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SOME DENSITY THEOREMS FOR TOEPLITZ OPERATORS
ON BERGMAN SPACES

MirosLAv ENGLIS, Praha

(Received November 2, 1988)

The set of all Toeplitz operators on the Bergman space of the unit disc is shown
to be dense in the set of all bounded linear operators, in the weak operator topology.
Some results concerning norm density are also given.

1. INTRODUCTION

Let H? be the Hardy space on the unit circle D and let ¢ € L*(dD). The Toeplitz
operator with symbol ¢ is the operator on H? sending x into P ¢@x, where P is the
orthogonal projection of I*(0D) onto H?. It is easily seen that

TT,T,= T, forany ¢eL°(dD).
According to a classical result, the converse also holds: if some operator T: H> — H?
satisfies T,'TT, = T,then T = T, for some ¢ € L*(8D). This result serves as a starting
point for the theory of symbols of operators (cf. [6], [7], [4]). It shows that, loosely
speaking, there are only few Toeplitz operators on H2.

Consider now the space 4, the (closed) subspace of L*(D) consisting of functions
analytic in the unit disc D. For ¢ € L(D), we can define the Toeplitz operator T,,
acting on A?, in the same way as above. In my paper [2] I have shown that these
operators do not admit the characterization as above. More precisely, if AT,B = T,
for all ¢ € L*(D), then A = cI, B = ¢~ 'I for some (nonzero) complex number c.

A natural question to ask is if this is not because there are, loosely speaking,
more operators which are Toeplitz than in the classical (i.e. H?) case. To put it
precisely, we can ask if the following statements are true:

(a) the Toeplitz operators are dense (in some topology) in %(A?);

(b) every finite dimensional operator is Toeplitz;

(c) for any linearly independent f, g € A%, there exists ¢ € L*(D) such that T,f = g.

Clearly (b) implies (a) in strong operator topology, and either (a) or (c) implies
the impossibility of the above-mentioned characterization AT,B = T,.

The statement (b) is easily seen not to be true. For example, there is no ¢ € L(D)
such that T, = ¢+, 1> 1. This fact is an easy consequence of the Miintz-Szdsz theorem
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for I2 spaces (see, for instance, [1]). In fact, this theorem yields a stronger result:
if T,=<",f>g for some ¢ e L°(D) and f,ge A’ f(z) = f.z". 9(z) = Y 9.2"
then
n"l'<o and ) nTl<oo.
n:ifn=0 nign=0 .

(Loosely speaking, only few Taylor coefficients of f and g can be zero.) It is a con-
jecture of author’s that in fact there are no finite dimensional Toeplitz operators
at all.

In this paper, (a) and (b) are considered. (c) is shown to be false (cf. Remark at
the end of the second paragraph); (a) is true in the strong operator topology. Again,
there is a conjecture that it holds in the norm topology as well. A proof of this
statement appeared in [3], but it seems to contain a gap, so the problem remains
still open. Some results from this field are presented in paragraph three.

Following notations shall prove useful. D is the unit disc {z € C: |z| < 1} in the
complex plane C; 0D is its boundary, i.e. the unit circle; dz is the (planar) Lebesgue
measure on C, normalized so that D has measure 1. The Bergman space A? is the
space of all analytic and square integrable functions on D. %(A?%), resp. A (A%),
resp. ||*||,, resp. ||+| denote the space of all bounded lincar, resp. compact operators
on A?, resp. the norm on A2, resp. the operator norm on #(A4?). The spacc 47 is
a reproducing kernel space, the reproducing kernel at a € D being given by

9x) = (1 — a*x)"2.

More generally, for ae Dand m = 0, 1, 2, ..., the functions

) - (m + 1)tzm
(1) gm,a(’) - (1 _ a*z)'””

belong to 4% and, for arbitrary f e 42,
<f> gm,a> = f(M)(a) )

the m-th derivative of f at a.

