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1. Existence of nonnegative nonincreasing solutions of differential equations of
the n-th order (n = 2) was proved in [4] under the assumption that the right-hand
side of the equation does not change its sign. New sufficient conditions for the
existence of such solutions without the above assumption were found in [6].

In this paper we consider the problem

(1.1) " = f(tu, ', u"),
(1.2) u(t) =0, w({) =<0, u()z=0 for teR,,
(1.3) (u(0), w/(0), u"(0)) = 0.
Here, for n = 3, we prove more general conditions for solvability of (1.1), (1.2), (1.3)
than in [6].
We shall use the following notation:
R =(—ow,®), Ry =¢(0,0), R.=(-0,0,
D*=R, xR_xR,, D}=R, x{-r,00 x R,
C(J)  is the set of all real continucus functions on J,
Ly (J) is the set of all real functions which are Lebesgue-integrable on each
segment contained in I,
AC?*(J) is the set of all real functions which are absolutely continuous with their
second derivatives on I,

Car,,(J x I) is the set of all functions f: J x I — R satisfying the local Carathéodory
conditions on each segment contained in J, i.e.

f(.. x4, X5, x3): J > R is measurable for every (xy, x,, x3)el,

f(t, ey ey ) I - R is continuous for almost every teJ,

3
sup {|/(+, x5, x5, x3)|: Y x| £ @} € Lio(J) forany oeR,.
i=1
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In what follows we shall assume

(1.4) feCargR, x D¥), f(1,0,0,0)=0,
S(t,x1,%,,0) <0 on R, x D*,
(1.5) peC(D*), ¢(0,0,0) <0,

@(x1, X5, x3) >0 for x| >r, re(0, ).
We shall find solutions of the problem (1.1), (1.2), (1.3) in the set ACZ(R+).

Remark. a) In the special case ¢(xy, X5, X3) = |x,| — r the condition (1.3)
reduces to |u'(0)] = r.

b) In [11] we proved existence theorems for (1.1)—(1.3) under the assumption
@(x4, X5, x3) > 0 for x; > r.

c) Similar problems for differential systems were solved in [1,2,3,7,8,9, 10].
Theorem. Let the conditions (1.4) and (1.5) be fulfilled. Let there exist ay, a €

€(0, o0), ag < a, a€ Ry, ky, ky €N, functions h; € Li,({a, ©)), i = 0, 1, 2, positive
functions h € L(<0, ao)) and w € C(R,) satisfying

(1.6) ,[:wi(ss"): +oo

and

ag dt t

(1.7) J —— = +0, where H(t) =J‘ h(7) dr,
o H() 0

and a function 6:{0,a) x R, — R, such that

8(.,x)e L(£0,a)) forany xeR,,
(1.8) & is nondecreasing in its second argument ,
lim f§¢5(t, x)dt > r,

and the following inequalities are satisfied:
on the set 0, a) x D? the inequality
(19) f(ta X1, X3, X3) é _5(ta xl)’
on the set 0, ay> x D? the inequality
(1.10) f(txy, x5, x3) = —h(f) (1 + x3)°
and on the set (a, 00) x D} the inequality
2
(1.11) St x4, x5, x3) £ [ho(t) + X hilt) x| + ax;] ofx3) .
i=1
Then the problem (1.1), (1.2), (1.3) has at least one solution.

Remark. The assumptions (1.8) and (1.9) are essential and they cannot be omitted.
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For example, the problem
uW(t)=0, u(t)z0, w()20, w(t)20, w(0)=—-r,
for teR,,

has no solution though all assumptions of Theorem except (1.8) and (1.9) are
fulfilled.

Corollary. Let the conditions (1.4), (1.5), (1.8) and (1.9) be fulfilled. Let there
exist a function h € Li,(R.) such that

3
e 215059 S HO) 1+ 5 o
on the set R, x D}. Then the problem (1.1), (1.2), (1.3) has at least one solution.

2. In what follows we shall need some lemmas.

Lemma 1. Suppose that aq, a, r € (0, ©), ag < a, x€ Ry, ky, k, €N, ho, hy, hy €
€ Ly,(R,) are nonnegative functions € C(R,) is a positive function satisfying
(1.6), h € (0, ao)) is a positive function satisfying (1.7) and 5o: 0, a) x R, - R,
is a function satisfying (1.8).

