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TOLERANCE MODULAR VARIETIES OF SEMIGROUPS

BEDRICH PONDELICEK, Praha

(Received July 18, 1988)

The aim of this paper is to describe all varicties of semigroups whose tolerance
lattices are modular. The present result generalizes the issue from [1] to arbitrary
semigroups. In addition we give a characterization of varieties of semigroups whose
(principal) tolerances are congruences.

1. PRELIMINARIES

Recall that a tolerance on a semigroup S is a reflexive and symmetric subsemigroup
of the direct product S x S. By Tol(S) we denote the lattice of all tolerances on S
with respect to set inclusion (see [2] and [3]). Denote by v or A the join or meet in
Tol(S), respectively. The meet evidently coincides with set intersection. For M <
€ S x S, wedenote by Ty(M) (or simply T(M)) the least tolerance on S containing M.
It is easy to show the following:

(1) (x, ¥) e T(M) if and only if x = Xyx, ... X, and y = y,y, ... y,. where
either (x;, y;)eM or (y;,x;)eM or x; = y;eS for i =1,2,...,m.
(2 AV B=T(Au B) forany A,BeTol(S).

By Con (S) we denote the lattice of all congruences on S. Clearly Con (S) is
a subset of Tol (S), but it need not be a sublattice of Tol (S). Analogously for M <
€ S x S, we denote by Cs(M) (or simply C(M)) the least congruence on S con-
taining M.

For any semigroup by E(S) we denote the set of all idempotents of S. The nota-
tion S* stands for S if S has an identity, otherwise for S with an identity adjoined.
By <a)s (or simply {a)) we denote the subsemigroup of S generated by a € S.

Terminology and notation not defined here may be found in [4] and [5].

By # (i; = i,) we denote the variety of all semigroups satisfying the identity
iy =i,
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2. PRINCIPAL TOLERANCE TRIVIAL VARIETIES

Lemma 1. Let ¥~ be a variety of semigroups. Then every semigroup from ¥~
contains an idempotent if and only if ¥" < W (x"x" = x") for a positive integer n.
Proof. Suppose that every semigroup from ¥~ contains an idempotent. Letae S e
€Y . Then {a) € ¥" and so a™a™ = a™ for some positive integer m. The minimum
of such m we denote by m(a). If there exist a; (i = 1,2, ...) such that <a;> € " and

i < m(a;), then the direct product X {a;» belongs to ¥ and does not contain idem-
i=1

potents, which is a contradiction. Hence there exists a positive integer k such that
m(a) < k for all a, where <a) € ¥". Put n = k!. It is easy to show that ¥ <
S W(X"x" = x"). .

By & we denote the variety of all zero-semigroups, i.e. Z = # (x y = uu). It is
well known that & is a minimal variety in the lattice of all semigroup varieties. Put
0=W(x=y). '

Lemma 2. Let ¥~ be a variety of semigroups. Then ¥" N % = O if and only if
v < W (x"x = x) for a positive integer n.

Proof. Assume that ¥ n % = (0. Let ae S€ ¥". Then {a) € ¥ and so a = a™a
for some positive integer m. It follows from Lemma 1 that ¥ < #'(x"x" = x") for
a positive integer n. If a = a™a, then a = (a™)"a = (a")"a = a"a. Hence V" <
S #(x"x = x).

By & we denote the variety of all semilattices, i.e. & = #'(xy = yx) n #(x* = x).
It is well known that & is a minimal variety in the lattice of all semigroup varieties.

Lemma 3. The following conditions for a variety ¥ of semigroups are equi-
valent:

.Y N"Z=0=%nY.

2. Every semigroup from ¥ is completely simple.

3. ¥ is a subvariety of W(x"x = x) 0 W ((xyx)" = x") for a positive integer n.

Proof. 1 = 2. See Proposition 2 of [6].

2 = 3. Evidently ¥"n & = 0 and so, by Lemma 2, we have ¥ € #(x"x = x)
for a positive integer n. Therefore ¥* < #'(x"x" = x"). Let a, b be two elements
of S from #". According to Rees’ theorem (Theorem 3.5 of [4]), aba and a belong
to the same maxinal subgroup of S. Then (aba)" = a". Hence " £ #((xyx)" = x").

