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1. DEFINITIONS AND AUXILIARY RESULTS

All graphs considered in this paper are undirected, without loops and multiple
edges. By a factor of a graph G we mean a subgraph of G containing all vertices
of G. A system of factors of G such that every edge of G belongs to exactly one of
them is called a decomposition of G.

If G is a graph then V(G) and E(G) denote its vertex set and edge set, respectively.
We shall denote the number of elements of a set M by |M|.

The problem of the existence of the decomposition of the complete graph into
two factors with given diameters is solved completely in [1]. In [1] many other
questions concerning the decompositions of complete graphs into factors with given
diameters have been solved and some open problems have been formulated. Later
mainly the problem of the decomposition of complete graphs into factors of diameter
two was investigated very intensively [3, 4, 5, 6]. In this paper we shall investigate
the decompositions of complete graphs into three factors F,, F,, F; with given
diameters d,, d,, d;, respectively. We admit the factor F; to be disconnected, i.e.
d; = 0.

Every shortest path between two vertices of a connected graph G the distance
of which is equal to the diameter of G will be called a diameter path of G. Note that
the diameter path of G may or may not be determined uniquely. In what follows the
symbols C,, C,, C; will denote arbitrarily choosen but fixed diameter paths of con-
nected factors F,, F,, F, respectively. Further, 4; will be the set of vertices of C;
(i = 1,2, 3). In some cases the above given indices will be omitted.

In [1, Theorem 9] it has been proved that if none of the diameters d,, d,, d;
equals 1 then there exists a positive integer n such that the complete graph with n
vertices (K,) has a decomposition into 3 factors with the diameters d,, d,, d5. The
least such n will be denoted by F(d,, d,, d;) and in the case d; =d, =ds = d
by f(d). '

The following results (A)— (D) are proved in [1]:

(A) If the complete graph K, is decomposable into 3 factors with diameters d, d,, d5
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then for N > n the complete graph K}, is also decomposable into 3 factors with
the same diameters (it is a special case of Theorem 1 in [1]).
(B) If 5 < d, < d, < d5 < o0 then
F(dy,dy d3) < dy +dy + dy — 8
(it is a part of Theorem 6 in [1]).
{C) If d is an positive integer, d = 5 then
2,366d — 5,965 < f(d) < 3d — 8
(see Theorem 10 in [1]).
(D) Letd; < d, < . We have:

I. If d; = 5 then
max {d,, 3(d, + d, — 2)} < F(d,,d,, ©) < d; + d, — 4;

II. If2 < d; < 5then F(dy, d,, 00) = d, + 1 except the values F(2,2, c0) = 5
and F(2,3, ) =6

(see Theorem 8 in [1]).

Note. In what follows we shall briefly say ‘‘the vertices of the graph G are adjacent
to k vertices from B” instead of ‘‘there are exactly k vertices in B such that each of
them is adjacent to at least one vertex of G”.

Lemma 1. a) Each vertex v € V(F) is adjacent (in the factor F) to at most 3 vertices
from A and moreover the distance between any two of them is not greater than two.

b) If a connected subgraph G of a factor F has diameter | then the vertices
of G are adjacent to at most 1 + 3 vertices from A — V(G) and moreover the
distance between any two of them is not greater than | + 2.

Proof. The statements are obvious if we realize that the set A is the set of vertices
of some diameter path C in the factor F.

Lemma 2. a) |4, n A, 0 A;] £ 6

b) Let i, j, k be an arbitrary permutation of the numbers 1,2, 3. If d; = 14 then
|4;n 4 S 6.

Proof. a) Let |4, N 4, n A;| = k. Every edge of the complete graph K with the
vertex set A; N A, N A; must be an edge of some of the diameter paths Cy, C,, Cs.
Each of these paths can contain at most k — 1 edges of K and thus we have

k(k — 1)
= 1)z =——

which implies our statement.

b) We shall proceed in indirect way. We suppose that, for instance, |4, N A;| > 6
(in other cases we can proceed in an analogous way). Let 4 = {v, v,, ..., v;} be an
arbitrary subset of the set A, N A; and K be the complete graph with the vertex
set A. At most 12 edges of K can belong to E(F,) U E(F;) and thus at least 9 edges
of K belong to the factor F;. Let F} be the induced subgraph of F; with the vertex
set A. F] has at least 9 edges and the degree of every vertex of F; is obviously at
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least 2. It is easy to. verify that the graph Fj is either isomorphic to the graph in
Fig. 1 or connected and its diameter is not greater than 4. First part of this lemma
implies (if d, > 5) that the set A; — (4, N A3) is nonempty. We consider the edges
vy, UV, ..., VU7, Where v is an arbitrary vertex from 4, — (A2 N A3). At least one
of these edges belongs to F,.

