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Linearly ordered groups with unique addition (for definitions, cf. below) were
investigated by T. Ohkuma [8]. The case of lattice ordered groups having this
property was dealt with by P. Conrad and M. Darnel [2], and by the author [4].

Cyclically ordered groups were studied in [1], [5], [6], [7], [9]—[13]. The notion
of cyclically ordered group is a generalization of the notion of linearly ordered group.

An example of cyclically ordered group is the additive group K of all complex
numbers z with ]z| = 1, where the cyclic order is defined in a natural way.

In this note the notion of cyclically ordered group with unique addition will be
introduced. Let %, be the class of all cyclically ordered groups G such that (i) G fails
to be linearly ordered, and (ii) G has a unique addition.

It will be proved that each element of %, is isomorphic to a subgroup of K with the
inherited cyclic order. Next it will be shown that there are exactly 22‘“° nonisomorphic
types of cyclically ordered groups belonging to %,,.

1. PRELIMINARIES

A linearly ordered group G, = (G; =, +1) is said to have a unique addition,
if whenever G, = (G; £, + z) is linearly ordered group such that the neutral element
of the group (G; +,) is the same as the neutral element of the group (G; +,), then
the operation +; coincides with the operation + .

For the notion of cyclically ordered group cf., e.g., Fuchs [3], Chap. IV. Section 6.
In the present paper we shall apply the same terminology and denotations con-
cerning cyclically ordered groups as in [7]: in particular, the group operation in
a cyclically ordered group will be written additively and the relation of cyclic order
will be denoted by the symbol [x, y, z] (or, shortly, by [ ]).

The cyclically ordered group K mentioned above can be described, up to iso-
morphism, as follows: K is the set of all reals x with 0 < x < 1, the operation + is
the addition mod 1, and for a, b, ¢ € K we have [a, b, c] if and only if

(1) a<b<c or b<e<a or c<a<b
is valid.
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The relations between linearly ordered groups and cyclically ordered groups are
well-known; cf., e.g., [6], Section 3.

For cyclically ordered groups we can apply a definition analogous to that applied
above for linearly ordered groups, namely:

A cyclically ordered group G, = (G;[ ], +,) will be said to have a unique ad-
dition if, whenever G, = (G; [ ], +,) is a cyclically ordered group with 0, = 0,
(where 0; is the neutral element of G; (i = 1, 2)), then the operation +, coincides
with the operation + ,.

2. ELEMENTS OF ¢, AS SUBGROUPS OF K

Let us denote by 0, the class of all linearly ordered groups with unique addition.
Next let €, the class of all cyclically ordered groups with unique addition.

Let G, = (G; [ ], +) be a cyclically ordered group. In view of the Representation
Theorem (which is due to Swierczkowski [10] (cf. also [7], Theorem 1.1)) there is
a linearly ordered group Lsuch that G, is isomorphic to a subgroup of the cyclically
ordered group K ® L (for denotations, cf. [7], Section 1). Hence without loss of
generality we can suppose that G, is a subgroup of K ® L.

We denote by G{(K) and G,(L) the natural projection of G, into K or into L,
respectively. Also, without loss of generality we can assume that G,(L) = L.

2.1. Lemma. Let G,(K) = {0}. Then G, € %, if and only if G, = Le 0,.

Proof. From G4(K) = {0} we obtain that G,(L) = G, and thus in view of the
above assumption,’G, = L. Hence G, is linearly ordered. It is easy to verify that G,
as cyclically ordered group has a unique addition if and only if G, as linearly ordered
group has a unique addition.

Put G, = {g € G: g(K) = 0}. Then in view of [6], Cor. 3.6, G, is the largest
linearly ordered subgroup of G,; moreover, G, is a normal subgroup of G, and it
is c-convex in Gy ([6], Section 4).

If G, = {0}, then for g = (a, x) € G we put ¢(g) = a; it is easy to verify that ¢
is an isomorphism of G onto G,(K). Hence we have

2.2. Lemma. Let G, = {0}. Then G, is isomorphic to a cyclically ordered sub-
group of K.
2.3. Lemma. Let G,(K) + {0}. Assume that G, belongs to ,. Then G, = {0}.

Proof. By way of contradiction, suppose that G, # {0}. Since G,(K) # {0}
there is g € G; with g = (a, y) such that 0 + ae K and y € L.

