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INTRODUCTION

Shortly to the context of this part (we shall use freely the notation and concepts
of the previous parts, treated as chapters):

Theorems 1, 2 and 3 give new results concerning #-measurable functions f: T — X,
2 < 27 being a d-ring. Particularly we obtain that each -measurable f: T — X
is a #-measurable function as f: T— X = sp {f(T)}. Using this fact, in Theorem 4
we indicate some improvements of our previous results from parts IX and X. In
Theorem 5 we show that J(I') = #,(I'), provided ¢, ¢ Y.

In section 2 a treatment of weak (also called scalar) and weak* integrability is
given. For d = 1 see also [25] and [26]. There are at least two reasons to do it
carefully: a) General multilinear operators U: XCy(T;, X;) - Y (even linear
U: Co(T) — Y) are representable by polymeasures I': Xa(%, ;) - L(X;; Y**) such
that only I(...)(x;)(y*): Xo(%, ;) = K = the scalars, is separately countably
additive for each (x;) € XX and each y* e Y*, see [17], [24], [18] and [19], and
b) In both weak and weak* integrability we have the good situation I'*: X2, —
- [9(X; K), ie., that Y =K $ ¢,. Let us also note that in proving the
measurability of the partial integral, see section 2 in part III and section 3 in part
VII, first we proved its weak measurability in Theorem III1.10.

The contents of the last section 3 is given by its title. The proof of finiteness of the
L,-gauge I[(+), (T;)] on £,(I) is postponed to Theorem XIIL.12.

1. PRELIMINARIES

In the first three theorems £ is a é-rings of subsets of a non empty set T, and X
is a Banach space.

A direct consequence of Generalized Egoroff-Lusin Theorem, i.e., of Theorem
X.2, is the following

Theorem 1. Let p: o(2) — [0, + 0] be either a o-finite measure, or a submeasure
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in the sense of Definition 1 in [20]. Let f,: T—> X, n = 0, 1,2, ... be #-measurable
functions and let f,(t) = fo1) for u — a.e. te T. Put F =\ {teT. f,(t) 0} e

n=0
€ o(P). Then there are N e F 0 o(?) and Fye 2, k = 1,2, ... such that y(N) = 0,
F, 7 F — N, on each F,, k = 1,2, ... the sequence f,, n = 1,2,... convergences

0
uniformly to the function fo, and the set U f(F,) = X is relatively compact for
n=0

each k =1,2,.... Hence Uf,,(F N) < X is relatively o-compact.
We shall need the followmg improvement of Theorem X.1.

Theorem 2. Let f: T— X be a P-measurable function and let f(T) = X be
relatively o-compact. Then there are F,e ?, k =1,2,... such that F,  F =
={teT,f(t) £+ 0} ea(?), k' < If(t)l < kforeachte Fy, and each k = 1,2, ...,
and such that for any sequence g, \ 0, k = 1,2, ... there are:

1) a sequence of finite P-partitions m,(Fy) = (Fk i)i<1 such that
(Fis1.; 0 F)7t 2 m,(Fy) in the sense of refinements for each k = 1,2,..., and
for arbitrary fixed ke {1, 2,...}, for any points tj€F j=1,...,1r the
inequality

@) 2m1) = 3S () 2 (O] £ 8l A 10D
i=
holds for each t € T, and
2) a sequence f,e S(F,n2#,X;), k=1,2,..., where X, =5p{f(T)}, such
that f, = fixr, for each k = 1,2, ..., f, = f, |fk| b ]f|, and the inequality
/(1) 2e(1) = £u0)] = &1 A [F(D)])
holds for each te T and each k = 1,2, ....
Proof. 1) easily follows from Theorem X.1.
2) Without loss of generality we may suppose that ¢; < 1. Let us apply 1) for the
sequence & =371g, k=1,2,..., and put fi =3 f(ti;) tr,» K=1,2,....
j=1

, J
where 7, (Fy) = (F; ;)j<1. k = 1,2, ... satisfy the requirements of 1) and #, ; € F; ..
For each k = 1,2, ... let n, be the whole part of ke; *, and put

5 =t e p=fren i = o) < £}

ji=1 3”"

Put finally f, = (fi/|fi]) ¢« for k = 1,2,.... Then clearly f, e S(F, n 2, X,) and
fi = fuxs, for each k = 1,2,.... It is easy to see that f, = f and that |f,| ~ |f].

Finally
() 2r(0) = AdD)] = 17(0) 2e(0) = fil0)] +

# 50 ~ o) 537w a0 +
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+ 1fut) = oult) 2r 1)) = 371 all A [7(1)]) +

+ [fl0) = £(0) r O] + |1(0) 2e8) — @ult) 28 (0)] =

2.37 g1 A |f@)]) + k7137 g (1) < &l A [£(2)])
for each t e T, since k™! < |f(t)| for each t € F,, and each k = 1,2, ....

A function f: T— X is called P-elementary if it is of the form f = ijXA,,
j=1

where x;eX, A;e?;, j=1,2,..., and 4;, j =1,2,..., are pairwise disjoint.
Obviously each o(2)-clementary function is P-elementary. We denote by E(2, X)
the linear space of all Z-elementary functions f: T — X. Evidently ¢f e E(2, X)
whenever ¢ € E(2,K) and fe E(2, X). It is well known, see [22], that each 2-
measurable function f: T — X is a uniform limit of a sequence from E(2, X). Using
this fact we prove

Theorem 3. Let f: T — X be a #-measurable function, let F = {te T, f(t) + 0) e
€ o(2), and let X, = sp {f(T)}. Then:

1) for each & > O there is a countable P-partition n;(F) = (F);e; such that for
any points t;€ F;, je J, the inequality

[0 = 70 20 0] 5 ot~ 1)

holds for each te T,

2) f: T— X, is a P-measurable function, i.e., there are u,e S(Fn 2,X;),
n=1,2,... such that u, - f and |u,| 7 |f|, and

3) there is a sequence f, e E(Fn 2,X;), n=1,2,... such that |f,| 7 |f|, and

[f(t) = fu0)] = (1/n) (L A |£(2)])

for each te Tand eachn = 1,2, ....