3= 1. Itisclear

A semigroup S is said to be (principal) tolerance trivial if every (principal)
tolerance on S is a congruence. See [7] and [8]. Recall that a tolerance 4 on S is
principal if 4 = Ty({a, b}) (or simply Ts(a, b)) for some pair of elements a, b e S.
Tolerance trivial semigroups in which a power of each element lies in a subgroup
have been described in [9] and principal tolerance trivial commutative semigroups
have been described in [10].

Let I and J be non-empty sets and let G be a group. Let P: I x J — G. Denote
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by M(G,1,J,P)=G x I x J the Rees matrix semigroup with the following
multiplication: (g, i, j)(h, r, s) = (gpj,h, i,s) where g,heG, i,rel, j,seJ and
pjr = P(r’ ])

Lemma 4. 4 semigroup M(G, I, J, P) is tolerance trivial if and only if card I < 2
and card J £ 2.

(See Lemma in [9].)

Lemma 5. Every completely simple semigroup is principal tolerance trivial.

Proof. Let S be a completely simple semigroup. According to Theorem 3.5 of [4],
S is isomorphic to the Rees matrix semigroup M(G, I, J, P). We can suppose that
S = M(G,I,J,P). Let iel and jeJ. Put G;; = {(g,1,j); g€G}. It is known
that G;; is a subgroup of S.

Let Q be a principal tolerance on S. Then Q = Ts(v, w), where ve G, and we G,y
for some a,cel and b, de J. We shall show that Q is transitive. Let (x, y)e Q
and (y,z)e Q. It follows from (1) that x = X;X; ... X, ¥ = ¥1¥5 ... ¥, and
Yy =Y{ys.. Yz =2.2,... 2, Where x; = yie S or (x;, y}) = (v, w) or (x;, y}) =
= (w,v) for all i = 1,2,....m and y; = z;€ S or (y},z;) = (v,w) or (¥}, z;) =
= (w,v)forallj =1,2,...,n Clearly x € G, y € G,;and z € G, for some p, r,tel
and some g, s,u € J. Then y}y, € G, and y{y, € G,. If r¢{a,c}, then r =p =1
and we put I, = {r}. If re {a, ¢}, then p, t € {a, ¢} and we put I, = {a, c}. Analo-
gously we put J, = {s} if s ¢ {b, d} and J, = {b, d} if se {b, d}. Let S, = M(G, I,,
Jo. Po), where P is the restriction of P to I, X Jo. Therefore S, is a subsemigroup
of Sand x, y,ze€ S,. Put @y = QN (S, x Sy). It is easy to show that Q, is a toler-
ance on S,. It follows from Lemma 4 that Q, is a congruence on S, because card I, <
< 2 and card J, < 2. Since (x, y) € Qp and (y, z) € Q,, we have (x,z)e Q, S Q.
Consequently Q is transitive.

A variety ¥” of semigroups is (principal) tolerance trivial if every semigroup S
from " has this property.

Il

Theorem 1. The following conditions for a variety ¥~ of semigroups are equi-
valent:

1. ¥ is principal tolerance trivial.

2.9 = Zor ¥ is a subvariety of W(x"x = x) n W ((xyx)" = x") for a positive
integer n.

3. ¥ = Z or every semigroup from ¥ is completely simple.

Proof. 1 =>2. Let V be a principal tolerance trivial variety of semigroups. It
follows from Theorem of [10] that every chain C (i.e. a semilattice C in which we
have ef e {e,f} for all e, feC) from ¥ satisfies card C < 2. This implies that
¥ N & = 0 and so according to Theorem of [10] we have:

(3) Every commutative semigroup from ¥~ is either a zero-semigroup or
a group.
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If ¥ 0% =0, then Lemma 3 implies that ¥~ < #(x"x = x) n #((xyx)" = x")
for a positive integer n.
Now, we can suppose that & < #". We shall show that

(4) Every commutative group from " is trivial.

Assume by way of contradiction that a non-trivial group G belongs to ¥". Choose
Z e % such that card Z = 2. Then Z x G is a commutative semigroup from ¥~
which contradicts (3).

Let S be an arbitrary semigroup from ¥#". Let a € S. Clearly {a) is commutative
and belongs to ¥". It follows from (3) and (4) that a® = a>.

