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In this paper we consider algebras of a given type 7: F — N where F is a set of
fundamental operation symbpls, N is the set of positive integers and F is finite.

An identity ¢ = ¥ of type 7 is called regular (see [12]) if the sets of variables
occuring in ¢ and ¥ coincide. For a term ¢ we denote by F(¢) the set of all funda-
mental operation symbols occuring in ¢.

In [14] biregular and uniform identities were defined, namely: an identity ¢ = ¥
of type 7 is called biregular if it is regular and F(¢) = Fy).

An identity ¢ = ¥ is called uniform if F(¢) = F() = F or F(¢) = F() + F and
@ =y is regular.

For a variety K of type © we denote by Id(K) the set of all identities of type T
satisfied in K.

We denote by Kg, Ky and Ky the varieties of type t defined by all regular,all
biregular and all uniform identities from Id(K), respectively.

In this paper we give some representation theorems of algebras from Ky and K.
Our results are of the form: If there exist unary terms g;(x), ¢,(x), ..., g(x) satisfying
some conditions then an algebra 2 belongs to Ky(to Kp) iff 2 is isomorphic to a sub-
direct product of some algebras A, ..., 2, where U, belongs to K (to Kg) and the
structures of 2, ..., A, are also described.

In each case we construct an equational base of K and Kz by means of anequational
base of K and K, (see theorems 1 —4, sections [ —3).

In section 4 we define a construction called the absorbing sum of a semilattice
ordered system (which is useful in section 5, where we apply our results to important
varieties of groups, lattices and Boolean algebras).

In section 6 we give an example of a variety K with three unary fundamental
operation symbols which is defined by one identity and such that K is not finitely
based.

The results of this paper were announced by the author at the Summer School on
Universal Algebra and Ordered Sets in Donovaly, Czechoslovakia, September 1985.
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0. PRELIMINARIES

Let 7: F — N be a type of algebras, where F is the set of all fundamental operation
symbols and N is the set of positive integers (see [3]). If K is a variety of algebras
of type 7 we denote by Id(K) the set of all identities of type t satisfied in K. If E is a set
of identities of type T we denote by C(E) the set of all identities provable from E by
means of Birkhoff’s derivation rules (see [3], p. 93) and we denote by V(E) the
variety of type t defined by E. If ¢ is a term of type = we denote by Var (¢) the set
of all variables occuring in ¢ and by F(¢) — the set of all fundamental operation
symbols occuring in ¢. In many papers identities of some special forms were con-
sidered. Let us quote some definitions:

Definition 1. An identity ¢ = y of type 7 is called regular if Var (¢) = Var ()
(see [12]). .

Definition 2. An identity ¢ = Y of type 7 is called biregular if F(¢) = F(y) and
Var (¢) = Var () (see [14]).

Definition 3. An identity ¢ = ¥ of type 7 is called uniform if F(¢) = F(y) = F

or F(¢) = F(y) + F and Var () = Var (/) (see [14]).

For example the identities (x + y).z=x.z+ y.z and (x + y) + z = x +

+ (v + z) are biregular and x + (x.y) = x + (x. x) is uniform if F = {+, +}.

Let K be a variety of type 7. We denote by R(K), B(K) and U(K) the sets of all
identities from Id(K) described by definitions 1 —3, respectively.
Regular identities and the varieties V(R(K)) were considered in a lot of papers,

(see e.g. [6], [8]—[13] and [17]).

The results obtained for uniform identities can be applied to biregular identities.

In fact we have

() BIK) = U(R(K)).
So in every section we describe first the variety V(U(K)) and then the variety V(B(K)).
Fora term ¢ the notation ¢(x;,, ..., x; ) will mean that Var (o) = {x;,...,x; }.

In the sequel we make use of the following facts:

(if) If E is a set of regular, biregular, uniform identities of type t, then every identity
from C(E) is regular, biregular, uniform, respectively (see [14], so each of
R(K), B(K), U(K) is an equational theory (see [18]).

(iii) Let K be a variety of algebras without nullary operations and K satisfies the
condition

(0.1) there exists a term ¢(x, y) such that the identity ¢(x, y) = x belongs to Id(K).
Then every algebra from V(R(K)) is the sum of a semilattice ordered system
of algebras from K (see [13], theorem 3 and [12]). '

The class of all sums of semilattice ordered systems of algebras from K will be
denoted by K. ‘

(iv) If K satisfies the assumption (0.1), F is finite and K is finitely based then V(R(K))
is finitely based (see [6]).
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(v) If K is an equational class of unary algebras of type t (¢(F) = {1}), then an
algebra U belongs to V(R(K)) iff 2 is the sum of a system o = I, {W;} ;) of
disjoint algebras, where ; € K (see [13] and [17]).

(vi) If K is an equational class of unary algebras of type 7, F is finite and K is finitely
based, then V(R(K)) is finitely based (see [17]).

For a class K of unary algebras we denote by Kg, the class of all sums of systems
of disjoint algebras (see [17]).

We shall denote by K; v K, v ... v K, the join of varieties K, ..., K, and by
K, ® K, ® ... ® K, the class of all algebras isomorphic to a subdirect products
of algebras A, A,, ..., A, where A; e K, for i = 1, ..., n. Finally we denote Kz =
= V(R(K)), Ky = V(U(K)), Kp = V(B(K)).

1. SUBDIRECT DECOMPOSITION OF K; AND Kj

From now on we shall consider algebras of type 7: F — N, where F = {fy, ..., f}
(1=m=sN), ff)=n>0,i=1,...m.

We denote by T({F}) the set of all identities ¢ = ¢ of type 7, where F(¢) =
~ F(Y) = F.

Let K be a variety of type t. Put E¥ = T({F}) u B(K), K* = V(E*).

Lemma 1. The set E* is an equational theory.

In fact, since B(K) is an equational theory so E*is closed under Birkhoff’s derivation
rules (see [3], p. 93).

Let K be a variety of type 7 satisfying the following condition:
(1.1) There exists a term g(x) of type 7 such that the identity g(x) = x belongs

to Id(K) and F(g(x)) = F.

Let B be an equational base of K and B* be an equational base of K*.