In the third paragraph, we are going to use the Hilbert space ¢* of all square-
summable sequences {a,} =, with the usual inner product. The £? norm of a sequence
{a,' =0 € £* will be denoted ||, (there is no danger of confusion with the 42 norm).
Finally, if X is a subset of ZQ(Az), clos X denotes the closure of X in the norm topology

of #(A?).
2. AN INTERPOLATION PROPERTY

Theorem 1. Let Te B(A%), Fi, Gye A> (k = 1,2,...,N). Then there exists ¢ €
€ L*(D) such that

(T,Fi, G =<TF, G, k=12 __N.
Proof. Let fy,f2, s fu» T€SP. g1, 92, ---» Gm be a basis of the (finite-dimensional)
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subspace of 4% generated by F,, ..., Fy, resp. Gy, ..., Gy. Clearly it’s sufficient to
find ¢ € L*(D) such that

<T<ofi» gj> = (1f;, gj>

foralli =1,2,....nand j=1,2,..., m. Consider the operator R: L*(D) - C"*™,
defined by the formula

(Ry)i; = b @(2) fil2) 9(2)* dz = (T, f1 g;> -

Suppose some u € C"*™ is orthogonal to the range of R, i.c.

n

M:
M=

(Re)iju;* =0 forall @eL”(D).

1]
]

i=1j=1

This means that

m

@ e Tuse el ez =0

for all ¢ € L*(D), which implies

® L S =0

dz-almost everywhere in D. Since the left-hand side is obviously continuous in D,
this equality holds, in fact, on the whole of D. Consequently, the function

Fix,y) =% > “:kjfi(x) g r**,

i=1j=1
which is analytic in D x D, equals zero whenever x = y*. By the well-known
uniqueness theorem, this implies that F is identically zero on D x D. Because the

functions f;. i = 1, ..., n, are linearly independent, we have
Yu;;g;(3*)=0 forall yeD, i=1,2,...,n;
ji=1
but g;, j = 1,2, ..., m, are also linearly independent, and so u;; = 0 for all i, j, i.e.

u = 0. This means that the range of R is all of C"*™, which immediately yields the
desired conclusion. [J

Corollary. The set 7 = {T,: ¢ € L°(D)} is dense in #(A*) in SOT (the strong
operator topology).

Proof. In view of the preceding theorem, it is certainly dense in WOT (the weak
operator topology). Because 7 is a subspace, i.e. a convex set, its WOT- and SOT-
closures coincide. O

Note that the crucial step in the proof of Theorem 1 was the implication (2) = (3).
Thus, the theorem remains in force if we have (2) only for ¢ € C(cl D), or even
(D) (the set of all infinitely differentiable functions on D, whose support is a compact
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subset of D) — any weak-star dense subset of L*(D) will do. As a consequence, we
get the following theorem.
Theorem 1'. The set 7, = {T,: ¢ € 2(D)} is SOT-dense in B(A>).
Remark. Theorem 1 suggests the following question: given f;, g;€ 4”
(i=1,2,...,n), does there exist ¢ € L°(D) such that
T{pfi:gi (i=1,2,...,n)?

This result would immediately imply (c) from the introduction. Unfortunately, it is
not true. To see this, it’s sufficient to consider n = 1, f; = 1. If there were, for every
g € A%, some ¢ € L*(D) such that g = T,1(=P.¢), then the mapping (here A**
stands for the dual space of 4?)