Proof. 1) Let ¢ > 0. Put 4, = {teT, |f(r)] 21}, and 4, = {teT, k™' <
< |f()] <(k—1)7'} for k=2,3,.... Then A4,eFno(P), k=1,2,.. are

pairwise disjoint and {J 4, = F. Hence it is enough to prove 1) for each function

fra: A~ X, k= 1,k2=,1... Let k be fixed. Take h e E(Fn 2,X) such that

| /(1) 24(t) — hu(1)] < g/2k.= 3&(1 A |f(1)]) for each te A,. Let h, =f:xk,ijk’j,

where x;;€X, A, ;e A4,n?, j=1,2,..., and 4, ; j=12,... ajrzlpairwise

disjoint. Put 4, o = 4, — GlAk,j. Then there are pairwise disjoint 4, 4 ;€ 4, N 2P,
j=1

j=1,2,... such that 4, , = U 4,,,; Now for any points #, ;€ 4, ; and #,, ;€
i=1

€ Ayo,;»J = 1,2,... we have the inequalities
7() xadt) = Zlf (,) Xar, (1) — 'Zif (t6,0.9) Zao,,(D)] =
j= j=
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= /(1) 2a(0) = m(0)] + [alt) — B(O)] < 2. | Frae = il s <
ste<e(l A /(1)

whete (1) = 3 £(tu,) 2 ) + 3, F(10) Lo (0

for each t € 4;, which we wanted to show.

2) Immediately follows from 1) since the F n #-measurable functions f: T — X,
are closed under the formation of pointwise limits of sequences, and each fe
€ E(F n 2, X,) is evidently a pointwise limit of a sequence from S(F n 2, X ).

3) For k =2,3, ... let 4, be as in the proof of 1), and put B, = {te F, k < |f(1)| <
<k+1}eFno(?)fork =1,2,.... Then n¥%(F) = {(A)i2, (By)i=1} is a count-
able (2)-partition of F. Obviously it is enough to prove 3) for each 4, k = 2,3, ...,
andeach B, k = 1,2, ....

Forn=1,2,... put

(p,,:Zj;llx,,n where D,,={teT—~———<|ft)|< }
i=1

Then ¢,, n=1,2,... are o(Z?)-elementary, hence also Z-elementary functions,
0 < o,(t) ~ |f(t)] for each te T, and |f(t)] — @.(t)] < 27" for each te T and each
n=12,....

Consider first a fixed B, ke {1, 2, } By 1) for each n = 1, 2, ... there is a #-
elementary function f ,: B, — f(B,) such that

\ 1
t) = fil)]| £ ————
A1) = fial0) D)
for each t€ B,. For n = 1,2, ... put
(P,,+3(t)
fealt) = Jia?)
T o)
if 1 € B,, and put fi (1) = 0if te T — By. Then f; ,: B, - X is obviously a B, n &-

elementary function for each n = 1,2,..., and |f,(t)] 7 |f(t)] for each te B,.
Since for each t € B, and each n = 1, 2, ... the following inequalities hold:

(pn+3(t) < ____If—t)!_’_ <1 + 1 1 1

|f:£n(t)| I7( )l 4n(k + 1)1 — % <b+ 3n(k + 1) ’
4n (k + 1)
and
oues(t) 5 Ifi)LEM>1_ i ( L, dn(e 1)\
|f1: n(t)l 4n(k + 1) 1+ % o3 )
' lF@)] + m
. 1
2n(k + 1)’
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we obtain that

o) = F(O] £ [fualt) = Fia®)] + [finlt) = F()] £

N
< (pnl+3\t) __ 1' |fl£n 1) < (pn,+3(t) . 1‘ .
|fenl0) an(k +1)  {|fiu(1)
1 1 1
k+1+H+ ————<===(1n
( ) 4n(k + 1) n(

for each te B, and each n = 1,2, ...

Consider now a fixed 4, ke {2,3,...}. By 1) for each n = 1, 2, ... there is a #-
elementary function gy ,: Ay = f(A,) such that |f(r) — g; (1) < 1/4nk . |f(t)] for
each te A,. For n = 1,2, ... put

Puris(t)

= i)

|95.(1)

if te A, and put g, ,(t) =0 if te T— A,. Then g,,: 4, > X;, n=1,2,... are
obviously A4, N Z-elementary functions, and |g,,(t)] 7 |f(t)| for each i € 4,. Since
foreach n = 1,2, ... and each t € A, the following inequalities hold:

{ o
lf(@)] - iﬁ::; m(lf(t)l - mlf(t)l) i

gk.n(t) =

(pn+k+§(') >
lgea 0] 1
01+ - 170

b talken 1

4nk  4n 2TEE3 4n

and ; »
Pusr+3(t) < If(t)I <1- 11 <i- 1
lgea()] — L Ank 1 n’
0] = 1 - L

we obtain that

|gk,n(t) - f(t)l = lgk,n(t) Ix n(t)l + lgk n(t (t)l

< (p"+k+3(t) -1 "+ — Nl < < (pn+k+3(t) _ 1[ .
!g;‘ . t)| ng,n( )l 4nk If( )l = lg;(,n(t)l

(1 gm) * a0 < (G (0 50) + 55 vl < 2@

for each te 4, and each n = 1,2, ....