For a fixed term g(x) from the condition (1.1) we denote by B’ the set of identities
of type 7 defined by the following conditions (a;)—(ae).

(a;) The identity q(q(x)) = g(x) belongs to B'.
(a,) Bach of the identities q(fi(xy, ..., X,,)) = filX1s --os Xem 15 A(Xk)s Xiw 15 -5 Xn,)s

i=1,...,m; 1 £k < n;belongs to B'.
(as) If an identity ®; = ¢, belongs to B, then the identity q(¢;) = q(¢) belongs
to B'.

(as) Ifanidentity ¢; = @, belongs to B* and F(g,) = F(¢,) = F, then the identities
9(¢,) = ¢, and (I(%) = ¢, belong to B'.
(as) If an identity ®; = ¢, belongs to B*,
F(p,) = F(@,) + F, Var(¢,) = Var(¢,),
then (¢, = ¢2)€ B'.
(ag) B’ contains only identities required in (a;)—(as)-
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Theorem 1. If K is a variety of type t satisfying (1.1-), then Ky = K v K* =
= K ® K*. Moreover, if B is an equational base of K, B* is an equational base
of K*, then B’ is an equational base of Ky.

Proof. Obviously K ® K* < K v K*. Further U(K) < Id(K) n (B(K) u T({F})),
so K v K* = K. We shall show that B’ = U(K), so Ky < V(B'). In fact the iden-
tities required in (a,)—(a,) belong to U(K) by (1.1). Consider (as). By Lemma 1 the
identity @; = ¢, belongs to B(K)\ T({F}), so it belongs to B(K) < U(K).

To complete the proof it is enough to show that every algebra A = (A; FQI) from
V(B') is decomposable into a subdirect product of two algebras 2, and A,, where
A, eK and A, eK*. On A let us define two relations P, and P, by putting for a, be 4:

aP b iff q(a) = q(b)

aP,b iff a=b or g(a)=a and q(b)=0b.
Obviously P; and P, are equivalences. We shall show that they are congruences
on 2. Denote q'(x) = q(x), ¢"*'(x) = q(g"(x)). If a, Py b, (k = 1,..., n;), then we
we have by (a,), (a,):

q(fi(ala cees ani)) = qni(fi(an cees ani)) = fi(q(al)e ces Q(an.-)) =
= fi(Q(b1): cees ‘I(bn;)) = q"i(fi(bn ey bn,-)) = q(fi(bla ces bn,-)) .
Thus fi(ay, ..., a,,) Py filby, ..., by,).

Let a; P, b, for k = 1,...,n;. If a, = b, for k=1,...,n, then f(ay, ..., a,,) =

= fiby, ..., by,). So filay, ..., )sz,(bl, oo by).
Otherwise there exists pe {1,...,n;} such that g(a,) = a, and g(b,) = b,. Then

by (az)
q(fi(a17" ay )) ft(ala' L] p 1» q(ap) ap+1""van,-) =fi(ala-"9 all[)'
Similarly q(fi(by. .-, bay)) = fi(by. ..., by,), so fiay, ..., a,,) Py fiby, ..., by).
By (as), (A/P,) € K. By (a,) and (as) /P, satisfies all identities from B*, so all
identities from E* and consequently (2/P,) € K*.
We prove that P, n P, = w, where w is the diagonal of A x 4.
If aP,band aP,b,thena = b or a = g(a) = q(b) = b.
Now by Birkhoff’s theorem (see [1], [2]) U is isomorphic to a subdirect product
of A, and A,, where
Ay = (APy); A = (AP,), A eK, AyeK*.
This completes the proof. ’
Corollary 1. If K is a variety of type T satisfying (1.1), K is finitely based and K*
is finitely based, then Ky is finitely based.

Corollary 2. If K satisfies (1.1), T({F}) and B(K)\ T({F}) haveﬁnlte equational
. bases, K is finitely based, then Ky is finitely based.
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In fact, by Lemma 1 E* = T({F}) u (B(K)\ T({F})) is an equational theory.
So E* has a finite base and we can apply Corollary 1.

Let K be a variety of type t satisfying (1.1). Let D be an equational base of Kg
and B* be an equational base of K*. Denote by B” the set of identities of type T
defined by (a,), (a,), (a4)—(as) and the following condition (a}):

(a%) If an identity @, = ¢, belongs to D, then the identity g(¢,) = gq(¢,) belongs
to B'.

Theorem 2. If K is a variety of type t satisfying (1.1), then Ky = Kp v K* =
= Kr ® K*. Moreover, if D is an equational base of Ky, B* is an equational base
of K*, then B' is an equational base of Kp.

Proof. First let us observe that we have always

(Kr)* = K*
since B(K) = B(R(K)). Further Ky also satisfies (1.1). Applying Theorem 1 to Kp
we have by (i)

Ky = (Kpy = Kg v (Kp)* = Kg ® (Kp)* = Kz v K* = Kp ® K*.
Applying the second statement of Theorem 1 we must substitute K by Ky i.e. we
must substitute (a;) by (a%). Then we infer that B is an equational base of (Kg)y = Kp.

Corollary 3. If K satisfies (1.1) and both Ky and K* are finitely based, then Ky
is finitely based.

Corollary 4. If K satisfies (1.1), Ky is finitely based and each of the sets T({F}) and
B(K)~\T({F}) has a finite equational base, then Ky is finitely based.

Corollary 5. If K satisfies (1.1) and (0.1), then Ky = Kg ® K*. Moreover, if K
and K* are finitely based, then Ky is finitely based.
This follows from (iii), (iv) and Corollary 3.

Corollary 6. If K is a variety of unary algebras satisfying (1.1), then Kg =
= K, ® K*. Moreover, if K is finitely based and K* is finitely based, then Ky
is finitely based.

This follows from (v), (vi) and Corollary 3.