We have
(5) Ve W(x*=x.
Further, we shall prove that card E(S) = |. By way of contradiction suppose

that S contains at least two idempotents (say e and f). We have Z = {0, z}, where
uv = 0 for all u,ve Z. Evidently S x Ze ¥ and so S x Z is principal tolerance
trivial. Put @ = Ty, 4((e, z). (f, 0)). Then ((e, 0), (1. 0)) = ((e, z), (/. 0})* € Q and so
((e, 2), (e, 0)) € Q, because Q is transitive. It follows from (1) that (e, z) = uqu, ... u,
and (e, 0) = v,0, ... v,, where either u; = v;€ S x Z or (u;, v;) = ((e, z), (f, 0)) or
(usv) = ((f,0). (e, 2)) for i =1,2,...,m. Clearly m = 1 and so e = f which is
a contradiction. By (5) we have

(6) v W(x*=y?).

Finally, we shall show that S is a zero-semigroup. It follows from (5) and (6)
that there exists an element & of S such that h = u? = uh = huforallu e S. Assume
by way of contradiction that there exist a, b€ S such that ab # h. Then a + h
and a ¢ S'aS U SaS!. Indeed, if a = cad, where ¢,de S' and ¢d € S, then a =
= c’ad® = h, a contradiction. Hence we have a + ab. Put Q = Ty(a, ab). Then
(ab, h) = (a, ab) . (b, b) € Q. Since Q is a transitive tolerance on S, we have (a, h) € Q
and so, by (1), we get a = ¢y¢, ..c, and h = d,d, ... d,, where either ¢; = d,€ S
or (c;, d;) = (a, ab) or (c;, d;) = (ab, a) for i = 1,2, ..., m. Since a + h, we have
ae S'aS U SaS!, which is a contradiction. Therefore ab = h. Hence S is a zero-
semigroup. Consequently ¥~ = Z.

2= 1. It is easy to show that the variety & is ptincipal tolerance trivial (see
Theorem of [10]). If ¥" is a subvariety of #'(x"x = x) n #((xyx)" = x") for a posi-
tive integer n, then it follows from Lemma 3 and Lemma 5 that ¥ is principal
tolerance trivial.

2 < 3. See Lemma 3.

3. TOLERANCE TRIVIAL VARIETIES

By % (£, respectively) we denote the variety of all left (right, respectively) semi-
groups, i.e. & = #(xy = x) and Z = #'(xy = y). It is well known that % and 2
are minimal varieties in the lattice of all semigroup varieties.
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Following [11], [12] we shall say that a semigroup S has transferable tolerances
(congruences) if for any elements a, b, ¢ of S there exists an element d of S such that
Ts(a, b) = Ty(c, d) (Cs(a, b) = Cq(c, d), respectively). A variety ¥~ of semigroups
has transferable tolerances (congruences) if each semigroup S from ¥ has this
property.

Recall that a semigroup S is said to be tolerance (congruence) modular if the
lattice Tol (S) (Con (S), respectively) is modular. A variety ¥ of semigroups is
called tolerance (congruence) modular if each semigroup S from ¥~ has this property.
See [13].

Theorem 2. The following conditions for a variety ¥~ of semigroups are equi-
valent:

1. ¥ is tolerance trivial.
For any semigroup S from ¥" Con (S) is a sublattice of Tol (S).
VNE=V S =9V "L =¥VnnR=0.
Every semigroup from ¥" is a group.
¥ is a subvariety of W (x"y = y) n #(yx" = y) for a positive integer n.
¥ has transferable tolerances.
. ¥ has transferable congruences.
V" is congruence permutable.
V" is congruence modular.

Proof. 1 = 2. Clearly.

2=3. LetSeZ U £ U Z. Itis easy to show that Tol (S) is the set of all reflexive
and symmetric relations on S and Con (S) is the set of all equivalences on S. Clearly
Con (S) is no sublattice of Tol (S) whenever card S = 3. Thus we have ¥ N & =
=V NEL =9 nR=0.

In [14] it is proved that Con (S) is a sublattice of Tol(S) for a commutative
separative semigroup S if and only if S is either a group or a group with zero. This
implies that card S < 2 for every S from ¥ n S andso ¥ n & = 0.

3 = 4. It follows from Lemma 3 that every semigroup S from ¥~ is completely
simple and so, by Theorem 3.5 of [4], S is isomorphic to the Rees matrix semigroup
M(G, I,J,P). If card I = 2, then & n ¥ + 0, which is a contradiction. Therefore
card I = 1. Analogously we have card J = 1 and so S is a group.