We define a mapping ¥: G — G as follows. We choose a fixed z € Gy, z % 0 and for
each g, € G we put

Wg) =g, +z if g,eg+ Gy, and
¥(g91) = g, otherwise .
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Then ¥ is an automorphism of the cyclically ordered set (G; [ 1) such that ¥(0) = 0.
Now we define a binary operation +, on G by putting

g1 +192 =¥ (91) + ¥ '(92)
for each gy, g, € G. The operation +; does not coincide with + (since g + g *
*+ g +,9) and (G;[ ], +,) is a cyclically ordered group whose neutral element
is 0; in this way we arrived at a contradiction.

From 2.2 and 2.3 we obtain as a corollary

2.4. Theorem. Let G, be a cyclically ordered group belonging to €,. Then G,
is isomorphic to a cyclically ordered subgroup of K.

3. THE POWER OF THE CLASS %,

Let us denote by R the additive group of all reals with the natural linear order.

3.1. Lemma. Let (G’; <, +)€0,. Assume that (G =, +) is an l-subgroup of R
such that 1€ G'. Put G = {x € G’: 0 < x < 1} and let +, be the binary operation
on G defined as to be the addition mod 1. For x, y, z € G put [x, y, z] if the relation
(1) is valid Then

(i) G, =(G; [ ], +1) is a cyclically ordered group;

(ii) if G # {0}; then G, € G,

Proof. (i) can be verified by a routine calculation; it will be omitted. Assume that
G =+ {0}. Then G, fails to be a linearly ordered group. It remains to show that G,
has a unique addition.

Let +, be a binary operation on G such that G, = (G; [ ], +,) is a cyclically
ordered group such that its neutral element is 0. Assume that + is the original group
operation on R (i.e., the addition of reals); hence + is also the group operation of G'.
Let us define a new binary operation +7 on G’ in the following manner:

Let x, y € G'. There are uniquely determined integers Xy, ¥o and uniquely de-
termined elements x!, y! of G such that x = x° + x' and y = y° + y'. We put

(2 x+2y = (x>+y°) +z',

where z! = x' +, y' if x* +, ' <1, and z' = (x* +, »') — 1 otherwise. Then

the set G’ with the natural linear order and with the operation + 2 is a linearly ordered
group with the neutral element 0. Since G’ has a unique addition, the operation +2
coincides with the operation + on G'. Thus from (2) we infer that the operation
+, on G must coincide with the operation + ;. Therefore G, has a unique addition.

3.2. Lemma, Let (G", <, +) be an Il-subgroup of R with 1€ G". Let G* =
={xeG:0<x< 1} and let us define the cyclically ordered group G; =
= (G*, [ 1, +.) analogously as we did for G, in 3.1 with the distinction that we
now have G* instead of G'. Suppose that the cyclically ordered groups G, and G,

536



are isomorphic. Then the linearly ordered groups (G'; £, +) and (G*; £, +)
are isomorphic as well.

Proof. Let ¢ be an isomorphism of G, onto G,. For x € G’ let x° and x' be as
in the proof of 3.2. Put

Y(x) = x° + o(x).
Then ¥ is an isomorphism of (G'; <, +) onto (G*; <, +).
The following theorem is the main result of [8].

3.3. Theorem. (Ohkuma) There exists a subset {G': i eI} of 0, such that

(i) card I = 2%™;

(ii) if i(1) and i(2) are distinct elements of I, then G'V fails to be isomorphic
to G'¥;

(iii) for each i€l, G'is an l-subgroup of R and contains all rational numbers.

(The assertions (i) and (ii) are expressed in Theorem 3 of of [8] (cf. also [2];
(iii) follows from the constructions established in Section 2 and Section 3 of [8].)

If (G'; <, +) = G' for some i€el, then let ¥(G') = G,, where G, is as in 3.1.
In view of 3.2, if i(1) and i(2) are distinct elements of I, then y(G") is not isomorphic
to 7(G'®).

Now from 2.4, 3.1 and 3.3 we obtain:

3.4. Theorem. There are exactly 2*™° nonisomorphic types of cyclically ordered
groups belonging to €,,.
Next, from 3.3, 3.4 and 2.1 we infer that in 3.4 the class %, can be replaced by €?.
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