Remark [. An identity ¢ = y is called non-trivializing (see [15]) if it is of the
form x = x or neither ¢ nor ¥ is a single variable. So if F = {f,}, then an identity
¢ =y is uniform iff it is non-trivializing. In this case the first statement of Theorem 1
coincides with the result from [15]. If F = {f,}, then it is easy to see that K* is
finitely based, namely it can be defined by a single identity

(12) fl(xla“'sxnl) =f1(yl7"',ynl)-

So every algebra from K* is an algebra with one constant operation. Thus the first
statement of Theorem 1 gives a simple representation. Moreover, the assumption
that K* is finitely based in above corollaries is satisfied.
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Corollary 7. If K is a variety of type t: {f;} — N, where t(f,) > 1, K satisfies
(0.1), then K = Ks ® K*, where K* satisfies (1.2). Moreover, if K is finitely based,
then Kj is finitely based. .

In fact, it is enough to put g(x) = ¢(x, x), where ¢ is the term from (0.1) and to
apply Corollary 5.

Example 1. Let K be the variety of groups with one fundamental operation - satis-
fying x” = y". Then Kz = K5 ® K*, where K* is described by x . y = u . v. In fact,
it is enough to put ¢(x, y) = x . y” and apply Corollary 7.

Remark 2. The class Kg in Example 1 was described previously by A. H. Clifford
(see [4] and [5]).

2. VARIETIES OF ALGEBRAS WITH TWO FUNDAMENDAL OPERATIONS

In this section we assume that F = {f}, f,}. Let us denote by T, the system of the
following identities
(2]) fl(xl’ ceey xk~1’f2(y1’ ceey yn2)5 xk+1’ ceey Xm) =

= foz1s ooy Zjmgs S1( gy ooy Uny)s Zjtgs oeos Zny)

where 1 S k < n;,, 1 £j < n,.

Lemma 2. T({F}) = C(T,).

Proof. Obviously T, = T({F}), so C(T,) = T({F}). Let us denote:
(22) c Efl(fl(yl’n-’ yng)a x2»~~-axn1 s

where ¢ =  means that ¢ and Y have the same structure.

To prove that T({F}) = C(T) it is enough to show that for every term ¢ such
that F(¢) = {f.f,} we have:
(2.3) (¢ = c)eC(Ty) .

We prove this by induction on the complexity of ¢.

If ¢ is obtained in the second step of constructing terms, then ¢ is one of the form
written on the left or on the right hand side of (2.1) (up to choice of variables).

Thus, by (2.1) and (2.2), we get (2.3).

Let us assume that (2.3) holds for all terms obtained in k'th step for 2 < k < n
and ¢ is obtained in n'th step. Then we have

(2.4) 0 =111 s )

or
(2-5) ¢ = fz(lle cees an) .

Consider case (2.4) — the proof in case (2.5) is analogous. Since F(¢) = F, there
must exist se{l,...,n,} such that f, € F(y,). If F(y,) = {f,}, then ¢ = f1(¥1, ...
oo Wsmts SalBas oo fny), Wgits oo W) and by (2.1) we get (2.3). If F(¥s) = F,
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then by induction hypothesis we have (¢, = ¢) € C(Tp). so by (2.4) we get:
(26) ((P = fl(l//h AR l//s--l’ ¢, l//s-\‘- 15+ w"l)) € C(TO) :

By (2.2) the identity fi(¥y, oos Ysm1s € Ysits oo W) = S1(Wis s Yoy,
Sozgs o zjmgs ity o tyy)y Zjsts ooes Zuy)s Warts oo s Wy,) belongs to C(T,). Thus
by (2.1) and (2.6) we get (2.3).

It is interesting to note that if |[F| > 2 then T({F}) need not have a finite equational
base (see Remark 5 in section 6).

From Lemma 2 we get a useful Corollary which simplifies Corollaries [ —7.

Corollary 8. If |F| = 2, B(K)\ T({F}) has a finite equational base, then K* is
finitely based.

In fact, Id(K*) = E* = BK) v T({F}) = (B(K)\ T({F}) v T({F}) by Lemma 1.

So if E is an equational base of B(K)\ T({F}), then E U Ty is an equational base
of K*,

Example 2. Let K be a variety with two unary operations fi, f, satisfying the
identities:

(27) fl(fz(x)) = x = f5(f1(x) -

Since identities (2.7) are regular, so K; = K. We want to describe algebras from K.
By Lemma 2 the identity:

(2-8) fl(fl(x)) = f2(f1()’))

forms a base of T({F}). By Birkhofl’s derivation rules it can be easily shown, that
the only identities from B(K)\ T({F}) are of the form ¢ = ¢, so the set 0 is a base
of B(K)\ T({F}). By Corollary 8 K* is defined by (2.8). By Corollaries 8 and 3 K,
is finitely based. By Theorem 2 every algebra from Kj is isomorphic to a subdirect
product of an algebra from K and an algebra from K*. The structure of every algebra
from K is clear, namely we have two 1 — 1 mappings such that each of them is the
converse of the other one. If A = (4; f,, f,) € K*, then by (2.8) 4 = A, U fy(4) U
ufz(A), where A, consists of all elements being values neither of f; nor of f, and
there is an element e € f,(A) N f5(A4) such that f5(x) = e for x € f;(A4) and f,(y) = e
for y e f,(A4).

3. GENERAL REPRESENTATION THEOREMS

In this section we assume that F = {fl, woesJu}> m > 1. For a family H of subsets
of F we denote by T(H) the set of all identities ¢ = y of type t such that there exist
H, H,eH with H, = F(p) and H, = F(). For Z = F we denote Ty(Z) =
= T({{fi}: fie Z}).

Let

(3.1) S={F,...F}, 1§S§<rz)
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be a family of k-element subsets of F where 1 < k < m.ForZ < FputZ' = F\ Z.
Denote
={F,u{fj}:ie{l,...,s}, jeFj.

Let K be a variety of type . We denote by Ry (K) the set of all identities ¢ = y
from R(K) for which F(¢), F(y) < F,.

The variety defined by Ry (K) U Ty(F;) will be denoted by K;. We denote by K°
the variety defined by T(S°) U B(K) and we denote by K, the variety defined by
T(S)u B(K).

One can easily prove.

Lemma 3. Each of the sets Ry(K)u Ty(F;), B(K)u T(S), B(K)u T(S°) is an
equational theory.

