Xy X, - XaXage Sar s 15 -2 Ja) € F(I) for each (xy, ..., x5)€X; X ... x Xy,
and each (Ay, ..., Ag) € P;, X ... X Py, . For these arguments put

Fiagisrra(Ass - Aa,) (X150 X4,) =
= I(Ai)(XIXAp sy xd;XA.“’fdl+1a ---,fa) dar

for (Ag 41 .. Ag)€o(Py,,,,) X ... x 6(2;,), and suppose the semivariations

Aas sty (Aayets - A €0(Py, ) X ... x 6(2P;,), are uniformly o-finite on
a(2;,) x ... x o(2,,); in particular, let I[(f;),(T;)] < +o0. Then the following
conditions are equivalent:

a) (fays1s - Sa) € F(Lay.... .aany) for each (A, ..., A,)ea(2?;) x ... x o(P,,,),
b) (f;) e A(I), and
¢) (f1> - fa) € F(L ag+1,..,40) for each (g, 11, ..., A€ a(2,, ) x ...
. x o(2;,),
and if they hold, then

j(A.zm ..... Ad) (fdl+h --~,f.1) dr(Ax,.‘.,Am = f(,,..)(fi)dl“ =

= I(A1,~~-,Adﬂ (fx’ "”fdl)dr(Ad1+1y~-~,Ad)
for each (4;) € Xa(2,).

The following result is somewhat unexpected.

Corollary 2. Theorems V.11, V.12 and VIL3, and Corollary of Theorem V.9
easily follow from the theorem. Thesame is true for Theorems V.9 and V.10
provided the functions g in their formulations are P-measurable.

Proof. It sufficestoput Ty = T, = T, #, = 2, = P,, and [(4,, A,) (xy, x,) =
= n(A; 0 A;) x,x, in Theorems V.9 and V.12, where X; = X and X, = L(X, Z),
I'(Ay, A;) (xq, x,) = n(A; N A;) x;x, in Theorems V.10 and V.11, where X, =
= L{Z,,Z) and X, = Z, in Theorem V.10, and X; = X and X, = Z in Theorem
V.11, and TI(Ay, A,)(x, X5) = x;n{A; 0 Ay) x; = x;n(A; N A,) x, in Theorem
VIL3, where X; = X and X, = L(Y, Z).

In all these cases I'(+)(x, x,): #; x #, — Y has a control bimeasure becausc
countably additive vector measures have locally control measures. Thus a) of the
theorem is fulfilled.

Let us note that in Theorem V.9 we may suppose that the function g is 2 ;-mea-
surable. Namcly, it is easy to sec that in the proof of Theorem V.9 we may replace X
by any separable subspace X' which contains the ranges of f,, n = 1, 2, ... . However,
by the well known theorem of Pettis, see Theorem 3.5.5 in [25], the assumed n-
essential 2 -measurability of g(+)x’ for each x’ e X' implies the n-essential 2 -
measurability of g: T — L(X', Z).

Theorem 4 is essential for our proof of the forthcoming generalizations of Theorems
V.9.—-V.12.
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Theorem 5. Let Z;, i = 1, ..., d, be Banach spaces, and let ®: X2, — LZ;; Y)
be separately countably additive in the strong operator topology with a locally
o-finite semivariation ® on Xo(#,). For each i = 1,...,d let g;: T; > (X, Z;)
be P-measurable, and let (g(*) x;x4,) € #(P) and

I(4;) (x;) = fap (9:(°) x;) d@
for each (A;)e X2, and each (x;)e XX, Then I[(f.),(4))] < ®[(9:f:), (4:)]
for each (A;) € Xa(2;,), and if (f;) € #(I'), then (g.f;) € #(P) and

(1) fean (f) AT = fa (9:f) AP
for each (A;) € Xo(2;,). The converse holds at least in the following cases:

a) ®(+)(z;): X2,, > Y has locally a control d-polymeasure for each (z;) € XZ;

b) ¢o & Y, and

c) fi(T,-) < X, is relatively o-compact for each i = 1,...,d, in particular if

each X, i = 1,...,d is finite dimensional.