4 = 5. Apply Lemma 3.

5= 6. It follows from Theorem 1 of [11], where p(x,y,z) = xy
q(xy, X, X3, Xy, Xs) = x1x;—lx4-

6 = 7. Trivial.

7=8 Let SeZu ¥ U LuURand card S = 3. It is easy to show that S has
no transferable congruences and S does not belong to ¥". The rest of the proof
follows from 3 = 4.

8 = 9. According to Theorem 1 of [8], ¥ is tolerance trivial. The rest of the
proof follows from 1 = 4.

© XN LA W

"1z and
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9=>1.If Se Z U L U &, then Con (S) is the set of all equivalences on S and so
%, & and 2 are not congruence modular. According to Theorem 2 of [15], S is not
congruence modular. The rest of the proof follows from 3 =>4, because every
tolerance on a group is transitive.

Corollary 1. A variety ¥ of commutative semigroups is principal tolerance
trivial if and only if ¥ = % or ¥ is tolerance trivial.

The proof follows from Theorem 1, Theorem 2 and #'(x"y = y) N # (yx" = y)
AW (xy = yx) = W(x"x = x) 0 W((xyx)" = x") 0 W (xy = px).

4. TOLERANCE MODULAR VARIETIES

Theorem 3. 4 variety ¥ of semigroups is tolerance modular if and only if ¥ is
a subvariety of

W ((xy)"*' = xp) 0 #((xyx)" = x")
for a positive integer n.

Before the proof we formulate three lemmas.

Lemma 6. A variety ¥~ of commutative semigroups is tolerance modular if and
only if ¥ is a subvariety of W' (xyz" = xy) for a positive integer n.
See Theorem 1 in [1].

Lemma 7. Let P = {p, q, r, 0} be a four-element semigroup with the multiplication
table

;pqu
p | 0r 00
g | 0000
r | 000 0
010000

Then the lattice Tol (P x P) is not modular.

Proof. Put 4 = Texp((P, P), (P, 0)), B = Tpxp((q. ). (0, 9) and C = Tp4((0, ),
(r,0)) v 4. We have ((0, 7). (r, 0)) = ((p, p), (. 0)) - ((0. ). (9. 9)) € (A v B) A C.
We shall show that ((0,r), (r,0))¢ 4 v (B A C).

On the contrary, suppose that ((0, r), (r,0))e 4 v (B A C).

Case 1. ((0,r), (r,0))eA. It follows from (1) that ((0,r), (r,0)) = ((uy, p),
(P, v1)) - (2, 9), (g, v2)), where either (uy, p) = (p,v;) or ((uy, p), (p,vy) =
= ((p, p), (p, 0)) and (2, 9) = (¢, v;). Then u; = pand u, = qgand s0 0 = uyu, =
= pq = r, which is a contradiction.

Case 2. ((0,7), (r,0)) e B. According to (1), we have ((0, r), (r, 0)) = ((ul,p)
(P, v1)) - (2, 9), (g, v2)), where (uy, p) = (p,vy) and either (us, q) (q, v,) or
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((u2 9). (9, v2)) = ((0, 9), (4, g)). Therefore v, = p and v, = q and so 0 = v;v, =
= pq = r, a contradiction.

Case 3. ((0,7), (r,0)) ¢ 4 U B. Then, by (1) and (2), the only possibility is
((0’ r)’ (r’ O)) = ((p’ p)’ (P, 0)) . ((07 ‘1), (q; 4)) and ((0> q)’ (f], (1» € C, which is im-
possible.

Therefore the lattice Tol (P x P) is not modular.

Lemma 8. Let Q = {p, q, r, s} be a four-element semigroup with the multiplication
table

l p q r s
D s r s s
q 9 9 9 4
r rr r r
s s s s s

Then the lattice Tol (Q x Q) is not modular.

Proof. Put A = Tyxe((, P), (5, P)): B = Toxo((p: ), (p, g)) and C = Ty ol(r, s),
(s, q)) v A. We have ((r,s), (s, 9)) = ((p. s). (p. 9)) - (¢, p), (s, p)) (A v B) A C.
We shall show that ((r, s), (s, q))¢ A v (B A C).