Let K be a variety satisfying the following condition:

(3-2) There exist terms g4(x), ..., g,(x) of type 7 such that (g/(x) = x) e Id(K) and

Flg(x)) =F;(i=1,...s
Let B; be an equational base of K; (i = 1,...,5 + 1). For fixed q,(x) (i = 1, ..., )

from (3.2) we define a set B® of identities of type t by the following conditions

(by) — (b):

(b1) 4i(gi(x)) = qi(x) belongs to B® (i = 1,...,s).

(b,) qi(fj(xl, X)) = f,(xl,. X, l,q(xp), Xpt1> -+ Xp;) belongs to B® (i =
=1, s;j =1, ;p =1,

(bs) If (¢ = ¥) € By. then (q (9) = 4 ('l/))e B (i=1,....9)

(bs) If (¢ = Y) € Byyy 0 T(S), where F; < F(o), F,z c F(lﬁ) for Fy,, F;, € S, then
the identities q;,(¢) = ¢ and g,,(¥) = ¥ belong to B°.

(bs) If ¢ = y belongs to B,y N (B(K)\T(S)), then ¢ = y belongs to B°.

(be) 9dq,(x)) = q;(q:(x)) belongs to B° for each i,je {1, ...,s}.

(b,) B° contains only identities from (b,)—(by).

Lemma 4. If F = {f,, ..., f,.}, m > 1, K satisfies (3.2) for a family S from (3.1),
then K =K, v...vK,;; =K, ®... ® K, ;. Moreover, if B; is an an equa-
tional base of K; (i = 1, ..., s + 1), then B® is an equational base of K°.

Proof. Obviously K; ® ... ® K;1; € K; v ... v K. We shall show that
K, < K°(i=1,...,s + 1). So we must show that
(3.3) B(K)u T(S°) = Re(K) LU Ty(F})), (i=1,...,5)
and
(3.4 B(K) u T(S°) < B(K) U T(S).
Let
(3.5 @1 = ¢z

belong to B(K) L T(S°).
We prove (3.3). If (3.5) is biregular and F(¢,) = F(¢,) < F;, then (3.5) belongs
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to Rp(K). If (3.5) is biregular and F(@1) = F(¢2) § Fi, then there exists f; € Fj N
A F(g;) 0 F(@,). So (3.5) belongs to Ty(F}). If (3.5) belongs to T(S°), then there
exist Fy,,f;, and F,.f;, such that fj € Fi, fin€F;, and (F;, v {f;}) < F(py),
(Fi, v {f;.}) < F(p,). Both sets F;, Y {f,}, Fi,v {fi,} are k + l-element, so
there must exist f,,, f,, such that f, € (Fi, U {fih)NFiand f,, € (F;, v {fp,})NFu
Hence f,,, f,, € F; and consequently (3.5) belongs to Ty(F?).

Proof of (3.4) is obvious.

Thus K, v ... v K, < K°

It is easy to see that B® = B(K)u T(S8°), so K® = V(B°). This follows from the
fact that by Lemma 3 for 1 < i £ s we have:

B; = (B; 0 Rp(K)) L (B; n Ty(FY).

Similarily Byyy = (Bssy 0 T(S)) U (Bys 1 N (B(K)\ T(S))).

To complete the proof it is enough to show that any algebra U = (4; fy, ..., fn)
from V(B®) is isomorphic to a subdirect product of algebras U, ..., 2, ;, where
AWeK; (i=1,...,5+1). In A we define s + 1 relations P,,..., Py, putting
fora,be A

aP;b< qi(a) = q,-(b)
for i=1,...,s and
aPg,b iff a=b or qfa)=a and qb)=0>b

for some i,je{l,...,s}.
Obviously every P; is an equivalence. The proof that any P; has the substitution
property follows from (b,) and (b,) and is similar to that in Theorem 1.

By (bs) we have (U/P,)e K; (i = 1,...,5) and (UA/P,.,) € K4 by (by) and (bs).
We prove that P, " P, n...n Py, =

Let aP;b for i = 1,...,s + 1, then either a = b or for some i,je{1,...,s} we
have a = g{(a) = q,(b) = 4{a,(0)) = 4,(a:(b)) = 4,(a:()) = a,(a) = q,(b) = b by
(b). Thus by Birkhoff’s subdirect decomposition theorem A is isomorphic to
(AP,) ® ... ® (Y/P,y,) and V(B°) € K; @ ... ® Ky 1.

Corollary 9. If K satisfies (3.2) and each of the varieties K; (i = 1,...,s + 1)
is finitely based, then K° is finitely based.
Let Z < F. We denote by T((Z) the set of the following identities:

(36) fu(xp ey xn..) = fv(yh ooy yn.,) s (fu:fue Z)

(3.7) Filts oo Xpm 1o ful(D1s s Yi)s Xpits oo0s X)) =
=flyis--s V) for f,€Z and f;eF.

Lemma 5. For every Z < F the set T(Z) is an equational base of Ty(Z).
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Proof. Let us fix f,, € Z. By easy induction we can prove that for any term ¢
such that there exists f, € Z n F(@) we have (¢ = f,(yy, ..., y..)) € C(TL(2)).

Corollary 10. If Ry (K) is finitely based for some i€ {1, ..., s}, then K; is finitely
based.
In fact, Id(K;) = Rg(K) L Ty(F).

Corollary 11. If T(S) and B(K)\ T(S) are finitely based, then K, is finitely
based.
This follows from Lemma 3.

Corollary 12. If K satisfies (3.2) and each of the sets Rg(K) (1L £ i <'s), T(S),
B(K)\ T(S) is finitely based, then K° is finitely based.

For a family {K;} ;. of varietes of type t we shall denote by V K; the join of this

iel
family and by ® K; we shall denote the class of all algebras isomorphic to a sub-
iel :

direct product of a family {2}, of algebras, where 2, € K;.

Let F = {f,,...,fu}, (m > 1) and let L be a proper subset of F. As usual [L)
will denote the principal filter generated in 2% by L.