Then there exists r* € {r, ©) such that for any c e (a, ©) and ve AC*(0, c))
the inequalities

(2.1) v" £ =8(t,0(t)) for 0Lt=<a,

(2.2) v" 2 —h(t) (1L +0"(1))* for 0=1Za,,

(2.3) v < [ho(?) +.i hi(t) [ DO + a v (1)] 0(v"(t)) for a<t<Z e,
(2.4) v(0) =r, v(!t; lg 0, V() <0, ()20 for 0Lt=<c

imply the estimates ,

@3)  w)set, vz - V() S0+ f(Th)d0),

where Q(x) = J s .
o @(s)
Proof. The conditions (2.4) imply
(2.6) —rsv()£0 for 0sr=c.
Due to (1.8) there exists r, € {r, c) such that
(2.7) 6 t80(t, ro) > r.

Integrating (2.1) we obtain v"(t) = [§ do(z, v(a)) dt and v'(a) — v'(0) =
= [§1o(t, v(a)) dt. Thus

(2.8) r 2 51 8o(t, v(a)) dt .
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According to (1.8), (2.7) and (2.8) we have v(a) < r,. Since (0) = v(a) + [§ [v'(7)| dr
and (2.4) hold, we have

(2.9) 0=<v(t)<r, for 0<t=<c, where r, =(1+r)(1 +a).
According to the Lagrange Theorem there exists ¢; € (0, ao) such that v"(t,) =
= (v'(ao) — v'(0))/ao < rlao, and by (2.1) v"(t) £ rfa, for t; <t < a. From (2.2)
it follows that

(2.10) (1+0v"())y =2 —h()(1 + v"(t))* for 0<t=a.

Let us consider the differential equation

(2.11) o'(t) = —h(t) ¢*(t) for 0<t=<a,.

Integrating (2.11) from 0 to t we get o(f) = (1/o(0) + H(t))™!, where H(f) =
= [§ h(r) dr. According to (1.7) there exists ¢ € (0, 1) and a; € (0, a,) such that

(2.12) fo(o(t) — 1)dt > r, where 0(0) = 1]¢.
Let us suppose that 1 + v"(t) = o(t) for a; < t < a,. Then by (2.12) we get
(2.13) o y(f)dt > 1.

On the other hand, the equality v'(ao) — v'(a;) = [ v"(t) dt implies by (2.6) that
fav"(f)dt < r, which contradicts (2.13). Thus it is necessary that there exists f, €
€ (ay, ao) such that

214) 1+ 0(to) < olte)-

Using the Chaplygin Lemma (see [5] or [11]) we get from (2.10), (2.11) and (2.14)
that 1 + v"(t) < o(t) < 0(0) = 1/e for 0 < t < 14, and by virtue of (2.1) we have

215) 1+v()<1fe for 0<t=<a.
Integrating (2.3) from a to ¢ and putting k = max {k,, k,} we have
2
Qv'(1)) £ Qv"(a)) + 7 [ hr) dr + «(v'(r) — v'(a)).,
i=0
thus \
2
(2.16) () = Q7 (r* + r* [§ (X hr)dr) for 0<t=c,
i=0
where r* = Q(1]e) + r§ + ar. (2.6), (2.9) and (2.16) yield (2.5).
Lemma 2. Let f € Cary, (R, X R?) be a function satisfying
217)  £(40,0,0)=0, f(t,x1.%,,0)<0 on R, x R*.

Then there exists a sequence {f,} >, of functions f, € Car (R, x R®)satisfying
(2.17) and the Lipschitz condition

3
(2.18) Ifk(t9 X1, X2, X3) = filts Y15 V2s J’3)| < (1) Zl|xi - J’i|

for QG(O, (X)), tER+’ |xi| é Q, ly|| é Q (l = 17 2; 3), kaELloc(R-i-)a kGN, such
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that for any fixed te R, {fi}i~, is uniformly convergent to f on each compact
subset of R>.

