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As shown in [JAK], [COZ], [DFZ], [FRI] and [FGE], even decent algebras
equipped with extreme compatible convergences with unique limits can have patho-
logical properties. Coarse (sequential) convergence groups and minimal (filter)
convergence groups, as the convergence counterparts of minimal Hausdorff topo-
logical groups, have been introduced in [FZB] and [FZT], respectively. In the present
paper we establish some basic facts about coarse convergence semigroups, rings
and fields. We show that coarseness sometimes implies the continuity of an additional
algebraic operation. E.g., a coarse ring convergence in a field is a field convergence.
This in turn implies the existence of a convergence field having no ring completion,
a fact interesting in connection with some recent results concerning the completion
of convergence rings (cf. [KNO]). The first example of a sequential convergence
ring having no completion can be found in [COZ]. In the last section we introduce
minimal (filter) convergence rings and prove that the first countable modification
(introduced by R. Beattie and H.-P. Butzmann, cf. [BBC]), applied to a coarse
(sequential) ring convergence for rational numbers (coarser than the usual metric
one) and combined with the Choquet modification results in a minimal ring con-
vergence.

As a rule, R, @, Z and N denote the real numbers, rational numbers, integers and
natural numbers (positive integers), respectively, MON denotes the strictly monotone
maps of N into N, if S = {(S(n))> € X" is a sequence of points of X, then S *s =
= {S(s(n))> denotes the corresponding subsequence of S and if X is equipped with
an algebraic structure, then operations in X~ are defined pointwise. In Section 1 and
Section 2 we shall deal solely with sequential convergences.

By a sequential convergence, or simply convergence, we understand (if not explicitly
stated otherwise) an FSH-convergence, where (F) means that if S converges to x
then each of its subsequences converges to x as well, (S) means that each constant
sequence {x) converges to x, (H) means the uniqueness of limits. In general, we do
not assume the Urysohn axiom (U). If the underlying set X of a convergence is
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a semigroup, group, ring, field, vector space over a scalar field F, respectively, then
(L) means that the convergence and algebraic structure of X are compatibile. More
precisely, if Lis a convergence for X and if X is a semigroup, then (L) stands for

(Ls) If (S, x), (T, y) € L, then (ST, xy) € L; if X is a group, then (L) stands for

(Lg) If (S, x), (T, y) € L, then (ST, xp ') € L; if X is a ring, then (L) stands for

(Lr) If (S, x), (T, y) € L, then (S — T, x — y)e Land (ST, xy) e L;
if X is a field, then (L) stands for

(Lf) If (S, x), (T, y) € L, then (S — T, x — y) € L, (ST, xy) € L and, moreover, if
x + 0and S(n) + 0 for all ne N, then (S™%, x™*) e L;
if X is a vector space over a scalar field F equipped with a sequential convergence M,
then (L) stands for

(Lv) If (S,x),(T,y)eL, (4,a)e M, then (S — T,x — y)e L and (4S, ax)e L.
If L satisfies the corresponding version of the axiom (L), then L is said to be a semi-
group, group, ring, field and vector convergence, respectively, and X equipped
with Lis said to be an L-semigroup, L-group, L-ring, L-field and vector L-space,
respectively. Sometimes weaker forms of (Lv) are considered as well. Namely, if X
is a vector space over a scalar field F equipped with a sequential convergence M
then L satisfying

(Lvg) If (S,x),(T.y)eL, aeF, then (S— T,x — y)e L and (<a) S, ax)eL;
is said to be a vector group convergence and Lsatisfying

(Lvw) If (S,x),(T.y)eL, (A,a)eM, zeX, beF, then (S— T, x — y)eL,
(¢b) S, bx)e L and (A{z),az)eL;
is said to be a weak vector convergence. Accordingly, X equipped with L is said
to be a vector L-group and a weak vector L-space, respectively. If the additive
notation is used, then we tacitly assume that the semigroup or group is abelian.

Definition 1. Let X be a semigroup (group, ring, vector space over a scalar field F,
respectively) and let L be an FLSH-convergence for X. Then L (and also X) is said
to be coarse if there is no FLSH-convergence for X strictly larger than L.

Observe that if L is an FLSH-convergence for X, then the Urysohn modification L*
of Lis a FLUSH-convergence for X. Consequently, every coarse FLSH-convergence
satisfies the Urysohn axiom (U) and hence Lis a coarse FLSH-convergence iff it is
a coarse FLUSH-convergence.