] o
Hence f, = Y. fum + 2. Gk 1 = 1,2, ... have the required properties.
k=1 k=2
For ? measurable f;: T, > X, i = 1,...,d, put X; =5p{f(T)} and 2, =
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=UZ n{t;eT, |f(t;)| > k'}. Then, using assertion 2) of Theorem 3, and
k=1

Theorems X.5 and XI.5 we immediately obtain the following improvements of
results from part X:

Theorem 4. 1) Let (f;) e S(I') and let I(...)(x;): X2, > Y have locally control
d-polymeasure for each (x;) € XX,. Then (f;) € #((I') and its indefinite integral
ey (fi)dI: Xo(2,) > Y has a control d-polymeasure (see Theorem X.3 and its
Corollary 1).

2) The assertions of Theorems X.9, X.13 and X.15 remain to hold if we suppose
either that I'(...)(x;): X2, — Y has locally a control d-polymeasure for each
(x;) € XX[,, or that f(T;) < X, is relatively o-compact for each i =1, ..,d. In
Theorem X.9 — 1) we may assert that (f;,) € XS(?;,,X,,) for eachn = 1,2, ....

3) The assertion of Theorem X.13 remains to hold if ¢, ¢ Y.

Using, among others, Theorems XI.5 and XI.10 we now prove

Theorem 5. 1) Let (f;) € #(I') and let there be (g;,)€ Z4(I'), n = 1,2, ..., such
that g;, — f; for each i = 1, ..., d. Then (f;) € Z,(T).

2) Let ¢y & Y. Then #(I') = J,(I).

Proof. 1) Put F; = {t,e T, f(t) *0ea(®?), i=1,...,d, and H,, =
={ueFy, |fi{t)| £2lg:.(t)]}ec(?), i=1,...d, and n=1,2,.... Then
H;,— F;foreachi =1,...,d Hence

j(A,-) (f)dr = lim I(A:ﬁHi,n) (f,-) dI' = lim j(A.-) (fiXH.-,n) ar

for each (4;) € Xa(2;) by Theorems IX.4 and VIIL1. Since |fiu,,| < 2|g:,| for
each i =1,...,d and each n = 1,2,..., and since (2g;,) € &,(I') for each n =
=1,2,..., (fixn,,) € Z,(I') for each n=1,2,.... Take (fi,)e XS(2;, X,) =
= SFo(I), k=1,2,... such that f;, - f; and |f;,| 7 |fi| for each i =1,...,d.
Then

Scap (fixm,,) dI = lim [, (fiwxn,,)dr
k= o0

for each (4;) € Xo(2;) and each n = 1,2, ... by Lebesgue Dominated Convergence
Theorem in &£ (I), i.e., by Theorem XI.10.

2) Let(f;) € #(I). By assumed local o-finiteness of the semivariation I" on Xo(2,),
see the beginning of Part IX, there are (F} ) e X2,k = 1,2,...suchthat F;, # F, =
= {t;e T}, fi(t;) + O} for each i = 1,...,d, and [(F;,) < co foreach k = 1,2, ....
For i=1,....d and k=1,2,... put F;y =Fi, n{t,eT;, |f(t:)| < k}e2.
Then F[(fixr,,), (T)] < + oo for each k = 1,2, .... Hence (fixr,,)€ £4(T) for
each k = 1,2, ... by Theorem XL5. It remains to apply the last consideration of 1).

429



2. WEAK AND WEAK* INTEGRABILIDY

Definition 1. Let f;: T; > X; be 2 ;-measurable, i = 1,...,d. We say that (f;) is
a weakly T-integrable d-tuple, and write (f;) € w#(I') if (f;)e #(y*I') for each
y* e Y*. For (f;) e wH(I'), (4;) € Xa(2;) and y* € Y* we put

(W Jeao (/) L) (5%) = Jeay (£i) d(y*T) .
Let (f;) e wI(I'). We write (f;) e (wF), (I'), and say that (f;) belongs to the first

weak integrable class, if there are (f;,)e(wS), (I) = XS(2,X,), n=1,2,...
such that f; , - f;foreach i = 1,...,d, and

(W Jay (f) D) (v*) = ’11111:0(“’ Jean (fen) dT) (3*)

for each (4;) € Xo(2;) and each y* e Y*. :

Similarly, starting from (w.#), (I'), we define the second weak integrable class
(W), (D).

The basic properties of the weak integral are given by

Theorem 6. 1) S(I') = wH(I'), £(I') = (ws); (I') and wsH(I') = (wF), (I).

2) Let (f)ew#(I). Then w [, (f;)dl € Y** for each (A;)e Xo(2;), and
w [y (fi) dT: Xa(2;) = Y** is separately w*-countably additive.

3)If (fiye S(), then w [, (f)dl = [i4, (f)dl for each (4;)e Xo(2)),
where y € Y** is the image of y € Y under the natural embedding of Y in Y**.

4) If ¢o & Y, then wH(I') = (') and the integrals coincide.

Proof. 1) and 2). The inclusions #(I') = w#(I') and J,(I') = (wf), (I') follow
from assertion 3) of Theorem IX.4.

Let (f;) e ws(T), i.e., let (f;) € #(y*I) for each y* € Y*. Take (f;,) € XS(2,, X)),
n =1,2,... such that f;, — f; and |f;,| 7 |fi| for each i = 1, ..., d. Let us use the
notation from the proof of 2) of Theorem 5. Then by Theorems XL5 and XI.10
we obtain the equalities \

W Jan (f dD) (v¥) = [,y (f) dO*T) = :Lnljumn,k) () d(y*r) =
= lim Lim f4,nr,  (fi) d*T)

k= w0 n—=w
for each (4;) € Xo(2;) and each y* € Y*. Hence (f;) € (wF), (I'). w [ (4, (fi) I € Y**
for each (4;) € Xo(2;) using Banach-Steinhaus theorem, and w ., (f;) dI': Xa(2;) —
— Y** is separately w*-countably additive using (VHSN)-theorem for vector d-
polymeasures, see the beginning of part VIII.