A: Lw(ﬂ) g AZd > A(p =-<" P+q0*> = <.’ ¢*>L2(D) >
would be onto. Let B be the operator of inclusion of A% into L'(D):

B: A* > IN(D), By =y.
This is a continuous operator (by the Schwarz inequality) and has A as its adjoint:
B? = A. By the Hausdorff normal solvability theorem (cf. [8], chapter VII, §5),
Ran A is closed if and only if Ran B is closed. Because B is injective, Ran B is closed

if and only if B is bounded below (just use the open mapping theorem). But the
norm of z" in L'Y(D) is

Iplz"|dz = [} r"2rdr =

n+2
whereas the norm of z" in A2 is

“z"“Z = (L) Izn|2 dz)l/z _ (n + 1)*1/2 )

Consequently, B is not bounded below, so Ran A4 is not closed, and A cannot be
surjective. []

(The last part of the argument can be avoided by evoking directly the fact that the
closure of A% in L'(D) is A", the space of all integrable analytic functions on D. Our
method is more elementary.)

3. UNIFORM APPROXIMATION

As we have seen, the set
T, ={T, ¢ e 2(D)}
in SOT-dense in .@(AZ). In this paragraph we determine its closure in the uniform
(i.e. norm) topology on Z(A?). It turns out to be #(A?), the space of all compact

operators on A2
Denote by T,n.q) the operator on A* given by

fH <fy gm,a> gn,a s
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where a € D, m and n are non-negative integers, and g, , 1S given by the formula (1)
One has

{Tomaf> 9> = f(a) g™(a)*
for arbitrary f, g € A%

Lemma 2. Let M, N be non-negative integers, a € D, and denote

Ry _ TmNvary = Tuwa _ ; TMNa+ity — T(M,N.a)‘
(MoN.a.0 2t 2t
Then Ry x.a.1) tends to Ty n o) (in norm) as the real number t tends to zero:
lim HR(M,N,a,f) - T(M+1,N,a)n =0.
Rat-0
Similarly,
lim “R(’M,N,a,t) - T(M,N+1,a)” =0,
Rat-0
where
Riynar = TmNarn = Touw e 4 T Natin — T'(M,l\,a).
(MN.a.6) 2t 2t
Proof. Let F, G € A% and denote, for a while, f = F™ and g = G™. Then
(4) <(R(M,n,a,t) - ’T(M+1,N,a)) F., G> =
_ fla + 1) gla + 1)* — f(a) g(a)* if(a + ity gla + i)* — f(a) g(a)*
2t 2t
- f'(a) ga)* .
Let

1) = Tl = a)' . 0() = T o = ay

be the Taylor expansions of f, resp. g at a. These series are locally uniformly con-

vergent in the disc ‘x — al <1- |al. Consequently, for M <1 - ]u[ the right-
hand side of (4) equals to

1 i . .
5( 2‘;0 fmtmg::tn) - 5( 2:20 fm(”)m g:(“”)”) _flg;
(mmy(0,0) (m 3 (0,0

Rearranging all terms into one series, the terms corresponding to (m, n) = (1, 0)
and (0, 1) cancel, and we get

() LN Saghr i)

mmnz=0
m+nz2

Let F,, resp. G, be the coefficients of the Taylor expansion of the function F, resp. G
at a. Because f = F™, we have

fm = _i_‘f(’")(a) = ! F(M+m)(a) = M
m!

- FM+m3
m! m!

495



and similarly for g,. It follows that (5) is equal to

! !
@ oy Oty WD G iy ey,
mazo m! n!
m+nz=

We are going to estimate the absolute value of the last expression in terms of | F|,
and ||G||,. One has

IFI2 = IolF(2)? 42 2 fie-ap<1-a [F(2)]* dz =

_ . e T
= [ lal far Y FFrithel=Rf _ drdr
J,kz0 T

(we have passed to polar coordinates). Since the Taylor series

F(z) = ioo:F,,(z — a)"

is locally uniformly convergent on the disc |z — a| < I — |a|, we can interchange
the integration and summation signs and get

(7) “F”Z Il la| jZnFjFrrj+ke(j—k)it£ dtdr =
B
< 0
= ——— |F|".
kZO k+1 | kl

Similar estimate holds for G. Denote, for a while,
1 — a k+1 a
=§__Ll)_lTlel, ﬂ—h‘J‘l—];iki'
(k + 1)/ (k + 1)
Then, according to (7), « and B belong to % and

18] = |6l
Returning to our previous calculations, we see that the absolute value of (6) is not
greater than
M + m)!
sy (Mt

|m+

o

' |(N+n)' IG ltm+n—1.2=
';n;nnégoz m: n!