Let X be a group and let L be an FLgUSH-convergence for X. Then Lis coarse
iff the following criterion holds (cf. [FZB]):

(C) For each S e X" etiher

(C1) (S *s, e) e L for some s e MON;
or
(C2) <p> =[T=1 T(i), where pe X, p *+ e,k e N,and foreachi,i = 1,..., k,
either  T(i)"? = (x(i)> S = s(i) <x(i)™'), a(i) = 1, x(i)eX, s(i)e
€ MON, or (T(i), e) € L.

460



If Lis assumed to be only an FLgSH-convergence, then (Cl) has to be replaced by
(C1*) (S, e) e L.

Coarse compatible FSH-convergences in vector spaces are characterized in [JAK].
Remark 1. Let X be a semigroup. For 4 = X x X the smallest FLsS-con-

vergence Lfor X such that 4 < Lis defined in the obvious way: (S, x) e Liff S =

= [Ti=; S(i) and x = [[i={ x(i), where k € N, and either S(i) is a constant sequence

generated by x(i) € X, or (T(i), x(i)) € A and S(i) is a subsequence of T(i),i = 1, ..., k.

Theorem 1. Let X be a semigroup and let L be an FLSH-convergence for X.
Then Lis coarse iff
(CS) For each S e X" and each x € X any of the following three conditions holds:

(Cs1) (S, x)eL;

(CS2) [(TTs=1 SGi). y) e LY A [y # [Ti=1 x(i)], where keN, S(i) is either
a subsequence of S or-an L-convergent sequence and x(i) = x if S(i)
is a subsequence of S nad x(i) = L-lim S(i) otherwise, i =1, ..., k;

(CS3) [TTi=1 SG) =TTy T()] A [TTi=y x(i) #+ TT7=1 »(i)], where k, meN
S(i), resp. T(i), is either a subsequence of S or an L-convergent sequence
and x(i) = x, resp. y(j) = x, if S(i), resp. T(j), is a subsequence of S
and x(i) = L-lim S(i), resp. y(j) = L-lim T(j), otherwise, i = 1, ..., k,
j=1L...,m

Proof. Sufficiency. Assume that (CS) is satisfied. Let L' be an FLsSH-convergence
for X such that L< L. If (S, x)e L\ L, then (S, x) does not satisfy any of the
conaitions (CS1), (CS2), (CS3). Hence Lis coarse.

Necessity. Assume that (CS) does not hold. Then there are Se X" and xe X
violating all three conditions (CS1), (CS2) and (CS3). Let L' be the smallest FLsS-
convergence for X containing Land such that (S, x) € L. From the negation of (CS2)
and (CS3) it follows that L satisfies axiom (H). The negation of (CS1) implies (S, x) ¢
¢ L. Thus L< L and L # L. This completes the proof.

Remark 2. If X is an abelian semigroup, then condition (CS2), resp. (CS3),
in Theorem 1 has the following form:

(cs2) (X% 1S(i)+z (TG, y + Y v(i) e L] A [kx + X7, (')#y+
+ Z, ()], where keN, meN u {0}, S(l) is a subsequence of S, i=
= ko yeX, (T(j), y()eL,j=1,...,m;

resp.

(CS3) [DXCYS(1, i) + Y T(L, i) = Y42 S(2, 1) + Y 7R T(2,i)] A [k(1) x +
+ Y0 (i) # k(2) x + Y7 y(i)], wherej = 1,2, k(j) e N,m(j)e N w {0},
S(j, i) is a subsequence of S, i = 1,..., k(j), (T(j, i), y(j,i))eL, i=1,...

., m(j).

As arule, Y 7 a(i) for m = 0 represents an empty symbol.

Theorem 2. Let X be an abelian group and let L be a convergence for X. Then the
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following are equivalent:

(i) Lis a coarse semigroup (i.e. FLsSH-) convergence;

(ii) Lis a coarse group (i.e. FLgSH-) convergence.

Proof. (i) implies (ii). In fact, it suffices to prove that if (—S, —x)e L, then
(S, x)e L. Suppose that, on the contrary, (—S, —x)e L and (S, x)¢ L. Since L
satisfies (CS) and (S, x) violates (CS1), (S, x) has to satisfy either (CS2’) or (CS3').
Suppose that (Y= S(i) + Y7o, T(i), y + Y7y ¥(i)) € L, where ke N, meN U
u {0}, S(i) is a subsequence of S, i =1,....k, ye X, (T(j), y(j))eL,j=1,....,m.
Since (—S(i), —x)eL, i = 1,...,k, we have (37, T(i), y — kx + Y7, y(i))e L
and hence y = kx. Thus (S, x) violates (CS2'). In a similar way it can be shown that
(S, x) violates (CS3’). This is a contradiction.