On the contrary, suppose that ((r, s), (s, g))e 4 v (B A C).

m

Case 1. ((r, s), (s, q)) € A. According to (1) we have ((r,s), (s, 9)) = [] ((a:, b;),

i=1

(¢, d;)), where either (a;, b;) = (¢, d;) or ((a;, by), (cin d3)) = (4, p)s (5. p)) or
((as, by), (¢, d3)) = ((s, p), (g, p)) for i =1,2,...,m. It is easy to show that b, e
e {p, s} and d, = g, which is a contradiction.

Case 2. ((r,s), (s, ) e B. It follows from (1) that ((r,s), (s, q)) = []((a, b)),
i=1

(ci, d;)), where (a;, b)) = (ci d;) or ((a;, by), (cir d3)) = ((p. 5), (P, 9)) or ((ai, b)),

(ci- d)) = ((p, 9), (p,s)) for i =1,2,...,m. It is easy to show that ((a,, by),

(¢y.dy)) = ((p, s), (p, q)) and so m = 2. Then [[a; = ¢ and so a, = q. Hence

i=2
we have ¢, = g and so s = pq [ ¢; = r, a contradiction.

Case 3. ((r,5), (5, 4)) ¢ 4 U B. By (1) and (2) we have (1, ), (s, q) = .f[l((“"’ b)),

(ci, di)), where ((a;. b)), (c;, d;))) € AU (B C). Then ay € {p,r}, {by, ¢;} S {p,s},
d, = q and so (ay, by) =* (cy, d;). From cases 1 and 2 it follows that p € {a;, by, ¢,}

and so ((ay, by),(cy. dy)) ¢((2 x Q) x (@ x Q))*. Thus we have ((ay, b,), (. dy)) =
= (p,s), (p, q9)) e Bn C < C, which is impossible.

Proof of Theorem 3. I. Let 7~ be a tolerance modular variety of semigroups.
It follows from Lemma 6 that

(7) YV W (xy = yx) € W(xyz" = xy)
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for a positive integer n = 2. This implies

(8) Y S W(x*x" = x?)
and consequently we have
9) VS W(x"x" = x").

Let S be a semigroup from ¥". Let a, be S and by U denote the subsemigroup
of S generated by a, b. We have U = {a) u U'bUL. If {(a) n U'bU" = 0, then the
two-element semilattice is a homomorphic image of U, which is impossible because
according to (7) every semilattice from ¥ is trivial. Consequently we have <{a) N
A U'bU" = 0 and so a™e U'bU" for a positive integer m. It follows from (8) that
a® e U'bU*. Hence we have
(10) a’ e S'bS!
for alla, b e S from 7.

Let a, b, ¢ € S. We shall show that ab € S‘cSl By way of contradiction we assume
that ab ¢ S*¢S'. By I we denote the intersection of all ideals of S. It follows from
(10) that x* € for every xe S and so I # 0. Clearly a, b,ab¢I and a + ab +
=+ b # a. We shall show that ab # ba. Suppose that ab = ba. By U we denote
the subsemigroup of S generated by a, b. According to (7), we obtain U € #(xyz" =
= xy) and so ab = abd" el for some de U, a contradiction. We have ab ¥ ba.
Put J = {ba, aba, bab} I and T = {a, b, ab} U J. Evidently T is a subsemigroup
of S and J is an ideal of T. Thus we have Te ¥". It is easy to show that the semi-
group P from Lemma 7 is isomorphic to the Rees quotient T/J € ¥°, which implies
P e 7, a contradiction. Therefore for all a, b, ce S from ¥~ we have

abe SteSt.

This implies that S* is a simple subsemigroup of S. According to (9) and Theorem
2.55 (Munn W. D.) of [4], we have

(11) S? is a completely simple semigroup

for every semigroup S from 7.

It is well known that every completely simple semigroup is a union of groups
and so, by (11), S? is a union of groups. Therefore ab € (ab)? S* for every pair of
elements a, b € S and so, by (8), we have ab = (ab)"*!. We obtain

(12) v 2 W((xy)t = xy).

By % we denote the class of all semigroups S from ¥ such that S = S2. According
to (12), every subsemigroup of S from % belongs to %. 1t is easy to show that %
is closed under homomorphic images and direct products and so, by Birkhoff’s
Theorem [16], % is a variety of semigroups. It follows from (11) and Lemma 3 that
U = W((uvu)* = u*) for a positive integer k. Putting u = xy and v = z(xy)’ z
we obtain ¥ < #((xyz(xy)? zxy)t = (xy)) = #((xyzxy)* = (xy)")
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€ #((xyzxy)*™™ = (xy)"). Hence we have
v = W((xyzxy)" = (xy)").
Indeed, using (12), we obtain (xyzxy)" = (xyzxy)? = (xy)*" = (xy)"
Now, we shall prove that
(14) ab = a"ab
for every pair of elements a, b of a semigroup S from ¥".