(M + m)! (M + m + 1)/2 12

m.nzgo m! 1 — Ial)M+m+1 XM +m
m+nx2
(N+n)! (N +n+ 1212
’ ﬂN+n .
n! (1 - |a|)N+n+1

Break this sum into three parts, namely

Z+Z+Z o, + 0, + 0;.
n=
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Let’s first consider ,. We have, obviously,

: S (M4 m) (M + m+ 1)V2 12
8 = Apftm
® % <m2=:1 m! (1 = |a]yMm+t M

(i (N +n)! (N +n+1)2gm-12 >
. - | N+n |-

1 - Ial)N+;1+1

According to the Cauchy-Schwarz inequality, the first factor on the right-hand side
is less than or equal to

) uq&éfM+mpw+m+nﬁW7ﬂ=

m!z (1 ~ |al)2M+2m+2

— ll“” i M + m + 1)‘2 (M + m + 2) t2m 1/2
A=) (m+ 1)1 (1 = |a|2Mr2m+s ’
Since

(M + m+ )P m+2M + 1\7'
ST U TR

=(2M + 1) < + o0,
there exists a number ¢,(M) > 0, depending only on M, such that

(m+ M + 1)1?

<. m+2M + 1
(m+m2(M+m+a=¢m( )

2M + 1

Thus the right-hand side of (9) is less than or equal to

00 5, ("2 )
e el

A similar estimate holds for the second factor in (8). Putting these two estimates
together, we see that

10 o1 5 e Jols M o) 5 [P 10T e Vo),
where
a, (,M_)lf_(_jlf_ o t2 ) -2-M-N
e(M.N.a,1) = U [1 i ~Ia|)2]

tends to a finite limit as t — 0.
Now let’s turn our attention to g,. We have

o, < W::.LL (NAmEN 40+ 07
= l l)M+1 u ”2[ ! ( l INHH BN+n]
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Using the Cauchy-Schwarz inequality shows that the bracketed term is not greater
than

”ﬁ”z <n§2 (N —i-'zn)!z (_N +n + 1) 12""2>1/2 ,

(1 _ Ia|)2N+2n+2

and, going through the same calculations as above, this is seen to be less than or
equal to

1 o (n+2N +1 P v
[ s 2 ("3 T )] 2
< |l2 tes(W, a, 1) ,

Cl(N)l/2~ (1 _ 12(1 _ 'al)—Z)—ZN—Z I 1V
(1 - ,a,)m-z ' (2 .
tends to a finite limit as ¢ — 0. Consequently,

03 < cy(M, N, a, 1) [l ]2 1 < ca(M, N, a, 1) |F|, 6] 1,

where

C3(N, a, t) =

with
(M + 1172
(1 = [ap
tending to a finite limit as ¢t — 0.
Similar estimate, of course, can be obtained for ;. Summing up, we see that

I<(R(M,N,a,t) - T(M+1,N,a)) F, G}l = Cs(M, N, a, t) t”Fuz ”G”z
for all F, G € A?, where cs(M, N, a, t) tends to a finite limit as t — 0. Consequently
”R(M,N,n,t) - (M+1,N,a)” < tcS(M, N,a,t)

and the first part of the lemma follows. The assertion concerning Ry x4 €an be
proved in the same way. [

ca(M,N,a,1) = cs(N, a, t)

We shall need one more lemma, the proof of which is (fortunately) a little shorter.
Remember that the symbol ,,clos” denotes the closure in the norm topology of #(4?).

Lemma 3. Denote 7, = {T,: ¢ € 2(D)}. Then
To,0,0)€EClos T forevery aeD.