Remark 3. Observe that in Theorem 2 the assumption that L is coarse cannot
be left out. Indeed, using the free group technique, it is not difficult to construct an
abelian group X, an FLsUSH-convergence L for X and a pair (S, x) such that
(S,x)eLand (—S, —x) ¢ L.

Now, let us turn to rings. Recall that all algebraic operations are assumed to be
associative. If X is a ring, then X" is the ring of all mappings of N into X. The proofs
of the next two lemmas are omitted.

Lemma 1. Let X be a ring and let L be an FLrS-convergence for X. Then A =
= L7(0) has the following properties:

(i) A is a subring of the ring X";

(ii) If Se A, then S * s e A for each s € MON;

(iii) <x) A = A and A(x) < A for each x € X

(iv) L7(x) = 4 + ().
Further, Lsatisfies (H) iff

(v) <x> ¢ A whenever x + 0.

Lemma 2. Let X be a ring and let A be a subset of X" satisfying conditions
(i), (ii) and (iii) in Lemma 1. Then there is an FLrS-convergence L for X such that
A = L°(0).

Remark 4. Let X be a ring. Let B be a subset of X", let Z(B) be the set of all
subsets 4 of X" satisfying conditions (i), (ii) and (iii) in Lemma 1 such that B < 4,
let P(B) be the set of all sequences of the form +S x5, (x> S x5, S * 5{yD, (x> S *
* s(yy, where Se B, se MON, x, ye X and let R(B) be the set of all sequences of
the form ) 7y T(i, 1) ... T(i, k(i)), where m, k(i) € N and T(i, j)e P(B),i = 1, ..., m,
J =1, ..., k(i). Clearly, R(B) € Z(B) and R(B) = A for all A e Z(B). Hence there is
an FLrS-convergence L for X such that R(B) = L7(0) and if K is an FLrS-conver-
gence for X such that B = K7(0), then L = K.
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Theorem 3. Let X be a ring and let L be an FLrSH-convergence for X. Then L
is coarse iff

(CR) For each S e X" either:

(CR1) (S,0)e L,

or

(CR2) [{p> = Y7y T(i, 1) ... T(i, k(i)],
wherepe X, p + 0, m, k(i)e N, T(i, j)e L"(0) u P({S}). i =1, ..., m,
J=1,... k().

Proof. Necessity. Assume that L does not satisfy (CR). Let S be a sequence of
points of X which satisfies neither (CR1) nor (CR2). Let L be the smallest FLrS-
convergence for X such that L= L and (S, 0) e L. Clearly, L satisfies axiom (H)
and hence Lfails to be coarse.

Sufficiency. Assume that L satisfies (CR). Let L be an FLrSH-convergence for X
such that L< L. If (T, x)e L\ L, then S = T — (x> does not satisfy (CR1) and
hence satisfies (CR2). But (37, T(i, 1)... T(i, k(i)), p)e L, p =% 0, contradicts
(X, T, 1) ... T(i, k(i)), 0) € L and hence L' = L. Thus Lis coarse and the proof
is complete.

It follows from Proposition 2 in [FRI] that in any ring convergence for Q coarser
than the metric one no unbounded sequence can converge to 0. In Theorem 3, in
this case, it suffices to check whether or not all bounded sequences satisfy conditions
(CR1) and (CR2). This Jeads to the following generalization.

Definition 2. Let X be a ring and let Lbe an FLrSH-convergence for X. A sequence S
is said to be bounded (more precisely L-bounded) whenever for each sequence T
converging to 0 the sequence ST converges to 0 as well. If S is not bounded, then it
is said to be unbounded. The convergence L is said to be balanced if for each un-
bounded sequence S there exists a sequence T converging to 0 such that ST con-
verges to some x =% 0.

Remark 5. In order to avoid some obvious pathologies concerning bounded
sequences it suffices to assume the Urysohn axiom or some suitable weaker axiom
of convergence. Since coarse convergences are always Urysohn, the assumption of
(U) in connection with condition (CR) is not restrictive. Observe that if X is a ring
of real-valued functions equipped with the pointwise convergence, then we cannot
replace in the definition of a balanced convergence “x = 0’ by “x is the unit element”’.