We put
(= [[DNEL it Lo
[L)N{F,0} if L=9.
So we have
(3-8) [L*=8uSUu..uUSs,,

where S, = {F: Fe[L)* A |F|=m—-n}, 1<n<r, r=m—1ifL=0,and
r=m—|L|if L+ 0.

Let K be a variety of type 7. For F e [L)* we denote by Ky the variety of type t
defined by Re(K) v T,(F’), where Ry(K) consists of all identities ¢ = y from R(K)
such that F(¢), F(y) < F. Further we denote by K" the variety defined by (B(K)\
\T(S,)) v T(S,).

Assume that K satisfies the following condition

(3.9 for each F e [L)* there exists a term g(x) such that (gz(x) = x) € Id(K)
and F(gg(x)) = F.
Lemma 6. If K satisfies (3.9), then K* = ® Ky ® K". Moreover, if each of the
Fe[L)*

sets Rp(K), B(K)\ T(S,), T(S,) has a finite equational base, then K* is finitely
based.

Proof. To prove the first part of Lemma 6 it is enough to show by induction
that the following statement holds for 1 < n = r:
(310) K*=Q@K;® ®Kr®...® ®Kp®K",

Fes; Fes, FeSn

where K" is defined by (B(K)\ T(S,)) v T(S,).
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We use Lemma 4.
Letn =1 Weput S=S;, k=m—1,s =S| in Lemma 4. Then (S,)° = F.

K°® = K*. By Lemma 4 K* = @ K; ® K, ,, where K, = K.
Fes,
Assume that Lemma 6 holds for n = 1.

Put in Lemma 4 S§=3S8,,,, k=m—(n+1), s =|S,,,|. Then SO = Sw
K° = K". Applying Lemma 4 for S = S, ; we get
(3.11) K'= ® K ® K",

FeSn+1

Using (3.11) and (3.10) we get equality (3.10) for n + 1.

To prove the second part of Lemma 6 observe that if B(K)\ T(s,), T(S,) and each
R#{K) for Fe S, has a finite equational base, then by Corollary 12 K™™' is finitely
based. Further we use induction but from the end to the begining.

From Theorem 1, Lemma 6 and Corollary 1 we get

Theorem 3. Let L be a proper subset of F = {fy,...,f,}, (m > 1) and let K be
a variety satisfying the following condition

(3.12) for every Fe[L)\{0} there exists a term qp(x) such that (4r(x) = x) €
e Id(K) and F(qg(x)) = F.
Then
Ky=K® ® Kp ® K"
Fe[L)*

Moreover, if K is finitely based and

(3.13) each of the sets Ry(K) for Fe[L)*, BK)\T(S,), T(S,) has a finite
equational base,

then Ky is finitely based.

From Theorem 2, Lemma 6 and Corollary 3 we get

Theorem 4. If m > 1, a variety K satisfies (3.12), then Ky = K ® ® K; ® K".
Fe[L)*
Moreover, if K is finitely based and (3.13) holds, then Ky is finitely based.

Corollary 13. Let K be a variety satisfying (3.12) and (0.1). Then Ky = Kg ®

® ® Kp® K" If K is finitely based and (3.13) holds, then Ky is finitely based.
Fe[L)*

Proof. This follows from Theorem 4, (iii) and (iv) from section 0.

Corollary 14. If K is a variety of unary algebras satisfying (3.12), then Ky =

= K5, ® ® Ky ® K". Moreover, if K is finitely based and (3.13) holds, then K
Fe[L)*

is finitely based.
This follows from (v) and (vi).

Corollary 15. Let fe F and K satisfy (3.12) for L= {f}. Then K, = K ®

® ® Kr® K™™', where K"~ is defined by T,({f}) v (B(K)\ Ty({f}).
Fe[L)*
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If K is finitely based, each of the sets R¢(K), Fe[{f})* and B(K)\ Ty({f})
has a finite equational base, then Ky is finitely based.

This follows from Theorem 3 and Lemma 5.

Corollary 16. Let f € F and K satisfy (3.12) for L= {f}. Then

Ky=Ky® ®@ K @ K"™'.
Fe[L)*

If Ky is finitely based and each of the sets Ry(K), B(K)\ Ty({f}) has a finite equa-
tional base, then Ky is finitely based.

This follows from Theorem 4.

Corollary 17. If K satisfies (0.1) for some term ¢(x, y) such that F(e(x, y)) = {f},
where f € F, then the statements of Corollary 15 hold.

In fact, let Fe[{f}) and F = {f,fi,fi, ... f;,}- Then we put gg(x) =
= o(x. fi,(fi,(- - fi, (s oo x)s %, o X), L), X, LX),

Corollary 18. If the assumptions of Corollary 17 hold, then

Ky=Ki® ® K @ K" 1,
Fe[{/NH*

If K is finitely based and each of the sets Ri(K), B(K)\ Ty({f}) has a finite equa-
tional base, then Ky is finitely based.

The proof is analogous to that of Corollary 17 and we use Corollary 13.
Corollary 19. If K satisfies (3.12) for L= 0, then

Ky=K® ® Kp®KmD,
Fe2F\(@ F}

where K"~V is defined by T,(F). If K is finitely based and each of Ry(K) hds
a finite equational base, then Ky is finitely based.

Proof. This follows from Theorem 3 and Lemma 5 since by Lemma 5, T,(F) has
a finite equational base and B(K)\ T;(F) has a finite base namely 0.

Corollary 20. If K satisfies the assumptions of Corollary 19, then

K=Kz ® ® Kpy®K™D,
Fe2F\{9 ,F}

If Kg is finitely based and each of the sets Re(K) has a finite equational base, then K
is finitely based.

Corollary 21. If K satisfies the condition

(3.14) for every f; € F there exists a term q(f,)(x) such that F(‘lm)(x))' = {fj}
and (q;7,(x) = x) e Id(K),

then the statements of Corollary 19 hold.
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In fact if Fe2"\{0} and F = {f;....,f;,}, then put
ar(x) = 4;,(a5(- (45,(x)) - ))-

Corollary 22. If K satisfies (3.14), then the statements of Corollary 20 hold.