Proof. Let us consider functions w,: R - R,, w,e C4(R), keN, such that
wy(x) = 0 for |x| = 1/k, [?,, wi(x)dx = 1. Let us put
gk(t, X1, X2, x3) = jo—ow wi(zy — x1) ,f°—°w wi(z, — xz) .
20 wlzs — x3) f(1, 24, 25, 23) dz3 dz, dzy

Bt X1, %3) = [P wi(zy — x1) [Z0 wi(z2 — X2) f(1, 21, 25, 0) dz, dz,
and

(2-]9) fk(t’ X1, X2, x3) = gk(t, X1, X2, X}) - gk(ts X1, X2, 0) -
— |h(t, x4, x,) — B(1,0,0)], keN.

Due to (2.17), for any g€ (0, ) and ke N f£,(t,0,0,0) = 0, fi(t, x;, X, X3) £ 0
on R, x R and for |x;| < o, te Ry (i = 1,2,3) we have

gi(t, x40 %5, X3)| = |[20 w21 — X1) [20 Wiz — X,) .
N2 Wilzs — x3) f(1, 21, 25, 23) dz3 dz, dz; £
= jl—/’{/k Wk(P1)/ 1—/11(/k Wk(Pz) 1—/Ilclk Wk(Ps) hke(t) dp; dp, dp;,
where p; = z; — x;, (i = 1,2, 3) and
hio(t) = sup {|f(t, 1 + X1, P2 + X5, p3 + x3)| 1 | S 1k, [xi] S0
(i=1,23)} e Li(Ry).
Thus for |x| € o, [yi| £ e (i = 1,2,3), te R, we have
|fk(t, Xy, X, X3) — fk(t7 Y1, Va2, J’3)| =
= hke(t){ 1—”1‘/1»— l~”1‘/k 1—/Il‘/k l(Wk(z1 - x1) - Wk(21 - J’1)| .
wiza = x5) = wilz2 = »2)| %
x |Wi(zs — x3) — wi(zs — y3)| dz3 dz, dzy +
+2 [V, Ll’l(/k |Wk(21 = x1) = wilzr = 1|
Awlz2 = x3) — wilz, — y,)| dzy dz,} .
Since wy, € C;(R) we get from the above inequality

3
|fk(t, X1, X3, x3) - fk(t, V1> V2, J’3)| = vkg(t) lexi - J’il s

where v,,(f) € Lioe(R ). Further, lim g,(1, X1, X5, x3) = f(t, X1, X,, x;) for any te R,
uniformly on each compact subs;: of R® because '

|ga(ts X1, X2, x3) — f(t, X1, X3, x)| £

< (20 wlzy = x1) [20 w22 — x5) [2, wilz3 — X3) .

St 215 22, 23) = S8, X1 X2, X3)| dz5 dz, dzy
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Similarly lim hy(t, x4, x,) = f(t, X, x,, 0). Therefore by (2.19) the sequence {f,};~,
k= o0
is uniformly convergent to f on each compact subset of R>.

Lemma 3. Let (1.4), (1.5) be fulfilled. Suppose that
(2.20) |£(1, x4, x5, x3)| £ £5(1)

takes place on the set R, x D*, where f* e Li,(R.).
Then for any c € (0, o0) the boundary value problem

(2.21) u” = f(t,u,u',u"),

(2.22) ¢(u(0), u'(0), u”(0)) =0, u(c) =u'(c) =0

has at least one solution u € AC*(€0, ¢)) satisfying on <0, c¢) the inequalities
(2.23) u@®)z=0, uw({)=0, u()=0.

Proof. First, let us prove Lemma 3 under the additional assumption that f
satisfies the Lipschitz condition

3
(2~24) lf(t, X1, Xy, x3) - f(ta V1> Va2 ys)! = Ug(t) Zin - Yil
for € (0, ), te Ry, |x)| £ 0. |vi| £ 0 (i = 1,2,3), v,€ L (R,). Let us put
0 for (=1)"'s=<0

@3 e (Do

f(t’ X1, Xp, xs) = f(t, 0'1(x1)a Uz(xz), 03("3)) s
and consider the Cauchy problem
(2.26) u” = f(t,u,u, u"),

u(c) =0, u()=0, ul(c)=a, axeR.
According to (2.20) and (2.24), for any « € R the problem (2.26) has a unique solution
u(t, &) e AC*(<0, c)).