Corollary 1. Let X be a ring and let L be a balanced FLrSH-convergence for X.
Then L is coarse iff '
(CR*) For each bounded sequence Se X" either of conditions (CRL) or (CR2)
in Theorem 3 holds true. \

Let X be a field. If Lis a field (i.e. FLfSH-) convergence for X, then Lis a ring
(i.e. FLrSH-) convergence. The converse implication is not true in general.
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Example 1. Consider the field Q of rational numbers equipped with the usual
metric convergence M. As shown in [FRI], M is not a coarse ring convergence and
can be enlarged to a coarse ring (i.e. FLrUSH-) convergence R. Let (T, x) e R\ M,
x € @\ {0}. According to Proposition 5 in [FRI], there are € MON and a trans-
cendental number y such that U = T * t converges in the real line to y and U(n) =+ 0
for all ne N. Using Lemma 1 and Lemma 2 we can construct the smallest FLrS-
convergence for @ which is coarser than M and in which T« t converges to x.
Denote it by L. Since R satisfies axiom (H) and M = L < R, it follows that Lis an
FLrSH-convergence for Q. We shall prove that L does not satisfy axiom (Lf).
Clearly, it suffices to prove that (U™', x7')¢ L. Contrariwise, assume that
(U™, x"Y) e L. Since L7(0) consists of all sequences of the form YT T(i, 1)

. T(i, k(i)), where m, k(i)eN, T(i,j)e M“(0)u P({U — <x)}), i =1,
j=1,..., k(i), for some Y 7_, T(i, 1) ... T(i, k(i)) € L(0) we have U™" — <x‘1> =
=", T(i,1)... T(i, k(i)). Multiplying both sides by U and passing to the limits
in the real line, we get that y is a solution of a nontrivial polynomial equation with
rational coefficients. Since y is a transcendental number, we have a contradiction.

Theorem 4. Let X be a field and let Lbe a coarse ring (i.e. FLrSH-) convergence
for X. Then Lis a coarse field (i.e. FLfSH-) convergence.

Proof. We are to prove that L satisfies axiom (Lf). Let (T, x)e L, x + 0 and
T(n) # 0 for n e N. Since Lsatisfies axiom (Lr), it suffices to prove that (T™!, x ') e
€ L. Contrariwise, suppose that (T~',x"')¢ L. Put S = T ! (x_1> Then
(5,0)¢ L and, by Theorem 3, there are peX, p + 0, meN, k(i)eN, T(i,j)e
eL(0)uP({S}), i=1,...m, j=1, ., k(i), such that <{p) =i, T(i,1)...

.. T(i, k(i)). Multiplying both sides by T # s(i, j) whenever for some y(i, j) e X we
have T(i,j) = (i, j)> S * s(i, j) = (i, /)Y (T~ = 5(i, j) — <x71D) (ie. T(i,j)e
€ P({S;)) and passing to L-limits we obtain px* = 0, where k € N is the total number
of multiplications by T = s(i, j). Since X is a field, this contradicts p # 0 and x # 0.

As shown by M. Contessa and F. Zanolin ([COZ]), a convergence ring need not
have a completion. In view of the recent results by V. Koutnik and J. Novék (certain
class of fields equipped with a sequential ring convergence admits a ring completion,
cf. [KNOY]), the following result is interesting.

Corollary 2. There is a (FLfUSH-) convergence field hatving no ring completion.

Proof. Consider Q equipped with a coarse ring (i.e. FLrUSH-) convergence L
coarser than the usual metric convergence M. According to Theorem 4, Lis a coarse
field (i.e. FLfSH-) convergence for Q. As shown in [FRI], there is a sequence S of
rational numbers such that (S, 0) € Land S converges in the real line to an irrational
number y. Clearly, we can assume that S(n) # 0 for all ne N. Then S™! is an
L-Cauchy sequence and {1)» = SS™! cannot L-converge to zero. Hence Q equlpped
with L is a (FLfUSH- ) convergence field having no ring completion.

464



3.

In this section we introduce minimal (filter) convergence rings, i.e. rings equipped
with a compatible convergence of filters admitting no coarser compatible one,
and investigate how coarse and minimal convergences are related in the ring of
rational numbers. For the background information on filter convergence structures
the reader is referred to [GAH], [BBH], [BBC] and [BBS]. Minimal group con-
vergences were introduced in [F ZT], where their relationship to coarse sequential
groups is also investigated.

It is known (cf. [GAH], [FZT]), that compatibile filter convergences in a group,
ring, etc., can be introduced by defining suitable systems of filters converging to the
neutral element of the underlying group. In the same way as in [FZT], it can be
shown that each ring convergence of filters with unique limits can be enlarged to
a coarse (i.e. a minimal) one.

Let X be a set and let A be a filter convergence for X. Denote by x(l) the Choquet
modification of A (a filter & y(4)-converges to x iff each ultrafilter finer than %
A-converges to x). Observe that if X is a group (ring, field, etc.) and 4 is compatible
with the algebraic structure of X, then y(4) is compatible as well (cf. [BBS]). Thus
for each minimal ring convergence we have y(1) = 4, i.e. 4 is a Choquet convergence.