Corollary 23. If K satisfies (3.14) and (0.1),then Ky = Ks ® @ Kr® K"V,
Fe2F\(g,F}
If K is finitely based and each of the sets Rg(K) has a finite equational base, then K
is finitely based.

Proof. Use Corollary 22, (iii) and (iv).

4. THE F-ABSORBING SUM OF A SEMILATTICE ORDERED
SYSTEM OF ALGEBRAS

Note that if a variety K satisfies all identities from Ty(W) for some W < F then in
any algebra We K the realizations of all f;e W are equal to the same constants ¢ and
whenever ¢ is an argument of some f; € F, then the value of f; is equal to ¢. Such
element ¢ will be called an absorbing element of U (see [10]).

Theorems 3 and 4 and Corollaries after them can be applied for important varieties
of algebras namely those of groups, rings, lattices and Boolean Algebras and we
can find representations of algebras from Ky and Kz when K is one of these class.
However for this aim we need one more construction and one more theorem which
gives a description of algebras from K. If F and F are two sets with F < F, we
agree that every identity ¢ =  of type 7 = T/F is also an identity of type .

Let F = F, F + 0 + F\F. Further let

A = ((I; 2); {Wiers (Wi jeriss)
be a semilattice ordered system of algebras U; = (4;; F) of type % (see [12]).
We assume that 7 satisfies the following condition:

(4.1) There exists in the semilattice I the greatest index ¢ and the algebra 2,
is 1-element.

Let us denote 4, = {c}.

We shall say that an algebra U = (4; Fu) of type 7: F = N is the F-absorbing
sum of a semilattice ordered system & of algebras U, if the following conditions
are satisfied:

(1°) The algebra (4; F) is the sum of a semilattice ordered system /.
(2°) For every f;€ F' = FNF and ay, ..., a,,€ A we have f{ay, ..., a,)) = c.

Let K be a variety of type 7 and let F be a non-empty proper subset of F such that
for some f; € F we have n; > 1. We denote by K(F) the variety of type % defined by
all identities (¢ = ¥) e Id(K) such that F(¢), F(y) < F.

Theorem 5. If there exists a term f(x, y) of type T such that the identity
(4.2) fx,y)=x ,
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belongs to 1d(K) then an algebra U = (A; F") belongs to K iff W is the F-absorbing
sum of a semilattice ordered system of a family {9[,-},-5, of algebras of type 7,
where A, € K(F). Moreover, if K(F) is finitely based, F is finite then Ky is finitely
based.

Proof. Let A e K. So A satisfies R(K(F)). By (iii) the algebra (4; F) is the sum
of a semilattice ordered system of algebras ;, where 2, € K(F). We have T,(F') =
< Id(K5). Let us denote by c the absorbing element in 4 determined by all f; € F.
We denote by A4, the component to which ¢ belongs. Recall that for any f; € F we
have:

if a,€eA; k=1,...,n;

Ik > J

, then
flay,...;a,,)€e A, where t = lub(iy, ..., i,).

However if ¢ is an argument of f; then the value of f; is equal to ¢. So ¢ must be the
greatest index in I. The identity (4.2) belongs to Id(K(F)), so for x € A, we have
f(x, ¢) = x. However we have also f(x, ¢) = c. Thus 4, = {c}.

The implication <= follows from the fact that the sum of a semilattice ordered
system preserves all regular identities satisfied in any component (see [12], Theorem 1)
and from the fact that the realization of any term containing some f; € F' must
be equal to ¢, which is easy to see. So all identities from TI(F’) must be satisfied
in an F-absorbing sum of a semilattice ordered system of algebras 2; belonging to K(F).

Finally Re(K) = R(K(F)) and (4.2) belongs to Id(K(F)). But K(F) is finitely based
so by (iv) R(K(F)) = R(K) is finitely based. By Lemma 5 T,(F’) is finitely based.
We have Id(Kr) = Rp(K) U Ty(F’). So K is finitely based.

5. APPLICATIONS

Theorem 6. Let K be the variety of all groups, F = {+, ~'}. Then
1°Ky =K ®K(_;; ® K",
2° Kp =Ks ® K(_;, ® K',
3° K(_yy is a variety of algebras in which the operation
the value of x .y is an absorbing element,
4° K is the variety of algebras in which « is a semigroup operation and the value
of x~1 is an absorbing element,
5° Both K and Ky are finitely based.
Proof. Put g(x) = x.x.x7 !, gi—y(x) = (x~')7". By Corollary 15 we have 1°
where K,_,, is defined by R_,(K) u Ty({*}) and K" is defined by

T({™'}) v (BK)N TL({71).
But R(_”(K) is finitely based since it is enough to derive it from
(5.1) (x"1)™' =x.
Similarly B(K)\ Ty({™'}) has a finite equational base. In fact, this set contains

~1 s an involution and
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only identities ¢ = y where ¢ and ¥ contain only the symbol * so ¢ and ¥ can
differ only in brackets (see [7] Lemma 7.1.1. p. 91). So we can accept

(5.2) (x.9).z=x.(y.2)

as a base of B(K)\ T({™'}).

Since K is finitely based, so by the second statement of Corollary 15 Ky is finitely
based.

By Lemma 5 it is now easy to see that K_, is defined by (5.1) and the identities
x.y=u.v=(x.y) " '=x.pyt=x""y

So we get 3°. Similarly in every algebra from K' the operation - satisfies (5.2)
and x ! defines an absorbing element since K' satisfies

-1 1

qu.:yﬁl:(x_y)_1=x.y =x‘ -y.

So we get 4°. Put ¢(x, y) = x.y .y~ '. Then by Corollary 13 we get 2° and K,
is finitely based.

Theorem 7. Let K be the variety of all abelian groups where F = {+, ~'}. Then
1°Ky =KQ®K_;; ® K,
2° Ky =Ks® K{—n ® K:
3° K! is the variety of algebras in which « is a commutative semigroup operation
and x~1 determines an absorbing element,
4° Both Ky and Ky are finitely based.

The proof is similar to the proof of Theorem 7.

One should only remember that in the variety of abelian groups to each term ¢
such that F(¢) = {-} there corresponds the unique canonical form.