Proof. For each 4 in the interval (0, 1 — |a|), pick a function f; € 2(D) such that
flz) =0 if |z -a| 26+ 6%,

flz)=06"% if |z—a| 26,
and
0S/fz) 677 if 6<|z~a|<é+4.
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Let f, g € A>. Then

(11) AT, = To.0.) 1. 9> = [pfo(2)/(2) 9(2)* dz — f(a) g(a)* =
= [67% f1.—aj=a/(2) 9(2)* dz — f(a) g(a)*] +
+ Jo<jz—aj<s+a2 fo(2) f(2) 9(2)* dz =%To, + 0,.

Let f,,, resp. gn be the coefficients of the Taylor expansion of f, resp. g at a:

* ©
f(x) = ;fn(x —a), g(x)= %:g”(x —a).
Substituting these formulas into the expression for ¢, gives
e =077 .flz—a|§a Z f,.(Z — a)'gi(z — a)*™dz — fogq =

= 5—2]’0 Z fg* n+me(n—m)it£dtdr __fog;‘ -

m,n=0

2n+2 5271

- fogo = angn

=6 sz,.yn 1

Denote again, for a little whlle,

gy = L™ g U fa)™

(n + 1)!7? " (n + 1)'7?
In course of the proof of Lemma 2, we have seen that o and f belong to £2 and

Iz = 1702 18] = loll- -

Now ) y
St -2 =3 e -
R s
S o 2 S g e W = o VI ol
which implies that
2 ol s g Ve ol

As for @,, we have
|92| éa Su|po s |f,,(z)f(z) g(z)*l Ié(]z—a|<6+61 dz <
<d4+62

<|z-a

<672 sup 2|f(z) g(2)*| %6 + 2).

o<|z—a|<o+

499



Because

76 = 10031 5 s oo = 202
(and similarly for g), the supremum does not exceed
1712 191l _
[1=(la] + 6 + 6%
Summing up, we obtain

(13) loz| = 8] f]l2 [l9]2 cslas 3) »
where

542
[t = (la| +3 + 0%)]?
tends to a finite limit as 6 — 0+.
Putting together (11), (12) and (13) yields
ITs, = To,0.0] < es(a,9) 0,

where ¢,(a, d) tends to a finite limit as 6 — 0+. The lemma now follows immediately.

O

ce(a, d) =

Following assertion drops out easily from Lemma 2 and 3.
Proposition 4. Let 7, = {T,: ¢ € %(D)]. Then
clos 7, o #(A4?).

Proof. Note that the mapping ¢ + T, is linear, so J; and clos 7, are linear
subsets (i.e. subspaces) of 2(A4?). In view of Lemma 3, T, ¢, €clos 7, for each
a e D. By linearity, R4, and R o, belong to clos 7, whenever a € D and
|| <1 — |a|: by Lemma 2, this implies T o, and T(o,; ) belong to clos 7 ;. Pro-
ceeding by induction, we conclude that T, , ,, € clos 7, for every a € D and m, n =
=0,1,.... Taking a = 0shows that, in particular, {-, "') z" e clos . By linearity,
{4p>4q ec]os 7 | whenever p, g are polynomials. Because polynomials are dense
in A%, necessan]y {~.fygeclos T for all f, ge A%, i.e. all one-dimensional oper-
ators are in clos 7 ;. Using the lmearlty of clos 7, for the third time shows that all
finite rank operators belong to clos J ,; since these are dense in o'(A4?), Proposition
4 follows. [

Remark. Because #(A4?) is SOT-dense in #(A?) and norm convergence implies
SOT-convergence, Proposition 4 yields another proof of Theorem 1'.

Proposition 4 can be somewhat sharpened; to do this, we first prove a lemma.