V- v,

V_.‘l 7 6

v, Va Wy Vg
Figure 1.

In fact, according to Lemma 1la at most three from these edges belong to F, and at
most three belong to F;. If F} is isomorphic to the graph in Fig. 1 then the vertices
each of its components can have at most 4 adjacent vertices in A; — (A4, N A3)
(see Lemma 1b) and therefore |4, — (4, N A;)| < 8. If F} is connected then by
Lemma 1b we have [A1 — (4,0 A3)| < 7. Finally, we get |A1i <=8+ 6, ie.
dy <13,

Lemma 3. If |A1 N AZ[ < 6 then the vertices from A, N A, are adjacent in F
to at most 12 vertices from Ay — (Ay 0 4,).

Proof. (i) If |4, n A4,| < 4 then by Lemma la the vertices from 4, N A4, are
adjacent in F; to at most 4.3 vertices from A; — (4; N A4,).

(ii) If |4, » A,| = 5 then at least 2 edges of the complete graph with the set of
vertices A, N A, belong to F5. It suffices to consider the case when the above men-
tioned edges are exactly 2. If these edges are adjacent then according to Lemma 1
the vertices from A; N A, are adjacent to at most 2.3 + (2 + 3) = 11 vertices
from A; — (4, N A4,). If these edges are not adjacent the result is the same since
13 42.(1+3)=11.

(1) If ]A1 N A2| = 6 then the subgraph Fj of the factor F5 induced by the set
A; 0 A, has at least 5 edges and the degree of every vertex of Fj is at least 1. If the
graph Fj is connected then its diameter is at most 5 and according to Lemma 1b
the vertices from 4; N A, are adjacent to at most 8 vertices from A; — (4, N 4,).
If the graph F is not connected then it has two components and one of them has
diameter 1 and the other has diameter 1 or 2. Thus according to Lemma 1b the
vertices from 4, N A, are adjacent to at most (1 + 3) + (2 + 3) = 9 vertices from
As — (4; N 4,).

Lemmad. Let i,je{1,2,3},i +j. Let B, < A;, B; € A;, |B| =k, |B;| =m and
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B;n B; = 0. Let E be the set of all edges uv where u € B; and v € B;. Then at most
3(k + m) edges from E belong to E(F,) U E(F;).

Proof. According to Lemma la each vertex from B; can be adjacent in F; to at
most 3 vertices from 4; and thus at most 3k edges from E can belong to the factor F;.
In an analogous way it can be shown that at most 3m edges from E can belong to

the factor F;.

MAIN RESULTS AND PROBLEMS

Corollary of Lemma 2.

lim J:(—d—) =3
d—

Proof. For d = 14 and for any decomposition of a complete graph K into 3
factors of diameter d according to Lemma 2b we have

[V(K)| 2 |4y © Az U 45| = |44] + |4s] + |45] — |41 0 4, =
— |4, 0 A5 = A, 0 45| + |40 A0 4s] 2
>3(d + 1) — 3.6 = 3d — 15.
Then the upper bound for f(d) given in (C) yields
3d — 15 < f(d) < 3d — 8.

Thus Problem 3 from [1] is solved.

z=-t (AinA3)'A-|

(A]nAz)"A3 A1nA2nA3 (AnlnAa)'Az

Figure 2

In the sequel we shall use the graphical scheme from Fig. 2 with the following
denotations: [4; N A,| =X, [d; N A3| =y, |[A,;n'As] =z, [A;n 4,04, =1t

Lemma 5. Let us suppose there are vertices v € A; — (A, U Az), v,€ A, —
— (A4 U 43) and vy € A3 — (A, U A4,) in a complete graph K such that the fol-
lowing conditions are fulfilled:

a) v,0; € E(F3), v,03 € E(F,), va0; € E(F)),
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b) if ve(A; N A,) U (A 0 A3) U (A, 0 A;) then v ¢ E(F)) for i = 1,2,3.
Then |V(K)| 2 d; + d, + ds — 8. :

Proof. Since vv, € E(F;) then according to Lemma 1b the vertices vy, v, are
adjacent in F5 to at most 4 vertices from A; and similarly the vertices v,, v; are
adjacent in F, to ai most 4 vertices from A, and the vertices v,, v; are adjacent in F,
to at most 4 vertices from A,. At first we shall investigate from the point of view of
possible distribution into individual factors only the edges of the following three
types:

(i) vyw, where we A, N A4,

(i) v,w, where we A; N A3,

(ili) v3w, where we 4, N 4,.