Remark 3. The case of lattices was solved in [ 16] (see Corollary 24 below). In [16]
it was derived from representation theorems of more general varieties those of
bisemilattices. Here we derive Corollary 24 from results of this paper.

Corollary 24. Let K be a variety of lattices (not necessarily of all lattices) where
F={+,"}.
Then
1°Ky =K Q@K ® Ky ® KW,
2° Kp = Ks @ K(4, ® Ky @ KO,
3° The variety K is defined by x + y = u.v i.e. in every algebra from K"
the values of x + y and x . y are equal to the same constant.
4° Each algebra from K., is a join semilattice with respect to + and the value
of x .y is the unit.
5° Each algebra from K, is a meet semilattice with respect to - and the value
of x + y is the O-element.
6° Both Ky, Kp are finitely based if K is finitely based.
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Proof. Put g(4,(x) = x + x, q¢4(x) = x. x. We have
(5.4) (x + x.y =x)eld(K).

So by Corollaries 21 and 23 we have 1° and 2°. The variety K is defined by
Ty({+. *}). So 3° follows from Lemma 5. We have R(,(K) = R(K({+})) and
K({+}) is the variety of {+} join semilattices. This follows from the fact that
R(K({+}) contains all join semilattice identities and cannot contain any other
identity. In fact the variety of join semilattices is equationally complete and K({+})
is not degenerate. So R, is implied by

x+x=x, x+y=y+x, x+(y+z)=(x+y +z

and is finitely based. In any algebra from K., the value of x. y is an absorbing
element so it must be the unit and we get 4°.

Similarly we prove that R, is finitely based and 5° holds.

Since R(;; and R, are finitely based and (5.4) holds so by the second statements
of Corollaries 21 and 23 we get 6°.

Theorem 8. Let K be the variety of Boolean Rings where F = {+, -}. Then
1°Ky =K ® Ky, ® K., @ KW,
20 KB = KS ® K(+} ® K{.) ® K(l).
3° KV satisfies the condition 3° from Corollary 24.
4° Each algebra from K., is the {-l—}-absorbing sum of a semilattice ordered
system of algebras from K({+}). where K({+}) is the variety of Boolean
Groups.
5% The variety K., satisfies the condition 5° from Corollary 24.
6° Both Ky, Ky are finitely based.
Proof. Put g,,,(x) = 3x, g(,(x) = x*. The identity
(5.5) X+2y=x
belongs to Id(K).
Hence by Corollaries 21 and 23 we get 1° and 2°.
Proofs of 3° and 5° are similar to 3° and 5° from Corollary 24.
Obviously Ry, is finitely based since it is implied by
x.x=x, x.y=y.x, x.(y.z)=(x.y).z.
By (5.5) and Theorem 5 we get 4°.
By (5.5) and (iv) K, is finitely based. Since K is finitely based so by (5.5), Corol-
laries 21 and 23 we get 6°.

Theorem 9. Let K be the variety of Boolean Algebras where F = {+, - °}.
Then
I°Ky=K®K, ,®K,, ®K.,®K,, ® K., ® K, ® K?.
2Ky =Ks®Ki; @K, @K, ® Ky, ® K, ® Kjy @ KP.

382




3° Each algebra from K, ., is the {+, *}-absorbing sum of a semilattice ordered
system of distributive lattices.
4° Each algebra from K, » is the {+, *V-absorbing sum of a semilattice ordered
system of Boolean Algebras with fundamental operations +,°.
5° Each algebra from K. ., is the {+,}-absorbing sum of a semilattice ordered
system of Boolean Algebras with fundamental operations *,’.
. 6° Each algebra from K, is a join semilattice with respect to +, where x . y =
= u’ defines the unit.
7° Each algebra from K., is a meet semilattice with respect to , wherex + y = w’
defines the 0-element.
8° In each algebra from K., the operation x' is an involution and the operations
X + y and x . y define the absorbing element.
9° In each algebra from K@ the values of all operations +, + and ’ are equal
to the same constant.
10° Both Ky and Ky are finitely based.
Proof. Put q(x) =x + x, g (x) =x.x, gu(x) =(x"). The following
identities belong to Id(K):

(5.6) X+ xy=x
(5.7) x+ (X +y)=x
(5.8) x.(x.y)y =x.

By (5.6) and Corollaries 21 and 23 we get 1° and 2°.

The variety of distributive lattices is equationaly complete so Ry ., = R(K({+, *}))
contains only regular identities of distributive lattices. By (5.6) and Theorem 5
we get 3°. By (5.6) and (iv) the set Ry, ., has a finite equational base.

The variety of Boolean Algebras where F = {+,’} is equationaly complete
so Ry = R(K({+,"})) contains only regular identities of Boolean Algebras
containing symbols + and ’ only. By (5.7) and Theorem 5 we get 4°. But the variety
K(+,")is finitely based since the theory Id(K({ +, ’})) is equivalent to Id(K({ +, -,"}))
By (5.7) and (iv) the set R, - has a finite equational base.

The proof of 5° and the proof that R. , has a finite equational base is similar.

The proof of 6° and the proof that R, has a finite equational base is similar to
that of 4° in Corollary 24.

The proof of 7° and the proof that Ry, has a finite equational base is also similar.

Ry, = R(K({’})) contains only regular identities with the symbol °, which are
true in Boolean Algebras. It is easy to see that the identity

(x) = x
forms a base of R{»)(K). The values of x + y and x .y determine the absorbing
element by the definition of Kj,.

The proof of 9° and 10° is obvious by Corollaries 21 and 23.

383



6. A VARIETY Kz NEED NOT BE FINITELY BASED

We shall give an example of a variety K such that K is finitely based and Kj is not.
Let us consider a type to: F, & N where Fy = {f}, f2, f3} and 1o(f;) = 1 for k =
= 1,2, 3. We define K to be the variety of type 7, defined by the single identity

(6'1) fl(fz(fs(x))) =X.

Put y(x) = f,(f2(f3(x))). For a term ¢ of type 7, we denote by ¢* the term obtained
from ¢ by substituting in it every subterm y(y) by ¥ as many times as possible.