Proof. The inequality I'[(f:),(4))] < ®[(9:f:).(4;)] is an immediate con-
sequence of the definition of I'[(f;),(4;)], see Definition VIIL3. If (f;) e $, =
= XS(2;, X;), then obviously (¢;f;) € #(®) and (1) holds. Using transfinite induction
we obtain these assertion for (f;) € #(I') = U £I), see Definition IX.2.

a<f

For the converse assertion define ¥: X2, x X2, — L*)(X,, ..., X,,
L'X,, Zy), ..., {X4, Z,); Y) by the equality ¥(A,,...,As By, ..., By (xy, ..., X4
Uy, ..., ug) = ®(4; N B;) (u;x;), where (A4;),(B;)eXP;,, (x;)e XX, and (u;)e
e XL(X;, Z;). Applying Theorem 4 to ¥ we obtain the converse assertion in the
cases a) and b). Using the functionals y*;e Y*, by b) we obtain the converse assertion
for the weak integral, see Section 2 in Part XII. Namely, if (g,f;) € #(®), then (f;) €
ew #(I) and

Wy () Al = 4, (9:f;) dPe Y = Y**

for each (4;) € Xa(2,,), where Y is the image of Yin Y** by the natural embedding.
Now by Assertion 3) of Theorem XIL.9 we have (f;) € #(I') if ¢) holds.
The following corollary is a generalization of Theorem IX.5.

Corollary. Let (f))e #(I), let y(A;) = (4, (fi)dl for (4;)e X(2;), and let

¢;: T; > K be 2 -measurable for each i = 1, ..., d.If (¢;) € #(7), then (¢f;) € #(T)
and

I(Ao ¢idy = j(m) (<P.-f.~) ar

for each (A;) € Xa(2;). The converse assertion holds at least in the cases ), b) and c)
stated in the theorem.

The following generalization of Theorem V.10 can be proved analogously as
Theorem 5.

Theorem 6. For each i =1,...,d let W;, Z, be Banach spaces and let X <
< L(W,,Z;). Let ®: X2; — I{Z;; Y) be as in Theorem 5, and let g;: T, > W,
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be P -measurable for i =1, ..., d. Let finally (x,g(*) x4,) € #(®) and
I(4;) (xi) = fap (xi g:(*)) d®
for each (x;) € XX, and each (4;) € X2, Then I[(f)),(4))] < ®[(f:9:), (4))] for
each (A;) € Xa(2,), and if (f;) € H(I'), then (f.g;) € #(®) and
fean (f) AT = f4)) (fig:) d@
for each (A;) € Xo(2,). The converse assertion holds at least in the cases a), b) and c)

stated in Theorem 5.
Directly from Theorem 4 we obtain the next generalization of Theorem V.11.

Theorem 7. For each i =1,...,d let Z; be a Banach space and g;: T, > Z,;
a P -measurable function. Let ®: X2, — LYX;; LZ;; Y)) be separately count-
ably additive in the strong operator topology with ®: Xa(2,,) = [0, + o] o-finite,
where
®&(4;) = sup {|[ 4 (1) d([.) (€:) d®)|, (b)) € XS(2;, Z))
(e) e XS(2:. X;) and ||hi||z, [ei]r, < 1}
for (A;) € Xo(2,,). Let further (fix4,) € #(®), (9ixa,) € £(¥(*) (x;)) and
I(A4;) (x:) = fa (94) d(®(+) (x:))
for each (A;) € X2,, and each (x;) € XX . Let finally one of the following con-
ditions be fulfilled:
a') &(+)(x;) (z:): XP;, = Y has locally a control d-polymeasure for each (x;)e
e XX, and each (z;) e XZ,;
b) ¢, £ Y, and
¢) fAT,) = X;and g(T)) = Z;, i = 1, ..., d, are relatively g-compact subsets.
Then (f;) e #(I') if and only if (g;) € #({., (f;) d®). In this case
Jeap (f) AT = fiuy (9:) d(J (f2) d@) R
for each (A;)e Xa(2,). Moreover, [[(f)),(4)] < ®[(9.), (f:). (4))] for each
(4;) € Xa(2;,), where é[(gi),(fi), (4;)] is defined analogously to <;>(A,.) (now
lhil < lg,»i and le,-l < ]filfor each i =1,...,d).
Proof. It suffices to define ¥: X2, x X2, - I*NX,, ... Xy, Z,,....Z;Y)
by the equality
W(Ay, ..., Ag By, ..., By) (x;) (z:) = D(4; 0 By) (x,) (z))
and to apply Theoreim 4. The last inequality immediately follows from definitions.