an edge of F,
_____ an edge of F,
—.—.—.- an edge of Fy

Figure 3

Fig. 3 represents one of the ways of distribution of these edges into individual
factors which corresponds to the conditions of the lemma and Lemma 1b. It is
easy to verify, if such a way exists the following inequality holds:

(1) -0+ -0)+(z—-1)+20£34.
It can be the equality in (1) only in the case when the vertices v,, v; are adjacent
in F, to exactly 4 vertices from A; n (4, U A;), the vertices v, v; are adjacent

in F, to exactly 4 vertices from A, N (4, U 4;), the vertices v, v, are adjacent
in F; to exactly 4 vertices from A; n (4, U 4,) and in addition for every vertex
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veA; n A, N A; the edges vog, vv,, Loy belong to exactly two factors. From (1)
we have

(2) X+y+z—1t=<12.

Using the inclusion — exclusion principle we get from the inequality (2) the fol-
lowing estimation for |V(K)|:

VK 2[4y v 4z 0 43| = [4i] + [4a] + [45] = |4, 0 4] -
— Ay 0 As| = |[As N A5l + [A oAy n Ayl = (d, + 1)+ (d, + 1) +
+(dy+1)—x—y—z+t2d;+dy+d;—9.

Now we are going to show that the case [V(K)| = d, + d, + d; — 9 is not possible.
From the preceding considerations it follows that the considered case would happen
only under the following assumptions:

(i) the vertices v,, v are adjacent in F; to exactly 4 vertices from 4, N (A4, U 4;);
denote them x,, X,, X3, Xy,

(ii) the vertices v,, v; are adjacent in F, to exactly 4 vertices from A, N (4, U 43);
denote them yy, 3, V3, Va,

(iii) the vertices v, v, are adjacent in F5 to exactly 4 vertices from A3 N (4, U 4,);
denote them zy, z,, z3, z4.

Without loss of generality the preceding notations can be chosen by Lemma 1 so
that the edges vyx,, X1X;, X,X3, X3X4, X40, € E(F;) (besides, of course, x, € 4, N 4,,
X4 € Ay NV A3), V1V, VaVs, YaVa € E(F,) and z,z,, 2,23, 2374 € E(F5). The edge
v3X4 ¢ E(F3) by the assumption. Further, vsx, ¢ E(F,) since in the opposite case the
vertices x,, x, would have the distance in F, less than 3. Consequently vsx, € E(F,).
In an analogous way it can be shown that v,x, € E(F5). Further x; = y; for i =
= 1,2,3,4. In fact, if x; € (4; N 4,) — A the foregoing statement is obvious and
if x, € A} N A, N A;then x,v, ¢ E(F,) by the preceding considerations (vsx, € E(F,),
v,x; € E(F3) and the edges v,X,, v,x;, v3x, can not belong to 3 factors). Similarly,
Y
P "% T
N

- ' \ .
. \ AN
| \ '
/ I \
|

!
: T \
\ /’5_’ PXa| |

\ N\ z /

\ -7 \,

A vy

Figure 4
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it can be shown that x4 + z; for i = 1,2,3,4. If x, € A, — A; then v,x, € E(F,).
In fact, by the assumption we have v,x, ¢ E(F,) and in the case v,x; € E(F,) the
vertices vy, vy would be adjacent in F, to 5 vertices Yy, V2, V3, Y4, X1 from A, which
is impossible (see Lemma 1b). If x, € 4; N A, N A then again v,x, € E(F;) because
two of the edges v,x,, v,X, v3x; must belong to one factor and we know already
that v,x, € E(F;), v3x; € E(F;) and v,x, ¢ E(F;). Thus we have proved that v;x, €
€ E(F5). Similarly it can be shown that v,x, € E(F,) (this is also obvious from sym-
metry). Now we are going to show that the edge x;x, can not belong to any factor
(see Fig. 4).

It is obvious that x,x, ¢ E(F,) since x;, x,, X3, X4 € Ay and X;X,, X,X3, X3x4 € E(F,).
If the edge x,;x, belonged to F, the distance in F, of the vertex x, from each of the
vertices )y, ¥,, V3, ¥4 would be less than 4, which is impossible, since X, yy, ¥2, Vs,
Ya€ Ay Y1V VaVs, V3Va € E(Fz) and x; # y; for i = 1,2,3,4. If the edge x;x4
belonged to F; the distance in F5 of the vertex x, from each of the vertices z,, z,,
z3, z, would be less than 4, which is impossible, too. The proof is finished.

Theorem 1. If 65 < d, < d, < dy < o then
F(dy,dy,d3) =d; +dy, +dy — 8.