If a € S$?, then according to (12), we have a = a"a and so (14) is true. Now we can
suppose that a € S\ S%. By U we denote the subsemigroup of S generated by a
and g = (ba)". It follows from (9) that g> = g and according to (13), we have

(15) (9dg)" = ¢
for all d € U. We shall show that
(16) ag = a"ag .

Case 1. gU n agU =+ 0. Then gd € agU for some d € U and so, by (15), we have
g = (g9dg)" € agU. Thus g € a"gU and, by (9), we have g = a"g, which implies (16).

Case 2. agU n a®U # 0. Then agd € a*U for some d € U and so, by (15) and (8),
we obtain ag = a(gdg)" € a®U < a"U. Consequently ag = a"ag (see (9)).

Case 3. a’U n gU #+ 0. Then gd € a*U for some d € U and so g € a’U < a"U.
This implies g = a"g and so (16) is fulfilled.

Case 4. gU, agU and a?U are pairwise disjoint subsets of U. It is easy to prove
that {{a}, gU, agU, a*U} is a decomposition of U, the corresponding equivalence ¢
is a congruence on U and the quotient semigroup Ufg is isomorphic to the semi-
group Q from Lemma 8. Since U, U/QE’V, we have Qe ¥, which contradicts
Lemma 8.

Therefore (16) is true and from this and ‘(12) we have ab = a(ba)"b = agb =
= a"agb = a"a(ba)" b = a"ab. Consequently (14) is proved and so we have

VS W (x"xy = xy).
Dually we can get
VS W(xyy" = xy).
Hence we have
V2 W ((xyx)" = x).
Indeed, using (13) and (9), we obtain
(xyx)" = (x"(xyx) XY= () = X
II. Let S be a semigroup satisfying

(17) Se# (It = xy) n w((xpx)" = x)

449



for a positive integer n. It is easy to show that

(18) Se W ((xy) (xp)" = (xy)).
Further, we have
(19) SeW(x"xy = xy)n W(xyy" = xy).

Indeed, xyx = (xyx)" xyx = x"xyx and so
Xy = (xy)n+1 — xn(xy)n+] — xnxy A
Let a € S and e, f € E(S). We shall show that

(20) (eaf )" = (¢f )"
According to (17), we have (eaf)" e = (eafe)" = e and f(eaf )" = (feaf)" = f. Then
(eaf)" (ef )" (eaf )" = (ef)" and so, by (17) and (18) we obtain (eaf)" = ((eaf)".
(ef )" (eaf )"y = (ef ).
Now, we shall prove the following proposition:
(21) Fora, b, ¢, d € S there exists g E(S) such that ab = agb and ¢d = cgd.

First, we shall show that (21) is fulfilled for a, b, ¢, d € E(S). Put e = (ba)" and

= (dc)". Using (17) and (18) we obtain e = e, ab = (ab)'*' = a(ba)" b = aeb,
f? =fand cd = ¢fd. Put g = (ef )". Then, by (18) and (17), we have g*> = g, ge =
= (ef)" e = (efe)" = e and dually fg = f. Therefore using (20) and (17) we can get
ab = aeb = ageb = ag(ba)" b = agb(ab)" = agb(agb)" = agh and dually cd =
= ¢gd.

Now, we shall suppose that a, b, ¢, d € S. It follows from (17) that a", b", ¢", d" e
€ E(S) and so a"b" = a"gb", ¢"d" = ¢"gd" for some g e E(S). According to (19),
we have ab = a""'p"*! = " lgb"*! = 4gb and cd = cgd.

Let A, Be Tol (S) We shall show that

(22) ABAB < AB.