The following generalization of Theorem V.12 can be proved analogously as
Theorem 5,

Theorem 8. For eachi = 1, ...,d let Z; be a Banach space such that Z; = L{X,, Z}),
and let g;: T, > L(X,,Z) be 2-measurable. Let ®: X2, — LYL(X,, Z;);

LYX; Y)) be separately countably additive in the strong operator topology with
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a locally o-finite semivariation ® on Xo(2,). Let (gx4,) € #(®) and

I(4;) = [ea,(9:) d®
for each (4;) e X2,.. Then L[(f,), (4,)] £ ¥'[(9:f:), (4:)] for each (4;) € Xa(2;),
where @' = &: X2, — LNZ; LYX; Y)), and if (f;) e #(I), then (g:f;) € #(P)
and

Jean (f) Al = Jiay (9:f1) d@
for each (4;) € Xa(2;,). The converse assertion holds at least in the cases a), b)
and c) stated in Theorem 5.

Let us give also a generalization of the important Theorem V.8.

Theorem 9. For each i = 1,...,d let S; be a non empty set, 9; < 2% a 8-ring
and ¢;: T, > S; a (P, D;)-measurable transformation, i.e., ¢; (2;) = 2,. For
(B;) € X2, put T,,-1(Bi) = (o7 '(By)), let I' = I': X7 '(2;) » LYX;; Y), and
suppose the semivariation I is finite on X<pi‘1(9,-). Let finally fi: S; —» X; be
9D -measurable (then fi((p,-(')) is (p,f'l(@i)-measurable) for each i = 1,...,d. Then,
if (f)) € AT gi-))s then (fil@i(+))) € £(I") and

Jo (11) d(F 1) = I(wrl(sm (fioA)) dI”

for each (B;) € Xo(2;). The converse holds at least in the following cases:

a) I'(*) (x;): Xo7 (2,;,) = Y has locally a control d-polymeasure for each

(xi) € XX ;

b) f{(S:) = X, is relatively o-compact for each i = 1, ..., d;

c) ¢o ¢ Y.

Proof. The first assertion follows by transfinite induction from its validity for
(fi) € XS(2;, X;) and the definition of J(I') = | S,(I), see Definition IX.2. Let

a<

us prove the converse assertion in the individual cases:

a) According to Theorem XIL3 there are (f;,) e XS(Z,,X,), n = 1,2,... such
that f;, — f; and |f,-',, 2 1f,-l for each i = 1,...,d. Owing to Theorems VIIL.17
and VIIL.19 there is a control d-polyrr easure, say 2, x ... x i,for I': Xop; *(0(2;))~
- [0, + 0], see Definition VIIL.2 for I". Using now the Egoroff-Lusin theorem
coordinatewise we obtain the desired assertion analogously as in the proof of Theorem
V.8in [6].

b) In this case we use Theorem X.1 instead of the Egoroff-Lusin theorem and
proceed as in the proof of Theorem V.8 in [6].

c) Take (f;,)e XS(2,,X;), n=1,2,... such that f;, - f; and |fi,,,| 2 |f,-| for
each i = 1,...,d. For F, = {s;€S,, fs;)) # 0}, i = 1,....d, take F{, €2, k =
=1,2,...suchthat F}, » Fi,and put F,, = F{\, 0 {s;€ S;,|f{s;)| £ k}. Then

(%) Jeoi- 1oy (fio+))) AT =kli“; I(m"(ﬂmﬁ,k)) (foi+)) dI’

for each (B;)e Xa(2;) by Theorem VIIL1. By assumption ["(p; '(F},)) < + 0,
hence F'[(fi(@d*)): (@i '(Fix))] < + o0.) However, since ¢, ¢ Y, we have
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(fi((pi<-)) Xoi-1(Fis) € Z1(I") by Theorem XI5 for each k = 1,2,.... Let k be
fixed. Then

Seoi1@inkann F@d:) AT = 1im [ig <1p,0r0 0 (fral@d*)) AT

for each (B;) € Xo(2;) by the Lebesgue dominated convergence theorem in & ('),
see Theorem XI.10. Since obviously

j((Pi"(BiﬂFi,k)) (fi,n((Pi('))) dar' = I(Bif\ri,k) (f"v") dr(‘/’i_ 1)
we have

(fiXF.-,k) € f(r(m-l)) and f(smr.-,k) (i) dlp,-1y =

= [ipi-1Binrin (fi(0i(*)) dI”
for each (B;) € Xo(2;). But then (x) implies that (f;) € #(I',,-1,) and the equality
(1) holds for each (B;) € Xa(2;).
Returning to the Fubini theorems, analogously as Theorem 4 we obtain