Proof. According to (B) it is sufficient to prove that the assumptions of the
theorem imply those of Lemma 5. By Lemma 2b we have |[4; 0 4,| < 6 and by
Lemma 3 the vertices from 4; N 4, are adjacent in F5 to at most 12 vertices from
A; — (A, U'A4,). Further, any vertex from A3 can be adjacent in F; to at most 2
vertices from Aj. Since according to Lemma 2b |4, N A;| <6 and |4, " 45| £ 6
the vertices from (A4; N A;) U (4, N 45) are adjacent in F; to at most 24 vertices
from A3 — (4; U 4,). Therefore, if dy + 1 > 6 + 6 + 12 + 24 = 48, i.e. d; > 47
there is a vertex v, belonging to A3 — (4, U 4,) for which the condition from the
part b) of Lemma 5 is fulfilled. For dy > 65 there exist at least 19 such vertices.
Analogous considerations hold also for the vertices v, and v,. Now we are going
to show that there is a triangle v,v,v; for which also the conditions from part a) of
Lemma 5 are fulfilled. Let B, < A; — (4, U A3), B, = 4, — (4, U 43), B; <
S Ay — (A, U A4,) and |B,| = |B,| = |Bs| = k. The total number of triangles
with the vertices in the sets B,, B,, B; (always one vertex in each of the considered
sets) is k*. According to Lemma 4 at most 3.6k.k = 18k” of these triangles do not
satisfy the conditions a) of Lemma 5. Thus if k*> > 18.k?, i.e. k > 18 then there
exists a triangle with the desired property.

Theorem 2. If 5 <d, <d, < w then F(d;,d,, ®) =d, + d; — 4 except the
value F(6,6. x0) = 7. ‘

Proof. According to (D) it is sufficient to show that F(dy, d,, 00) 2 d; + d, — 4
except the value F(6, 6, o). Let K be an arbitrary complete graph and let the factors

F,, F,, F5 form its decomposition, where d, < d, < o0 and the factor Fj is dis-
connected, i.e. d(F3) = oc. We shall consider three cases:
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(i) |4, 0 4,] £ 6.
In this case we have
V()| 2 Ay A = [44] + |4a] = |4y A =
=(d+ 1)+ (dy+1)— [Ad;n 4| 2 dy +dy — 4.

(i) |4, N 4,| > 6 and d, > 6.

Let B = {0y, v,.....0;} S A; N A, and v be an arbitrary vertex from V(K) — B.
According to Lemma la at least one from 7 edges vvy, vv,, ..., vv; belongs to the
factor F5. Thus we see that if the subgraph H of the factor F5 induced by the set B
were connected the factor F3; would be connected too, a contradiction. Thus the
graph H is disconnected, has at least (Z) — 12 = 9 edges and the degree of each
of its vertices is at least two. It is obvious that the graph H must be isomorphic to
the graph in Fig. 1. Then the subgraph of the factor F; induced by the set B is a path
of length 6 and similarly the subgraph of the factor F, induced by the set B is a path
of length 6. Without loss of generality we can assume that the considered paths
are v,0,050,06030; in the factor F; and vsv;3040,0,0,04 in the factor F,. Take any
vertex v from A, — B; at least one such vertex exists since d, > 6. It is easy to verify
that none of the edges vv,, vv,, vv; can belong to the factor F, and at most two of
them can belong to the factor F. Then at least ont of the edges vv,, vv,, vv; belongs
to the factor F;. Further, at least of the edges vvg, vvs, v0g, V0, belongs to the factor F.
In fact, it is easy to verify that at most one of these edges namely vvs or vvg can belong
to the factor F, and at most two of them can belong to the factor F,. The above
mentioned facts imply that the factor F; is connected, a contradiction. Thus we
have shown that the case (ii) is impossible.

(iii) |4, N 4,| > 6 and d, < 6.

These conditions are fulfilled only in the case d; = d, = 6. It is easy to see that
the graph in Fig. 1 together with the paths v40,050,05030; and v5V3040,0,0106 form
the decomposition of the graph K into one disconnected factor and two factors with
diameter 6. Hence F(6, 6, c0) = 7 since the inequality F(6, 6, 00) = 7 holds trivially.

We should like to conclude our paper by presenting two open problems.
Problem 1. Is there positive integer d such that f(d) = 3d — 10?

Remark. It is possible to show that the inequality f(d) = 3d — 10 holds for
every positive integer d.

Problem 2. Determine the greatest positive integér d such that f(d) =3d -8
and f(d — 1) <3(d - 1) - 8.

Remark. f(5) = 6, f(6) = 9 (see [1], [2]).
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