Let (u, v) € ABAB. Then (u, v) = (ay, a;) . (by, b,) . (¢4, ¢3) - (dy, d,), where (ay, a,),
(c1.¢2)€ A and (by, by), (d;, d;) € B. According to (21) there exist g, h € E(S)
such that u = a;b,c,d; = a;gbicihd, and v = a,b,c,d, = a,gh,c,hd,. Using (17)
and (20) we obtain gb;c,h = gbicih(gh c,h)*" = gbyc,h(gb,c,h)*" =

= gbyc,h(gbyc,h)* ™" gbyc,h and  dually gb,c,h = gb,cyh(gbic,h)* ™! gbyesh.
Consequently we have (u,v) = (a;gb,c;h, a,gb,c,h) . (gb,c,h, gbc,h)™ .
.(gbyc,hd,y, gbyc,hd,) € AB.

Let A, B, Ce Tol (S) and A = C. We shall prove the following inclusions:

(23) ABAC < A(BAC),
(24) BAnCc (BnC)A,
(25) ABANC g ABNnC)A and
(26) BABNC < (BNnC)A(Bn C).
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Inclusion (23). Let (u, v) = (ay, ay) . (by, by) € C, where (ay, a,) € A and (b, b,) €
€ B. According to (21) we have (4, v) = (a,9, ag) - (gb,, gb,) for some g € E(S).
Evidently (419, a,g) € A and (gb,, gb,) € B. Further, by (20) and (21), we have
(9b1, gba) = (9,9, ga»g)" (bs, b,) = (9419, 9a9)**~" (9a.9by, gargh,) =
= (9a.9, ga»9)*"~* (gu, gv) € C. Consequently (u, v) € A(B n C).

Inclusion (24). It is dual to (23).

Inclusion (25). Let (u, v) = (a4, a,) . (b1, by) . (¢4, ¢2) € C, where (a;, a,), (cy, ¢;) €
€A and (by, by)e B. By (21) there exists g € E(S) such that byc, = bygc, and
bycy = byges. Put (x, y) = (ay, ay) . (by(ge19)?, ba(geig)?). Using (17) and (20) it
is easy to show that (x, y) € AB and (x, y) = (u, v) ((gc19)*"* ", (9c29)™ ' (9¢,9)?) €
e C. By (23) we have (x, y)e ABn C = A(Bn C) and so (u,v) = (x, ).
((ge19)’ 2 1y (g9¢19)>" % c3) e A(B C) A.

Inclusion (26). Let (u,v) = (by, b,) . (ay, a,) . (dy, dy) € C, where (b, b,),
(d,d,) € B and (ay, a,) € A. Clearly (u",v") € C. It follows from (19) that (u, v) =
= (b}, b3) (u, v) (df, d3) and so, by (18) and (20), we have (u", v") = (b}d}, b3d3)" € B.
Hence
(27) (u",v")yeBn C.

According to (17), (21) and (22), there exists g € E(S) such that (u, v) = (u, v).
(9, 9) . (u",v") e BABA(u", v") = BA(u", v"). This means that (1, v) = (x, y) . (u", v"),
where (x, y) € BA. According to (21), there exists h e E(S) such that (u,v) =
= (xh, yh) . (4", v"). Using (20), (18) and (27) it is easy to see that (xh, yh) € BA and
(xh, yh) = (x, y) (hu"h, ho"h)*" = (xhv", yho") (hu"h, ho"h)*" ™' =
= (u,v). (hu"h, hv"h)*>*~" € C. Then, by (24), we have (xh,yh)e BAnC <
c (B n C) A. Consequently, by (27), (u, v) = (xh, yh). (u",v") e (B~ C) A(B n C).

We are now ready to complete the proof. We shall show that the lattice Tol (S) is
modular. Let A, B, C e Tol (S) and 4 < C. It follows from (1), (2), (22), (23), (24),
(25) and (26) that (Av B) A C=(AuUBuUABU BAU ABAU BAB)n C <
SAUBNC)UABNC)U(BNC)AUABNC)AU(BAC)ABNC)=A vV
V(BAC)s(A4v B)AC.

Corollary 2. Every principal tolerance trivial variety of semigroups is tolerance
modular.

The proof follows from Theorem | and Theorem 3.
Corollary 3. Let ¥~ be a variety of semigroups and ¥ 0% = (. Then ¥ is
principal tolerance trivial if and only if ¥ is tolerance modular.

The proof follows from Lemma 2, Theorem 1 and Theorem 3.

Corollary 4. Let ¥~ be a variety of commutative semigroups and ¥ n & = 0.
Then ¥ is tolerance trivial (congruence modular) if and only if ¥ is tolerance
modular.

The proof follows from Corollary 3, Theorem 2 and Corollary 1.
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