3) If (f;) € #(I), then
Y (§ean (f) D) = feay (f) AW*0) = (W Jap (f) d1) (%)
for each (4;) € Xa(2;) and each y* € Y* by assertion 3) of Theorem IX.4. It remains
to apply Hahn-Banach theorem.
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4) Let (f;) e ws(T'). Since (fixr,,) € #1(I') for each k = 1,2, ... in the notation
of the proof of 2) of Theorem 5, analogously as in the proof of Theorem X.14 it
follows that (f;) e #,(I).

Definition 2. Let g;: T; > X; be 2-measurable, i = 1,...,d. We write /g;) e
e ZLM(T)if I[(g:), (T)] < +oo. Put Z,5(I') = L, M) HA(T).

We write (g;) e w&,(I') if (f;)e ws(I') whenever f;: T; - X; is 2 -measurable
and |f;| < |gy| for each i = 1, ..., d.

Theorem 7. 1) (g;) € &,.4(I) if and only if (g;) € L(y*I') for each y* e Y*.

2) L, M(T) = w,(T) = (wF), (T).

3) If ¢co & Y, then w?(I') = L M(T') = Z(I).

4) For the weak integral in w*-convergence the analogues of Theorems XI.6
(Fubini), XI.9, XI.10 (LDCT) and their corollaries hold in & ,.#(T).

Proof. 1) If (g;) € &,.#(I), then (g;) € Z,(y*I') for each y* e Y* by Theorem
XL5. If (g;) € Z,(y*I) for each y* e Y*, then y*I'[(g,), (T;)] < + o by Theorem
XIIL.6 for each y*eY*, hence [[(g;),(T:)] = sup y*I'[(g;).(T)] < + by
uniform boundedness principle. b=t

2) The inclusions & . #(I') = w¥,(I') and w ,(I') = (w.#), (I') are consequences
of Theorem XI.5 and Corollary 1 of Theorem XI.10 respectively. If (g;) € wZ ('),
then (g;) € &,(y*I') for each y* € Y*, hence (g;) € £,.4(I') by 1).

3) If ¢g & Y, then &,.4(T') = &,(I') by Theorem XI.5, while &,(I') = &,.#(T)
by Theorem XIII.12.

4) is evident.

Let Y = Z* = the dual of Z, where Z is a Banach space. Then we may suppose
that only I'(...) (x;) z: X2, - K is separately countably additive for each (x;) e XX
and each z € Z. We keep however, the assumption that the semivariation I': Xo(2,) —
— [0, +o0] is locally o-finite. It is important to remind that by the deep result of
J. Diestel and B. Faires, see 1.2 in [3] or Theorem 1.4 2 in [2] if [,, & Z* (equi-
valently, if ¢, ¢ Z*), then a w*-separately countably additive y: X#; - Z* is norm
separately countably additive.

Definition 3. Let Y = Z*, where Z is a Banach space and let I' be as described
above. Let f;: T; - X; be 2 -measurable functions, i = 1, ..., d. We say that (f;) is
a weak* T-integrable d-tuple, and write (f;) e w*#(I') if (f;) e #(I'(...) z) for each
ze Z. For (f;) e w*H(I'), (4;) € Xo(2;) and z € Z we put

(W* Jean (f) dT) (2) = Jeap (f) AI(..) 2) ..

We define (w*.#), (I'), (w*£), (I') and w*&,(I') analogously as their w counter-
parts in Definition 1.

The basic properties of the weak* integral are given by

Theorem 8. Let Y = Z*, where Z is a Banach space, and let I' be as described
before Definition 3. Then:
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1) WeA(r) = (v"); (T

2) Let (f;)e w*A(I). Then w* fu,(f:)dl € Z* for each (4;)e Xo(2;), and
w* [, (f;) dT': Xo(2;) - Z* is separately w*-countably additive.

3) (9:) € &,.4(T) if and only if (9:) € Z(I(...) 2) for each z € Z.

4) L, M(T) = wkZ(I) = (w*F) (D).

5) For the weak* integral in w*-convergence the analogues of Theorems X1.6
(Fubini), XL.9, XI.10 (LDCT), and their corollaries hold.

6) If I(...)(x;): X®,— Z* =Y is separately countably additive for each

(x;) e XX;, then S(I') = wH(T) = w*A(I), S,(T) = (wF), (I = (w*F), (I).

Further,

Sean (F) AL = w fiay (f)) AT = w* [ (4, (fi) AT
for each (f;) € #(I') and each (4;) € Xo(2;).

7) If Z is a Grothendieck space, i.e., if w* and weak convergence of sequences
in Z* coincide, see p. 179 in [1], then w*S(I') = wo(I') = H(I') and the
integrals coincide.

Proof. Assertions 1)—6) follow similarly as their weak analogues in Theorems 6

and 7.

7) Let (f;) € w*#(I'). Since the weak* and weak convergence of sequences coincide
in Z*, the proof of assertion 2) of Theorem 6 works for both weak* and weak
integration. Hence (f;)e ws(I') and w* [, (f;)dI' = w [, (f;) dI': Xo(2,) > Z*,
and it is separately countably additive in the weak topology of Z*. But then
w [ (fi)dI': Xa(2;) > Z* is separately countably additive in the norm of Z* by the
Orlicz-Pettis theorem. Since (fixr,,)€ #4(I') for each k = 1,2, ..., see the proof
of 2) of Theorem 5, (f;) € #,(I') by Corollary 2 of Theorem IX.4. (we used the fact
that ¢, & Z*).