Theorem 10. Letd > 1 and letd,,1 < d, < d be a positive integer. Let f;: T; - X;
be P-measurable for each i = 1,....d and let (f, ..., fu;> Xa,+ 1 Xaars 1o - Xadag) €
e Z(I) for each (x4415 - Xa) € Xy X oo X X,y and each (Ay 4. .... A)) €
€Pryrsy X oo X Py, Then
D) Titrday: Prarer X oo X Ppy—> L47(X, 0L H 5 Y), and it is separately

countably additive in the strong operator topology for each (A, ..., Ay)€

€a(?;) x ... x o(Ps,).
2) The semivariations P4, 4.0 (Ars ..., Ag) € o(P;) % ... x o(2,,), are uni-

formly o-finite on o(P;,,,,) x ... x a(Z;,). .

3) (fiye A(I) if and only if (fu,s1>--sSa) € F(Liuy,....aa) for each (A, .... A, )€
ea(P;,) x ... x 6(P,,,)- In this case

jun(fi)dr = LA.,H, ..... Ad)(.frz,+x~---,.fd)dr(Al ..... Aar) for each
(4;) e Xa(2,,) .

Proof. 1) follows analogously as the first assertion of Theorem 4 in the case of
assumption c).

2) For i=d; +1,....d take x;e X, with |x| =1, H,e?, k=12 .
such that H;, ~ F;, and put G, = H,, 0 {t,e T;, |f{t;)| < k} for k =1.2.....
Then G;, ~ F; for each i=d; + 1,....d and (f1, ..., fas Xa,+ 1 £Gars i -+
cos XaXoax) € Z4(T) for each k = 1,2, ... by assumption. Hence
f(A, ..... Aar) (Gd1+l~ o Gayg) = f[(fp oo S Xy 417 Gar s e e s xle(,,,;)» (TJ] < +©
for cach k = 1,2,... and each (4,, ..., 4y,)€6(#,) X ... x 6(2,,) by Theorem
12 below.

3) follows analogously as in the proof of Theorem 4.

From this theorem and from the Fubini theorem in % ,(I’), i.e., from Theorem
XI.6, we immediately obtain the following characterization of & (I) for d > 1.
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Theorem 11. Let d > 1 and let f;: T; = X ; be P -measurable for eachi = 1, ..., d.
Then (f;) € Z,(I) if and only if the following two conditions hold for any positive
integer d,, 1 = d, < d:

(1) (f1s - s fars Xart 1Xdar s 1o -+ > Xakaa) € L1(I) for each (x4,41, ..., Xz) €
€X por X oo X Xy, and each (Ag iys .. A) € Py X .. X Py, and

(i) Fays1s s Sa) € LoAT s, aa0) Jor each (Ay. ..., A,) € 0(Py,) % ... x o(Py,,).

3. FINITENESS OF T[(*), (T)] ON #,(I")

It is important to note that our proof of the following theorem exploits Theorem 4
only in its formulation with assumption a).

Theorem 12. Let (f;) € Z4(I'). Then I'[(f:),(T))] < + 0.

Proof. We prove the theorem by induction with respect to the dimension d.
For d = 1,2 the theorem was already proved, see Corollary of Theorem IL.5 and
the beginning of Part XI for d = 1, and Theorem XI.8 for d = 2. Hence suppose
the theorem holds for the dimensions 1,...,d — 1, d > 1.

Let (f;) e Z,(I') and suppose [[(f.),(T:)] = F[(f:), (F))] = + oo, where F; =
= {1,e T..f(t:) + 0} € 6(2,),i = 1, ..., d. By the definition of the multiple L,-gauge,
see Definition VIIL3, for each n = 1,2, ... there is a d-tuple (h;,) e XS(2;, X))
such that |h, ,,‘ =< |f,| foreachi=1,...,dand eachn =1,2,..., and
[fero (hi) dF| > nforeachn = 1,2, ... . Since the semivariation I': X(F; n o(2,)) >
- [0 + 0] is o-finite by assumptlon see the beginning of Part IX, there are (F?‘,k) €
€ X2, k = 1,2, ... such that F}, » F, for each i = 1,...,d, and [(F},) < +
for each k = 1,2,.... According to Lemma IIL.3 for each i = 1,...,d there is
a countable family {4, ,} = 2, N F;such that f; is ({4, ,})-measurable, where 6{.#}
denotes the J-ring generated by the family /. Let h;, be of the form h;, =