Lemma 5. If the support of ¢ € L°(D) is a compact subset of D, then T, is a compact
operator. In particular, T, is compact if ¢ € D(D).
Proof. Let Re(0, 1) be such that ¢(z) = 0 if |z| = R. Suppose f.eA® f, -0
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weakly. We have

(14) ”T,,,f,,]l% = ”‘Pﬁr”i?@ = IIZIéR l¢(z)fn(z)|2 dz.

Since a weakly convergent sequence is bounded, thre exists ¢ > 0 such that ||f,[, < ¢
for all n. Consequently,

|(p(2)f,,(2)| g ilq)”oo l(fm gO,z>l é ”(p”oo “fn”l ”gO,Z"2 é
< ol ot = [27)7",
and if lzl < R, this is less than or equal to

loloc
1 - R?

Also,
fn(z) = <fn’ go,z> g <09 gO,z> =0 as n—> o

for all z € D. This allows us to apply the Lebesgue dominated convergence theorem
to the integrals (14); consequently, H Tq,f,,”2 — 0 as n — oo. Since this is true for every
sequence weakly convergent to zero, T, must be a compact operator. []

Theorem 6. Let 7, = {T,: ¢ € 9(D)}. Then clos T, = A (A?).
Proof. Immediate from Proposition 4 and Lemma 5. [J

4. SOME OTHER FACTS ABOUT UNIFORM APPROXIMATION

This section contains some more results about uniform closures. Denote
T, ={T, ¢ € 2(D)},
T, ={T, ¢ e C(cl D)} ,
T ={T,: peL*(D)} .
Here C(cl D) stands for the space of all functions continuous on the closed unit
disc ¢l D. We have shown that clos 7 ; = #'(4?%). Because 7, = 7, = 7, clos T
and clos 7, contain #'(4?) as well. As has already been mentioned in the introduc-
tion, very probably clos J is the whole of %(A%). A proof of this assertion was
published by H.-F. Gautrin [3] but it seems to contain a gap: on page 180, the sixth
line from above (“‘G is dense in G"”) should read “G is dense in G;” in the topology
of E” (it need not be a priori dense in the topology of G{, which is what’s needed
in the proof).
A natural question is, what’s clos 7 ,? Ii certainly contains 7 ;, and, also, #(4?)
(cf. Theorem 6). The next proposition shows it doesn’t contain much more.
Denote alg 7, the norm-closed subalgebra of %(A4?) generated by 7 ,. It is easy
to see that this is, in fact, a C*-algebra and coincides with the C*-algebra generated

by T,. The following theorem, based on the work of Bunce, is due to Olin and
Thomson.
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Theorem. The commutator ideal of alg 7, is #(A*). The quotient algebra
alg 7,/ (A?) is isometrically x-isomorphic to C(dD). This isomorphism is given by

[ € C(0D) & Ty + H(42) € alg T,|#(4?),

where F is the harmonic extension of f inside D (the Poisson integral of f) (in fact,
any continuous extension of f into D would do here — cf. Lemma 5). Moreover, for
¢ € C(cl D), the essential spectrum of T, is 6(T,) = ¢(D).

Proof. See [5], Theorem 1 and its Corollary. [J

Proposition 7. clos 7, = alg 7, = 7, + A(4%).
Proof. Since 7, + H#(A*) < clos T, < alg 7 ,, it suffices to show thatalg 7,

© 7, + #(4%). But this is immediate from the preceding theorem, because F e
€ C(c1 D) for fe C(6D). O

Corollary. clos 7, is not all of %(A?).

Proof. If Teclos 7 ,, then T = T; + K for some fe C(cl D) and K € #/(4?),
and, according to the last sentence in the Olin-Thomson theorem, 6,(T) = 0(Tj) =
= f(@D). Since fe C(cl D), this is a connected set. Consequently, operators with
disconnected essential spectrum cannot belong to clos 7 ,. (As an example, take
a projection Q with both range and kernel infinite-dimensional; then ¢ ,(Q) = {0, 1}.)
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