Let us put - . ‘
p f(ta X1, x2> x3) -—f(t7x1a x2, 0)
h(t, x4, x5, X3) = X3
0 for x;=0,

h(t) = —h(t, u(t, o), u'(t, @), u"(t, «)) .
By virtue of (1.4) and (2.25), u”(t,«) = —h(t) u"(t, &) + f(t, u(t, a), w'(t, «),0) <
< —h(t)u"(t,«) for 0 < t < c. Integrating the last inequality from t to ¢ we get
u”(t, ) = aexp ff hy(r)dr for 0 <t < c. Further w'(t, o) £ —[¢ « H(7) dr, where
H(t) = exp [$ hy(s) ds and u(1, «) = [¢ {¢ o H(s) ds dr, and so
(2.27) u'(t,o) 20, w(t,e) 0, u(t,a)=0 for xeR,, te0,c).
Let us put 8 = [§ f*(t) dt. Then (2.20) and (2.26) yield

Fu(m @) dr < [7|J(x, u(e, @), w'(r, @), w'(z, o) de < B

for x;+0
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for 0 £ 1 = ¢, thus u"(c,a) — u"(t,) < f and so u"(t,0) =« — ffor 0 St < c.
Integrating the last inequality from ¢ to ¢ we get u'(t,a) £ —(c — ) (« — ) for
0 =<1 =c Nowput

@(x) = o(u(0, ), u'(0, 2), u"(0, @) for aeR,, o* =B + ((r +1)/c).
Clearly ¢ is a continuous function on {0, «*) and

#(0) = o(u(0,0), u'(0, 0), u”(0,0)) = ¢(0,0,0) < 0.
On the other hand, ¢(a*) > 0. So there exists o € (0, «*) such that ¢(a,) = O.
From (2.25), (2.27) it follows that u() = u(t, &) is a solution of the problem (2.21),

(2.22) and satisfies (2.23).
If £ does not satisfy (2.24), we can use Lemma 2.

3. Proof of Theorem. Without loss of generality we may assume that h; (j = 0, 1, 2)
are nonnegative functions. Let

g(;:):fﬂ

o (s)
and let r* be the constant from Lemma . Let us choose ¢, € (r*, o) and a function
30: <0, a) x R, — R, satisfying the following conditions: do(., x) € L(<0, a)) for
any x € Ry, d, is nondecreasing in its second argument, (1, x) = d,(t, x) and
So(t, x) = 8o(1, ¢o) > rfa for t €0, a).
Now, let us put

2
o(t) = Q7' (r* + r* i 3 hyx)dr) + 2r*,
i=0

s for 0Zs=Z ¢,
9= {f, 05150

for s> ¢
() s for —r<£s<£0,
0,(s) =
2\ —r for s< —r

s for 0<s <o(1),
1, s) = {g(t) for ot) <s ,Q

1 for 0=s <o)
Xo(t,s) =32 — sfo(t) for ot) <s < 20(t),
0 for s> 2(1)

F(t, xy, x5, x3) = f(t, 04(xy), 05(x,), x(t, x3)) for 0<t<a,

Tt x1s x5, x3) = xo(t,iil[xinf(t, X1, X5, X3) for t>a.

It is clear that f satisfies (1.4) and .

(3.1) J(t x4, x5, x3) = f(t, x1, x5, x3) for 0<x, ¢y, —r<x,<0
0<x; <o), te0,a), s
J(t, x4, x5, x3) = f(t, Xy, x5, x3)  for i;)]x,-| <o), t>a.

219



Now, by (1.9) we obtain
(3.2) Tt x40 X2, x3) = f(t, 01(x1), 02(x2), 2(t, x3)) £ =0(t, 04(x,)) <
< —6(t, 04(x1)) = —do(t, x;) ontheset (0,a) x D},
from (1.10) we get
(3-3) J(t x4, x5, x3) = —h(t) (L + x(t, x3))* = —h(1) (1 + x3)°
on the set <0, ay> x D?,
and from (1.11) we get
(3.4) St xq, x5, x ) = 1o(t, Z i) (8 X1 x2, %5) <
< [ho(t) + Z hi(t) |x; l"' + ax;] w(x;) ontheset (a, ) x D?.