For rings the following minimality criterion can be proved (the proof is analogous
as for minimal groups, see [FZT], and it is omitted).

Theorem 5. Let X be a ring and let A be a ring convergence for X. Then A is
minimal iff the following condition holds true:

(MR) For each filter & on X either

(MR1) F J-converges to 0,

or

(MR2) There are peX, p+0, meN, k(i)eN, i =1,...,m, such that
Yiuy F(i, 1) ... #(i, k(i)) = p, where p denotes the fixed ultrafilter
generated by p, #(i, ) is either.a filter finer than any of the filters
+F xF, Fy,xFy, x,yeX, or F(i,j) is a filter A-converging
100,i=1,...mj=1,.. k).

Remark 6. It is easy to see that if X is compact and Choquet, then it is minimal.
Further, to prove that 4 is minimal, it suffices to replace condition (MR2) by (MR2’)
in which “Y 7., (i, 1)... Z(i, k(i)) = p” is replaced by “Y 7, #(i, 1) ... #(i, k(i)
J-converges to p ( 0).”

Let Lbe a FUSH-convergence for X. The first countable filter modification y(t)
of Lis a filter convergence for X defined as follows (cf. [BBC]): a filter # y(L)-
converges to x iff there exists a filter ¥ with a countable basis such that ¥ ¢ &% and
whenever ¢ = #(S), then S L-converges to x (by Z(S) we denote the elementary
filter generated by the sequence S). It is known that y induces a functor from sequential
convergence spaces into spaces with convergence of filters and the functor has many
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nice properties ([BBH], [BBC]). In particular, if X is a ring (semigroup, group,
field, vector space) and L is compatible with the algebraic structure of X, then y(L)
is compatible with the algebraic structure of X, too. Since L and y(L) induce the same
closure (adherence) operator, many counterexamples from the sequential realm
can be transformed into the filter realm by applying y, see e.g. [FRI], [FGE]. In
[FZT] it has been shown that in some groups y(L) is minimal if L is coarse and that
this cannot be proved in general (in ZFC). Since groups are zero-rings, analogous
statements hold for rings as well. We close with a quest into nonzero-rings, in parti-
cular, we investigate the minimality of the y-modification of a coarse ring con-
vergence for rational numbers.

Let X be the ring of rational numbers, let d be the usual metric for the real line,
let Lbe a coarse FLrSH-convergence for X coarser than the one induced by d and
let A = y(L). For each real number r, let A", be the trace of the d-neighborhood
filter of r onto X (i.e. sets {ge X; d(r, g) < 1/n}, n = 1,2, ..., form a base of A",).

Lemma 3. Let & be a bounded ultrafilter on X. Then F satisfies either condition.
(MR1) or condition (MR2’).

Proof. Let r be the real number to which & d-converges. Let & be the set of all
sequences of rational numbers d-converging to r. It follows from Proposition 5 in
[FRI] that there are two possibilities.

1. For some x € X, each sequence in & L-convergences to x. Then the filter &,
J-converges 1o x. Since &, < F, # A-converges to x as well and hence satisfics
either (MR1) or (MR2’).

2. No sequence in & L-converges in X. Fix S € &. Since Lis coarse, the sequence S
satisfies condition (CR2), i.e., for some pe X, p # 0, we have {p) = Y vy T(i, 1)...
... T(i, k(i)), where me N, k(i) e N, i = 1, .... k, and each T(i, j) is either a product
of a subsequence S s of S and a constant sequence, or a sequence L-converging
to 0. Since each L-convergent sequence contains a subsequence d-converging in the
real line (cf. Proposition 5 in [FRI]), we can and do assume that if T(i, j) L-converges
to 0, then it d-converges to a real number r(i, j); in this case put #(i, j) = &, j
and let Z(i, j) be 4, multiplied by the corresponding fixed ultrafilter otherwise.
Since the filter ) 7=, #(i, 1) ... Z(i, k(i)) A-converges to p and if we in this expression
replace Z(i, j) by & multiplied by the fixed ultrafilter whenever Z(i, j) involves A ,.
the resulting finer filter A-converges to p, too Thus % satisfies condition (MR2’)
and the proof is complete.

Corollary 3. Let L be a coarse ring convergence for the rational numbers. Then
%(y(L)) is a minimal ring convergence.

Proof. Since p(L) is a ring convergence (of filters) coarser than the metric one,
no y(L)-divergent unbounded ultrafilter can converge in any ring convergence
coarser than y(L). Since by Lemma 3 no y(L)-divergent bounded ultrafilter can con-
verge either, y(y(L)) is minimal.
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