The just proved assertion is a particular case of assertion 1) of the next

Theorem 9. Let (f;}e ws(I') and let w |, (f;)drI: Xa(@)—» Y = the image
of Yin Y** under natural embedding. Then:

1) (f;)e A(I') if and only if there are (F, WEXP,, k=1,2,... such that
Fix 7# Fi={t;€ T, f(t;)) + O} for each i = 1,....d, and (fixg,,) € #(I) for each
k=1,2,.

2) (fi € JI(I“) provided I'(...) (x;): X(Fi N 2;) - Y has a control d-polymeasure
for each (x;)e XX, where X; =3sp{f(T)}, i =1,...,d. Particularly this is
trueifeach ?,,i = 1, ..., d, is generated by a countable family of sets, see Corollary
of Theorem VIIIL.11.

3) (fi) € #4(I') provided f(T;) = X, is relatively a-compact for each i = 1, ..., d.
Particularly this happens if each X;, i =1,...,d, is finite dimensional, and if
(f)e XE(2,, X ). ‘

Proof. 1) follows by Orlicz-Pettis theorem, which is valid for polymeasures, and
by Corollary 2 of Theorem IX.4.
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2) According to Theorems VIII.17 and VIIL19 there is a control d-polymeasure,
say Ay X ... x Agt X(F; 0 2;) - [0,1] for I'" = I': X(F; n 2,) » (X3 Y).
Owing to assertion 2) of Theorem 3 for each i =1,...,d there are fin€
eS(Fin2,X;), n=1,2,... such that f,, > f; and |f;,| 7 |fi|. Applying co-
ordinatewise Egoroff-Lusin theorem, the o-finiteness of the semivariation I’ on
Xa(F ;0 2,;), and Corollary 3 of Theorem IX.4 imply the existence of a sequence
(Fip)e X2;, k =1,2,... such that (fixg, )€ #4(I") for each k =1,2,..., and
F) 7 F; for each i = 1,...,d. Hence (f;)e #(I") by 1). Clearly #(I") = 4(I).
S(I") = F(I") by Theorem X.3.

3) Follows similarly as 2), using Theorem X.1 instead of Egoroff-Lusin theorem,
and Theorem X.5 instead of Theorem X.3.

From this theorem and from assertions 3) of Theorem 6 and 4) of Theorem 7 we
immediately obtain the following

Corollary. Let (9;)e () = £,.#(I')~ #(I') and suppose either that
I'(...) (x;): X2,, > Y has locally a control d-polymeasure for each (x;)€ XX,,,
or that gi(Ti) < X, is relatively a-compact for eachi = 1, ..., d. Then the assertions
of Theorem X1.6 (Fubini), its Corollary 1 and a) = b) of its Corollary 2 hold for (g;).

The next theorem is in the spirit of Theorems X.3 and X.5.

Theorem 10. Let f;: T; > X; be #;-measurable, i =1,...,d, and let either
I(...)(x;): X(F;n 2;) > Y have a control d-polymeasure for each (x;)e XX,
where F; = {t,e T,, f{t;) # 0}, and X;, = sp {f{T)}, or that f(T;) = X be rela-
tively a-compact for each i = 1, ...,d. Then:

1) If (f;)e wH(I), then (f;) € (wF), () and there are (f;,) e XS(F;n 2, X)),
k =1,2,...such that f,; — f; and |f; 4| 7 |fi| for eachi =1,...,d, and

}cif;«"*(fuo (fin) A1) = feap (fi) d*T) = (w feay (f1) dT) (v¥)

for each (A;) € Xa(#,) and each y* € Y*.

2) If Y= Z*, where Z is a Banach space, and if (f;)e w*#(T), then (f;)e
e (w*#), (I') and there are (fi ) € XS(F; 0 2, X,), k = 1,2, ... such that f; — f;
and Ifi.kl A lf,-l for each i =1,...,d, and

’{L“;(f(A;) (i) D) (2) = ey (f) A(I(+) 2) = (W* Jeap (fi) dT) (2)

for each (4;) € Xo(#;) and each z € Z.

Proof. Using a control d-polymeasure for I = I': X(F,n 2,) » L(X,,, Y),
see Theorems VIII.17 and VIIL.19, throught Theorem 1 the case of the first alternative
assumption can be reduced to the case of the second assumption. Hence let f(T;) = X;
be relatively o-compact for each i = 1, ..., d. Since by assumption the semivaria-
tion [ is o-finite, there are (F;,)e X(F;n &), k = 1,2, ... such that F}, 7 F; for
each i = 1,...,d, and I'(F},) < + oo for each k = 1,2,.... For k = 1,2,... put
& = [K'd(F(Fi,) + 1)]7", and for each i = 1,...,d take F,,e F;n #; and f;, €
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eS(Fin2,X,;) k=1,2,... in accordance with assertion 2) of Theorem 2. For
i=1,...,d and k=1,2,... put Fj, = F;, nF;; and f{ = fiuXp,, Then
Fiy 7 Fy, f > f; and |fix| 7 |fi] for each i = 1, ..., d. Further (fixpe.,) € £4(T)
foreach k =1,2,... and
[San (Firpe, ) AT = Jean (Fia) 4T < 1]k
for each (4;) € Xo(2;) and each k = 1,2, ...,
1) If now (f;) € w#(I), then

Joan (£ d0*T) = lim Jcainrripo (f) d(*T) =
= (by Theorem 6 —.3)) = klim Y*(feap (fixer,,0) dT) =
= lim (e (A1)

for each (4;) € Xo(2;) and each y* € Y*, which we wanted to show.