Ti,n

= Xinifu,,, Where x; , ;€ X, H;, €eF;n?,and H,, ;nH;,, =0 for j+k,
ji=1

J k=1, Tia For i =1,....,d put P; = 6({A;nm {Hin, jm {Fisi) and let
I =r: ,(( ‘N F))— L‘"’(X,, Y Then f; is #j-measurable and h;, € S(2}, X;)
for each i =1,...,d and each n = 1,2,.... Hence I"[(f)),(F;)] = +o0. Since

(F 1) € XZ2; for each i=1,...,d and each k = 1,2,..., the semivariation
I': X(F; n o(2})) - [0, +oo] is a—ﬁnite. Hence (f;)e £(I") by Theorem XL9.
Since each P}, i = 1,...,d, is generated by a countable family of sets, I'"(+)(x;):

X(F;n 2;) > Y has a control d-polymeasure for each (x;)€ XX; by Corollary
of Theorem VIIIL.11.
For i: I,...dand k=1,2,...put F; = {t;eT, k™' < |f(1)| £ k} 0 F},.

75, = U F, «N 2, and let T'* = I': X27, — [9(X; Y). Obviously g’f c 2 c
c a(g’f) = o(2;) for each i =1, ..., d, hence (f:) e Z(I'*) and T*[(f;), (F)] =
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= + oo. Since
PH(f3), (Fi)] = T*[(f). (Fia v (Fi = Fip)] <
< PH(fi), (Fi = Fip)] + T*[(f3), (Fyso F2 = Fapoooos Fa = Fug)] +
+ oo+ P*[(f)), (Fy = Fypo oo Facy — Fa_q o Fay)] +
-+ P*[(f2), (Fi g Fopo Fs = Fa gy oo, Fa = Fui)] +
+ T*[(f), (Fia)]
for each k = 1,2, ..., since I*[(f3), (Fi)] < +oo foreach k = 1,2,..., and since
F*[(f), (F: — Fiy) ] — 0 as k — 00 by Theorem XI.7, owing to the symmetry in

coordinates we may suppose that there is a positive integer d{, | < d, < d and
a subsequence {k;} < {k} such that

+

(*) F*[(f,.), (Fl,kp coos Fayup Fajor — Faywrppp - Fa — Fd,ki)] = +©
foreachj =1,2,....
Put j, = 1. By () and the definition of the multiple L,-gauge there are u;; €

e S(?;, X,), i = 1, ..., d such that
| Sl ey for 1<

._—<- Ifll XF.'—F.',_,'O for dl <i g d H

IA
A

Iui,l
and
[feo (uiy) dr*| > 2% . d, .2

Since F;, / F, for each i = 1, ..., d and since the indefinite integral [, (1} ,)dI*:
Xa(g’}“) — Y is separately countably additive, according to Theorem VIIL.1 there
is a j; > jo such that

' *]
“.(Fl,kj‘,""'Fdx,kjodel-i-l,kj,“Fdl+1,kj,,""!Fd,kjl_Fd,kjn) (u,’l) dr+ >

>24.d .2.
Put

< . for 1=<i<d,,
BT leI-',,‘ ~Fi, for d, <igd.
Obv1ously (X1 %aps -+ s XayXaars Uar 41,15 - > Ua1) € Lo(I*) for each x, € X, A;€ 27,

i= .,d;. For these arguments and (Agys1s - A €a(2F,,) x ... x o(2])
put r(“dn1,1.-~~,“d,1)(4m+1,--..Ad) (Al’ . Adl) (xl’ xdl) - "
= Joan (X1Xap - XaXage Yare 1,1 - tha,1) A% Then Ty, wayaars s da’

1
(X PF, - L(X,, ..., X,,; Y), and it is separately countably additive in the strong
i=1
operator topology by the first assertion of Theorem 4 with assumption a) in its
formulation. Let us note that we cannot use Theorem 10 since its proof used Theorem

X1.10 (the proof of which through Theorem XI.6 exploits the finiteness of the multiple
L,-gauge on Z,(I')). From the definitions of F,;, and 27, it is easy to see that the
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semivariations Il .\ e (Aaistnoday (Ads o - Ag) € 6(PF,, ) X ... x o(2F,)
are bounded on each (Al, o Ag) € P x ... x P}, . Hence they are uniformly
o-finite on 2}, x ... x 27,. Thus the final assumption of Theorem 4 is satisfied.
Since evidently (fy, ... fay Uays1,15 -+ Ua,1) € L4(C*), we have (fy,....[fs)€
€L (Thns, 4o for each (Adlﬂ, cwA)ed(ZF, ) % ... x o(2F)

Jseenstia, 1)(Ad1 +15eens

and fouy (fis oo fap Yaye1,as oo thgy) dT* = (A1 ..... ey (f1s s fa) -
.dre, 44 for each (4;) € Xo(27).