Since f satisfies the assumptions of Lemma 3, the boundary value problem
um — f(l, u, u/’ u//) s
u(a + p)=u'(a+ p) =0, o(u(0),u(0),u"(0) =0

has for any p € N at least one solution u, € AC*(<0, a + p)) satisfying on <0, a + p)
the inequalities u,(t) = 0, u,(f) <0, u)(f) = 0. Moreover, (3.2), (3.3) and (3.4)
imply u; (1) £ —3o(t, u,(t))for0 < t < a,uy(t) = —h(r) (1 + u)(1))*for0 <t < a,

and
uy (1) = [ho(t) + Z hi(®) [ ™ P + 2w (6)] o(uy(0))
for a<t=<a+p.

Thus u,, satisfies the conditions of Lemma 1 on <0, a + p) and so we get the estimates
u (1) £ r¥,u)(t) =2 —r, u)(t) < o(r) for t € 0, a + p), therefore u,, is also a solution
of (1.1) on <0, a + p>. Denote

{1, xy, x5, x3)  for 0A§ t<a+p
St X1, %3, x3) = {0 for t>a+p.

Then |f,(t, x;, X5, x3)| < |f(t, X1. X5, x3)| for any peN dl‘ld hmfp(t X1, Xp, X3) =
= f(t, x4, x,, X3) on the set R, x D>. Moreover, sup | Z |u“ 1)(t)| peN} <o)

for te R,. Thus by the Arzela-Ascoli Lemma we can prove that the sequence
{u,}y-, contains a subsequence {u,,} 7 which is locally uniformly convergent
together with {u,, } 7, and {u,}>; on R, and u(f) = lim u, (t) is a solution of
(1.1),(1.2), (1.3) on R,. A jmwo

220



References

[1] Canturija T. A.: O zadae tipa Knesera dlja sistemy obyknovennych differencial’nych
uravnénij, Matem. zametki, /5 (1974), 897—906.
[2] Canturija T. A.: O monotonnych reSenijach sistemy nelinejnych differencial’nych uravnenij,
Annal. Polon. Math., 37 (1980), 59— 70.
[3] Hartman P., Wintner A.: On monotone solutions of systems of non-linear differential
equations, Amer. Journ. of Math., 76 (1954), 860— 866.
[4] Kiguradze I. T.: On monotone solutions of nonlinear ordinary differential equations of
order n, Izv. Akad. Nauk SSSR, ser. mat., 33 (1969), 1293 —1317.
[5] Kiguradze I. T.: Nekotoryje singuljarnyje krajevyje zadaci dlja obyknovénnych differencial’-
nych uravnénij, ITU, Thilisi, 1975.
[6] Kiguradze I. T., Rachitnkovd I.: O razreSimosti nelinejnoj zadaci tipa Knesera, Diff. uravné-
nija, 15 (1979), 1754—1765.
[7] Kiguradze I. T., Racliinkovd I.. On a certain non-linear problem for two-dimensional
differential systems, Arch. Math. (Brno), 76 (1980), 15—38.
[8] Rachinkovd I.: O zadae Knesera dlja sistem obyknovennych differencial’nych uravnénij,
Sobs¢. Akad. Nauk GSSR 94 (1979), 545—548.
[9] Rachinkovd I.: On Kneser problem for systems of nonlinear ordinary differential equations,
Czechoslovak Math. J., 37 (106) (1981), 114—126.
[10] Rachinkovd I.. Ob odnoj nelingjnoj zadade dlja differencial’nych sistem n-go porjadka,
Czechoslovak Math. J. 34 (109) (1984), 285—297.
[11] Rachiinkovd I.: On a nonlinear problem for third order differential equations AUPO, Math.
XXVII, Vol. 91 (1988), 225—249.

Author’s address: 771 46 Olomouc, Videiiska 15, Czechoslovakia (ptirodovédecka fakulta UP).

221



		webmaster@dml.cz
	2020-07-03T07:26:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