2) Follows similarly as 1).

Let d = 1 and m = I'. Since each vector measure m(+)x:? — Y, x€ X, has
locally a control measure, we have the following two consequences:

Corollary 1. Let d = 1. Then w#(m) = (wS), (m) and for each f e wF(m) there
is a sequence f, € S(F 0 ?,X,), k = 1,2, ... such that f, > f, |fi| 7 |f| and

lim y*([g fi dm) = [ f d(y*m)
k- o0
uniformly with respect to E € 0(9’), for each y* e Y*.

Corollary 2. Let d = 1, let Y = Z*, where Z is a separable Banach space, let
m(+) xz: @ — Y be countably additive for each x € X and each z € Z, and let the
semivariation W be o-finite on P. Then w*#(m) = (w*S), (m), and for each
few*I(m) there is a sequence fye S(FNP,X,), k =1,2,... such that f, - f,
£l 7 |f], and -

tim () () = o d0n() 2
uniformly with respect to E € (%), for each z € Z.

Since each scalar bimeasure is uniform, see (Y) at the beginning of part VIII,
using Corollary 1 of Theorem VIII.16 and Theorem X.9 we also have

Corollary 3. Let d = 2 and suppose either Y has a countable norming set, or that
X, and X, are finite dimensional. Then wt(I') = (w#), (I') and for each (f, f>) €
ewSt(T) there are (fypfr4)€S(Fin P, X;) x S(Fy0 2y, X,y,), k=1,2,...
such that f;, = fi, |fisl 7 |fi, i = 1,2, and

k“m y*(j(Al,Az) (fipo f20) dT) = f(A,,Az) (f1,£2) d(y*r)

uniformly with respect to (A, A,) € 6(P,) x o(2P,) for each y* e Y*.
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Corollary 4. Let d = 2, let Y = Z*, where Z is a Banach space, and suppose either Z
is separable, or that X, and X, are finite dimensional. Then w*4(I') = (w*.#), (I')
and for each (fy,f,)ew*I(I) there are (fyy f2,)eS(Fyn 2 X,) x
x S(Fyn 2, X)), k= 1,2,... such that fi = fi, |fix] 7 |fil, i=1,2, and

}‘im ($casan (F10 f2,0) AT) (2) = feasoan (F1s f2) A(I(+) 2)
uniformly with respect to (A, A,) € o(?,) x o(P,) for each z € Z.
d
Our polymeasure I' induces by the equality I'°(4;) (k;) = [] k; I'(4,), (4,) € X2,
i=1

(k) e XK;, K; = K = the space of scalars for each i = 1, ..., d, the polymeasure
I°: X2, » LYK ;: LX; Y)). Conversely, each such I'° induces I" by the equality
I'(4;) = I'’(4;) (1;). Now we make no requirements on o-finiteness of the semi-
variation I, since the semivariation [° = ||I'°| = |I'|| = the scalar semivariation
of I' is finite valued on X, see Corollary 1 of Theorem VIII.2, Definition VIII.3
and assertion 4) of Theorem VIIL3.

Definition 4. Let f;: T; > K be 2 -measurable, i = 1,...,d. We say that (f;) is
a I'’-integrable d-tuple, and write (f;) e #(I°), if (f;)e #(I(...) (x)) = £,(I(...).
.(x;)) for each (x;)e XX;, see Theorem X.5. For (f;) e #(I'’) and (4;) € Xa(2,))

we put
(Jean () AI°) (x3) = fap (£) A(I(.-) (x) -
We write (g;) € £,(I'°) if g;: T; - K is 2#;-measurable for each i = 1,...,d and
(fi) e #(I'°) whenever f;: T, > K is ?-measurable and |fi| < |g;| for each i =

- |,

Applying Theorem 2, and using the finiteness of the semivariation re= [|F
similarly as the preceding theorem one can easily obtain the following

Theorem 11. Let (f;) € #(I'°). Then:

1) There is a sequence (F;,)e X#;, k =1,2,... such that Fy, 7 F; =
={t,eT, ft) £0}, k™' < |fty)] £ k for each t;€eFyy, k=1,2,..., i=
= 1, ..., d, and sequences of finite 2-partitions 7, )(F; ) = (Fix, )i k= 1,2, ...,
i =1,...,d, such that (F; ,,, ; 0 F; )i 2 m; (F;,) in the sense of refinements,
for each k =1,2,..., i =1,...,d, and for any points t;, ;€ F; ; the inequality

rig d
[§cainrip (f) AT = 21 Hlf(’i,k,j) M40 Fiy)| < k71

j=1i=
holds for each (4;) € Xo(2;) and each k = 1,2, ... .

2) There are (f;,) € XS(2,,K), k = 1,2,... such that fi, = fi, |fix] 7 |fi] for
eachi=1,...,d, and

:\lilz (Jean (fi4) dT°) (x;) =;,-l_i.r: Joao (Fin) d(r() (x) =

= Jeao 1) d(I(-) (x2)) = (Jeay (fi) 417 (x))
for each (4;) € Xo(2;) and each (x;) € XX .
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3) #(I°) = #,(I°). For each (f;)e #(I") the indefinite integral [, (f;)dI":
Xo(2;) > L(X; Y), it is separately countably additive in the strong operator
topology, and its semivariation _[(,) ( fﬁ“ is locally o-finite provided I' is locally
o-finite on Xo(2).

If g; € S(2, K).fi: T; > K is ?-measurable and | f;| < |g,|, thenf;€5(G; n 2,,K),
where G; = {t,€ T;, g(t;) #+ 0} € Z;,i = 1, ..., d. From this fact and from assertions
4) of Theorem 6 and 3) of Theorem 7 we immediately obtain

Theorem 12 1) XS(2;, K) = Z4(I°).
2) If ¢y & Y, then L4(I'°) = £,4(I°), and (f;)e F(I°) if and only if (f))e
e S(y*I(...) (x;)) for each y* € Y* and each (x;) € XX,.