(War+1,15058a,1 0 (AdL+ 150005

By the mduction hypothesis

bl = ledl+1,1,n.,ud.l)(Fd!+1 ,,,,, Fd)[(fl’ o fdl (Fl’ Tt Fdl):l < +®.
Analogously
a,; = Iq(’f“,‘)m) [(f2s s far (Far oo, F)] < + 0

Agy,1 = ﬁ:‘dl,l)(Fdl) [(fl’ “"ffil—l:fd|+1s ~~’fd),
(Fysoos Fayoty Faypys o Fa)] < +0
Put a; = max {a;,, ie{l,..,d}}.
The equality (*) holds for j,;. We now describe how to proceed to obtain u;,, b,,
and a, when we have already found u;,-4, b,_, and a,_;.
The equality (x) is valid for j,—;. Then, the argument being the same as above,
there are u;j , e S(?5,X,), i =1,...,d, and j, > j, , such that
|u;,n| é[le ZF”( for 1 élédl’
-

for d, <i<d,

’
Iui,n =

and
[fcrp () dT*| > 2 dy(Z + a, ) (L + by)" o (1 + by y)™
Put

IIA

<2 "M+ by) .o (U + byoy)] P, for 1Si<dy,

xnyF“‘ ~Fux, for d, <i<d,

n—1
ﬁ:laxnn g ) (Fdr 415 Fd)[(fl"",fdx)’(Fl’""Fdx)] <+,

a, (,,1 o L2 confa)y (Fay o s F)] < 40,

gy n = F(de n)(Fa1) [(fl" "fdl"l’fdl"'l""’fd)’
(F19 v Famvs Fd1+1’ --~>Fd)[ <+,

-
where v;, = Y u;, for i = 1,...,dy, and a, = max {a,,, i€ {l,....d}}.
r=1 <]

Having u; ,, b, and a, for n = 1,2, ..., put u; = Y u;, for i =1,...,d. Clearly

n=1
|u)| < |fi| for each i =1, ..., d, hence (u;) e £,(I'*) = S(I'*). For (4,) € Xo(2})
put p(A4;) = [(4, (u;)dr* Then y: Xo(2} 7) — Yis a separately countably additive
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vector d-polymeasure. For 1 £ i <d,; putG;, = Fy,and let G;, = F;, — F;\,
for d; <i <d. Since F,, #, G;,» 0 for i =d, +1,...,d. Hence y(G;,) -0
as n — oo by Theorem VIIL.1. Take a positive integer n, > 2 such that (y(G,-,,,D)| < 1.
Since

=Zﬁluul = =i“2_'[(1 +by) e (U4 by )] ] <
s j 12—r[(1 b)) (L b, )] S (1 + Byg) A

for i =d, + 1,...,d, we obtain

d1(2 + a"u—l) < ”(Gi,uo) (u‘i,"o) dr*i =

no—1 o0
= “(G,-,no) (4 = Yty = X U g ooy Uhang) dF*| =
r=1 r=no+1
= U(Gz.no) (uh Uz ngs -+ u‘dmu) dr*l +
no—1
+ H(Gi."o)( Y Uy Ug g e Y mg) dF*] +
r=1
o0
+ “(Gi,no)( z Ui,rs Uz ngs - ud,no) dr*l é
r=np+1
no—1 °e}
S |f Gy (U1 thz = Ytz = Y Uy g s oees Uane) AT +
r=1 r=ng+1

+ pgey + byl + b)) S S diay-y +d; + 1,
a contradiction.
From this theorem and from Theorem XI.5 we immediately obtain
Theorem 13. Let ¢, & Y. Then (f;) € £(I') if and only if F[(f), (T})] < + co.
Let us close the paper with the following

Problem. Let X; = K for each i = 1,...,d. Is then J(I') = Z(I')?
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