E.g. (f1(f1(fz(fs(fz(fs(fz(x))))))))* = fz(x)-

Lemma 7. For every term ¢ of type t, the term @* is uniquely determined i.e. its
structure does not depend on an order of substituting y(¥/) by .
Proof. Let

P = fix(fl'v.(' . (fis(x)) o )) .
We use induction on s. For s = 1 the statement is obvious. Assume that the statement
is true for each s’ < s. Let iy = 1, g0y =2, ixy3 =3, i, =1, ipyy =2, 00 =3
for some k, re {1....,s}.Then {k,k + 1,k + 2} = {r,r + 1,r + 2} or
(6.2) k,k+Lk+2}n{r,r+1,r+2}=0.

We can assume k < r. If in the first step we cancel the string fi fi., fi.., then
we get a term

Vi = ful o (fiasle- (Flx) ) ) -
Ui = froi(oo (%) )

By the induction hypothesis ¥/ is unique. In particular we get ¥ if we have (6.2)
and we cancel the string f; f; . fi, ., in Y.
Assume that (6.2) holds and in the first step we cancel in ¢ the string f; fi,, ,fi.,-
Then we obtain

l)l’z —-fu fl,- ](flr+3( (fis(x)"')'
Then 3 is unique. In particular we get ¥/ if we cancel f; f;. . fi.., in ¥

But (fi,(--- (fioo (firss - fire(finis(o-- (fi)(x) ...)* is unique by assumption so
Y¥ = Y5 and consequently ¢* is unique.
Let us say that an identity ¢ = ¥ has the property (%) if p* = y*.

or

Lemma 8. The set Id(K) consists exactly of all identities ¢ = y which have the
property (*).
In fact, denote by S the set of all identities ¢ = y having the property (). If
(¢ = Y) € S then using (6.1) we can prove
=¢p*=y*=y so (¢ =y)eldK).
Using Birkhoff’s derivation rules we shall prove that 1d(K) < S. Denote by E the
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set consisting exactly of (6.1). It is enough to show that E < S and S is closed under

derivation rules.

1° Obviously (6.1) € S.

2° Every identity ¢ = ¢ belongs to S.

3° If (p = yY) e S then Yy* = ¢*so (Y = ¢)€S.

4° Similarly if (p = y)e Sand (y = x)€ S, then (¢ = x) € S.

I (p=y)eS and fieFo then (fi9)* = (fi(0*)* = (FW*)* = (W)
by Lemma 7. So (fi(¢) = fi(¥)) € S.

6° If (¢(x) = Y(x)) € S then for every term ¢, of type T, we have (¢(¢,))* =

= (¢*(@1))* = (¥*(01))* = (Y(¢4))*, by Lemma 7.
Thus Id(K) < S.

From Lemma 8 we get
Lemma 9. An identity ¢ = y belongs to B(K) = U(K) iff F(¢) = F(y/), Var (¢) =
= Var (y) and ¢* = y*. Moreover if F(¢) = F(y) + Fo then ¢ = ¢* = y* = ¢.
Let us denote
(6.3) (%) = fi(fa(. (a(fs(x)..), (n=1).
otimes
A term of the form (6.3) will be called n-medial.
Remark 4. By Lemma 9 if (¢ = y)e B(K) and ¢ % ¥ then at most one side
can be an n-medial term.
Let (¢ = ¥) € B(K). We put
n if o=y,(x) and o FV,
m(e =y)=<n if y=9y,(x) and @ FV,
0 otherwise .

By Remark 4 the number m(¢ = ) is well defined. For H = B(K) put
0 if H=90,
m(H) = {sup {m(e): ecH} if H=*0.
Lemma 10. For every H < B(K) where |H| < X, we have m(C(H)) = m(H).
Proof. Denote my, = m(H). If H =0 then (¢ = )€ C(H) iff ¢ = . Thus
m(¢ = y) = 0 and Lemma 10 holds. Let m, > 0. To prove Lemma 10 it is enough
to show that if S" < B(K), m(S’) < m, and an identity,
o=y ,
is derived from S’ by one of the Birkhoff’s derivation rules then m(¢ = ) < m,.
1° If ¢ = ¢ then m(¢ = ¢) = 0 < my,.
2° If (¢p = ¢) € S’ then m(y = @) = m(p = ¥) < mo.
3° If (p = Y) e S”and (y = x) € S then 9% = Y* = x* and using Remark 4 one can
check that m(gp = x) € {0, max {m(p = ¥), m(y = x)}}.
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4° Let(¢p'=Y)e S and f, e F,. If o = ¥ then f() = J{w) and m(f (o) = f¥)) =
=0 < mo. If ¢ % ¥ then neither f{(¢) nor f,() is an n-medial term for some n
so m(f{9) = fi(¥)) = 0 < m,.

5° If (¢(x) = ¥(x)) € S* and g is a term of type 7, different from a variable, then
m(e(x) = ¥(x)) = 0 < m, in all cases.

Thus m(C(H)) = m(H).

Theorem 10. The variety Ky is not finitely based.

Proof. Let H = B(K) be a finite set of identities and m, = m(H). Consider an
identity
(6.4) V1o 1(%)) = Vmos1(%) -

Then m(Y1(Ymg+ 1(X)) = Vmo+1(X)) = mo + 1 > my,. But(6.4) € B(K)and (6.4) ¢ C(H)
by Lemma 10. Thus no finite subset H < B(K) is an equational base of Kjp.

Remark 5. It was proved in section 2 Lemma 2 that if [F| = 2 then T({F}) has
a finite equational base. If |[F| = 1, F = {f} then T({F}) has a base {f,(xy, ..., X,,) =

= fi(y1: - yu)}
From Theorem 10 it follows that if |[F| = 3 then T({F}) need not be finitely bascd.

In fact, take the variety K defined by (6.1). By Theorem 10 U(K) is not finitely
based. However K is finitely based and B(K)\ T({F,}) is finitely based. In fact
by Lemma 9 it contains only identities of the form ¢ = ¢, so we can accept  as its
base. Now as K is finitely based Ky is not finitely based and B(K) \ T({F,}) is finitely
based so by Corollary 2 T({F,}) is not finitely based.
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