3. MONOTOE CONVERGENCE THEOREM AND CHARACTERIZATIONS
OF £,(I') AND OF BEPPO LEVI PROPERTY

Theorem 13 (Monotone Convergence Theorem in #,(I)). Let ¢, ¢ Y, let for
each i =1,...,d the functions f,f; .. Ti = X;, n=1,2,... be ?,-measurable,
and let f; , — f; and |f,-,,,[ 2 |f,-|, i=1,...,d, I'-almost everywhere, see Definition
X1.1. Then the following conditions are equivalent:

a) lim I[(f.,), (Ty)] = F[(f:), (T})] < + o0, and

n-— oo

b) (fi) e Z.(I),
and if they hold, then (f;), (f; ) € £1(I') = F(T') for each n = 1,2, ..., and

(1) lim  fepy (fimy I = fay (fi) AT
Negeey ng= oo
for each (4;) € Xo(2,)).
If in each of the d coordinates i = 1,...,d either the convergence f;, — f; is

uniform, or the multiple L,-gauge L[(f)), (..., Ti_y, *, Tity, -.-)]: o(2) = [0, + )
is continuous on o(2;), then the limit in (1) is uniform with respect to (A;) € Xo(2;).
Proof. Without loss of generality we may suppose that the convergences f; ,(¢;) =
- f{t;) and |f. (t)] 7 |fi(1:)] hold for every ;€ T;, for each i = 1, ..., d. Then the
equality in a) is a consequence of the Fatou property of the L,-gauge ). ()1
see Theorem VIIL4. a) = b) by Theorem XL5. b) = a) by Theorem XIIT.12. The
remaining assertions follow from LDCT in %,(T), i.e., from Theorem XI.10.

Definition 5. We say that the polymeasure I': X2, —» (X ;; Y) has the Beppo
Levi property if a)=>b) in the notations of Theorem 13, provided (f;,)€ £ (I )
for each n = 1,2, .... Note that in this case the conclusions of Theorem 13 hold.

The following theorem is related to Theorem VIIL.2.

Theorem 14. The following conditions are equivalent:
a) Z,.u(r)= £, 4(T),
b) £,.4(I') 0 XE(?:, X)) = £,4(T),
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) £,.4(I) = 2,I),
d) If (fl ")E XS('@"X)’ h = l 2 s fl n _), a"d lfl nl 7 lf:l fOI L’d(,h
i= . d, and T[(f). (T})] = lim f[(fl W) (T)] < 400 imply that

n— oo

lim j(A.-) (fi,,,) dr e Y exists for each (A;)e Xo(2;), hence that (f;)e #(I') and

n— oo

lim § 4, (fi.) AT = f(4 (fi)) AT for each (A;)e Xo(2;), and if they hold, then T'

n—o0

has the Beppo Levi property.

Conversely, if to each (f;) € XS(2,;, X,) there is a sequence (f;,)€ Z4(I), n =
= 1,2, ... such that f;, = fi for each i = 1,...,d, and if I has the Beppo Levi
property, then £ #(I') = £(T).

Proof. The only non obvious implication b) = c¢) is the assertion of Corollary of
Theorem 17 below.

Concerning the last assertion of the theorem, let (f;) € XS(2;, X), let (f;,)€
e#(I),n=1,2,...,and let f; , - f; for each i = 1, ..., d. For each considered i
take ¢; € S(2;, [0, + ©)), n = 1,2, ... such that ¢, , 7 |f;|. Put

Jim

[fl n
for n=1,2,... and i = 1,...,d. Then (h;,)e &,(I') for each n = 1,2, ..., see
Lemma XI.2, and h;, — f; and ]h,.,,,\ 7 |fi| foreach i = 1, ..., d. Hence (f;) € £,(T)

by Beppo Levi property of I. Thus XS(2;, X;) « £ (I'). But then £ .4(I') =
= &,(I') by Beppo Levi property of I.

hin =

| PinXitieT | f itz 1/n)

We now prove the following characterization of elements of £ ().

Theorem 15. Let g;: T; - X; be P -measurable, i =1, ...,d. Then (g;)e &,(I')
if and only if the following condition holds:

(CL): If (hip) e XS(2, X)), n=1,2,..., |hi,| < |gi| for each n =1,2,... and
each i=1,...,d, h;,, > h;: T, > X, for each i = 1,...,d, and if at least
one h;,i€{l,...,d} isidentically the zero function, then lim |, (h;,)dI’ =
= 0. i

Proof. The necessity of (C,,) is a consequence of the LDCT in &,(I'), i.e., of

Theorem XI.10.

Suppose (Cy,) holds. Let f;: T; > X be #;-measurable and let |f;| < |g,| for each

i =1,...,d. We have to show that (f;) € #(I'). Foreach i = 1, ..., d take a sequence

fin€S(2:, X)), n=1,2,... such that fi, — f; and ‘|f;,| 7 |fi]. We assert that

lim 4, (fi,)dl € Y exists for each (A4;)e Xo(2;), which implies (f;)e S ().

Suppose the contrary. Then there are: (4;) € Xo(#;), ¢ > 0, and a subsequence
{m} = {n} such that

§can Fimes) AT = feay (fimd dT] > &

437



for each k =1, 2,.... Since

Jcap Fimend) AT = Jeap (fimd AT = feay Frmers = Fimeo
S2mes s ""fd;"k+l) ar + .. + .‘.(A;) (fl,ma v Saetme s
Jamer = fam)dl,
there is an iy € {1, ..., d} and a subsequence {k,} < {k} such that the inequality
§caiy (oo Fiom ey Fiomesor = Fiomep Fiok tmeyars ---) AT > &d ™1

foreach j = 1,2,.... Put h; ; = fi 0 Xa, for i < ig, higj = (fiomeser = Fiome)) Ldio >
and h;; = fi,,, . xa, for i >ig,j = 1,2,.... Then we have a contradiction with the
condition (Cp,).

Analogously the following characterization can be proved:

Theorem 16. The polymeasure I' has Beppo Levi property if and only if the
following condition holds:

(Co): If: (hi,) e XS(2, X)) L4(T), n=1,2, ., [[(sup |h;,]), (T})] < +oo,
hi,— hi T;—> X, for each i =1,...,d, and at least one hy, ie{1,...,d}

is identically equal to the zero function, then lim [, (h;,)dI’ = 0.
n-=oo

Another usefull characterization of elements of #,(I') is given by the following
Theorem 17. Let g;: T; > X; be P-measurable, i = 1,...,d. Then (g;) e Z(I')

if and only if I'[(g,).(T,)] < + oo and (h;) € #(I') whenever (h;) € XE(?,, X;) and
|hi| < |gi| for eachi =1, ..., d.

Proof. The necessity follows from Theorem XIIL.6 and the definition of Z,(I).

Sufficiency. Let f;: T, > X; be 2 -measurable and let |f| < |g,| for each i =
=1, ...,d. By assertion 3) of Theorem 3 for each i = 1, ..., d there is a sequence
hi,€E(#,X;), n=1,2,... such that |h;,| 7 |fi] and |f; — h;,| < (1/n)|fi| for

eachn =1,2,.... Hence
1
(1 ; ~> g1
n

|| < (1 . l) 7
n

foreach n = 1,2,...and each i = 1,...,d. Thus

((1 + %)ﬂ hi,,,) e A(I),

hence (h;,) € S(I) for each n = 1,2,... by assumption. Since h;,(t;) - fi(t;) for
each t;e T;and each i = 1, ..., d, and since

[fcap (hiw) AT = feay (hi) dT| =

é ”(A,‘) (hl,n - hl,k’ h‘z,n’ “ees hd,n) dr‘ + ...

e + “‘(a‘h) (h'l,k’ ey h’d—l,k’ hd’,, - h‘d,k) drl é

IIA
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F[(fi) ()] < 2 f[(g) )
for each (Ai)e Xa(.%) and each k, n = ny, (fi)e #(I') by Theorem IX.4 — 1).
Since ( f i) with required properties was arbitrary, (g )EZL 1(F )-
Corollary. 2, . #(I') = (') if and only if £1M(T) " XE(?;,X;) = £, 4(T)-

Theorem 18. Let g;: T, — X; be 2 rmeasurable, i = 1,...,d. Then (g;)e 2,(I')
if and only if the following condition holds:

(C2): P00, (T)] < +<0. and if (hyp) e XS@u XD, 1= 1,2, .ec, [his] < Jad
for each n=1,2,... and h;,.h;, =0 for n*k, i=1,..,d, imply
. N+1 N
h}‘m [§era ( Zlhi,n) ar — j(Ti)(Zlhi,n) drj=o.
Proof. Let (g;)€ %,(I'). Then I'[(g;),(T;)] < + o by Theorem XIIL12. Let
(hin) € XS(2:, X)), n = 1,2, ... satisfy the assumptions of (Cf,). Put h; =Y h;pm
ns1

i=1,...,d. Then (h;)e XE(#;,X;) and |h,| < |g;| for each i =1,...,d. Hence
(h;) e #(I) by Theorem 17. Put y(4;) = [(4, (h:) dT, (4;) € Xo(2;). Since H, y =

={t;eT, Zh,,,(t) + 0} " H;={t;eT, h{t;) + 0} for each i = 1, ..., d,

lim y(H; ) = lim [z, ( Z h;,)drey
N-oo N-w n=1

exists by Theorem VIIL.1.
Suppose (C},) holds. Let (h;) € XE(2;, X;) and let |h;| < |g;| foreach i = 1, ..., d.
According to Theorem 17 it is enough to show that (h;) € #(I'). BEach h;, i =1, ..., d

is of the form h; = Z X;,jX4;,;» Where X; ;€ X; and 4, i €?;,j=1,2,...are pairwise
disjoint. For i = 1 sdand k =1,2,...putu;, = Z Xi,iX4:., € S(2:, X;). Clearly
;= h; for each i = 1, ..., d. We assert that 11m j( A0 (u, ) dI" € Y exists for each

(4;) € Xo(2;), and this by Theorem IX.1 will 1mply the integrability of (k;). Suppose
the contrary. Then there is an (4;) € Xa(#;), and ¢ > 0, and a subsequence {k,} = {k}
such that

[§can (@iknes) AT = Jeap (in,) AT| > &

foreachn =1,2,....Forn =1,2,...and i = 1,...,d put h; , = (U, — U;pn_,) -
. X4 Where u;, = 0. Then we have a contradiction with the assertion in (C)).
Hence (k;) € #(I'), what we wanted to show.

Analogously our last characterization can be proved.

Theorem 19. The polymeasure I' has Beppo Levi property if and only if the
following condition holds:
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(Cho): If(h,.,,,)exs(g'i,xi)n L), n = 1,2, T R Oforn *+ k,n, k =
=1,2,..., i=1,..,d, and 11m F[(Zh, ,,) (T)] = F[(Zh,,,) ()] <

N+

< +o00, then lim |j(7)(2h,,,)dl" j'(m(Zh,,,)dl‘l = 0.

N—-w
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