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1. INTRODUCTION 

Let /(z) be the principal branch of an analytic function regular at the origin. 
Then its Taylor series 

00 00 

(1) /(г) = Х / ( п ) ( 0 ) ф ! = І ^ » 
n=0 n = 0 

has nonzero radius of convergence R0 and for \z\ > R0 diverges. However very 
often an summability method a exists yielding a finite sum of this series even for 
|z| > R0. We say that a summability method a is regular if 

oo oo 

(2) a(X<v") = X<v" 
n = 0 и = 0 

whenver the r.h.s. of(2) converges in the usual sense. In the paper only such regular 
summabiUty methods are studied which in addition give an analytic continuation 
of the r.h.s. of (1). This means that whenever the a-sum exists then 

00 

ff(Ie,,z-)=/(z). 
И = 0 

The class of the analytic regular summability methods is quite large and includes 
well-known summability methods as Lindelöf's, Mittag-Leffler's and Borel's one. 
For details see [1]. да 

The Lindelöf theorem deals only with tbe series £ zn, giving its analytic continua­
tion as a limit of the entire functions "=0 

00 00 

(3) £ A„(S) z" = 1 + £ z" exp(-cn ln и) 
и = 0 n = l 

for ô ^ 0+ in the whole Mittag-Leffler star of the function l/(l — z) (see theorem 
32 of [1]). The general case is then dealt with the Mittag-Leffler theorem ([l], theorem 
135). For the proof of the Mittag-Leffler theorem is decisive uniform convergence 
ofthe series (3) for ô ^> 0+ in some star-like regions A(rj, Ř) (see also the next section). 
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Our basic observation is that uniform convergence for ô ^> 0+ holds for some un­
bounded regions A(rj, oo) = lim A(n, R). This fact enables us to generalize the Mittag-

R^OD 

Leffler theorem. We cannot prove uniform convergence in unbounded regions in 
general. We can however obtain an estimation of the approximation off(z) due to 
the Mittag-Leffler sum of its Taylor series at the origin when z tends to infinity, 
(f(z) being from subclass of functions regular at the origin, which are regular in 
some sector-like domain). This is done in the section 3. The results obtained have 
very useful applications to the perturbation methods. They can be applied to the 
resolvent operator in the Rayleigh-Schrödinger perturbation theory [2]. Some results 
in this direction have been obtained by Reeken using the Borel summability method 
[3]. In quantum field theory the perturbative series in a coupling constant have 
mostly zero radius of convergence [4]. However in some other perturbative schemes 
it is not the case [5] and the results of our paper can be used. Very important example 
of the perturbation series with nonzero radius of convergence provides so-called 
planar field theory [6]. 

2. LINDELÖF THEOREM 

Dehote like [1] 
00 

(4) gô(z) = £ zn exp {-on ln n) , Ô > 0 , 
n=l 

g(z) =z|(l-z), 

A(rj, R) := {z = r exp (i0) | r ^ R, 0 < rj S Ѳ й 2n - n} , 

Iô(z) = Jc z11 exp (-ou ln u)l(e2niu - 1) áu , 

where the integral is taken along the contour C depending on an angle ф0, 0 < q)0 < 
< тс/2, and which is formed by the circular arc 

(4a) {u = g exp (іф) | g = 1/2, \q>\ S 9o < *|2} , 

and the two rays 

(4b) {u = Q exp (ic>) J g > 1/2, ç = ±ç0) . 

The function in u is taken to be the principal branch of Ln u cut along the negative 

real axis, i.e. —n < Im ln u < n. 

Let us formulate now the Lindelöf theorem [1]. 

Theorem 1. Let gô(z) and g(z) be defined by (4). Thenfor 5 ~> 0 + 

9o(z) =5 g(z) 

in an arbitrary compact set not containing any point of the interval <1, oo). 

Our generalization is given by the following theorem. 
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Theorem 2. Let gö(z) and g{z) be as in Theorem 1. Thenfor д ->• 0 + 

g6(z) ^ #(z) 

uniformly in the unbounded region A(rj, oo) := lim A(q, Ř). 
R^oo 

The p r o o f of Theorem 2 is based on the following idea. Let us assume for 
a moment we know that 

(5) lim gô(z) = lim g(z) = - 1 , 
z-+co z^oo 

zeA(t|,oo) zeA(t|,ao) 

uniformly in S, 0 < ô < <50, where S0 is sufficiently small. On the other words it 
means that for each s > 0 exists such a JR(e) that 

(6) \gò(z) - g(z)\ < s, 

for zeA(rj, co)\A(r],R(s)), uniformly in 5, 0 < č < ô0. On the other hand the 
Lindelöf theorem ensures existence of such o(s) that for 0 < ô < 5(s) 

(7) Ш - g(z)\ < e , 
uniformly in z є A(r|, ^(e))- Giving (6) and (7) together one easily obtains the required 
inequality 

\gd(z) - g(z)\ < e 

uniformly in z e A(rj, oo) for 0 < ô < min (<50, S(s)). In this manner the proof of 
Theorem 2 is reduced to the problem of finding the asymptotic behaviour of gô(z) 
for z tending to infinity in some region A{r\, oo), when ò is sufficiently small. The 
clue to the problem of finding the asymptotic behaviour of gô(z) consists in the 
observation that the value of the parameters ç0 in (4a, b) can be taken to be я/2. 
This is an subject of Lemma 1. In the next the contour of integration C (4a, b) is 
deformed in order to apply standart methods of asymptotic analysis to particular 
parts of the so deformed contour. This is done in Lemmas 2 - 4 . Eventuallythe 
relation (5) is proved what completes the proof of Theorem 2. 

Let us turn to the Lemma 1 now. 

Lemma 1. For all z e A(rj, oo), where ц isfixed and ô such that 0 < 5 ^ d0 < rj|n 

gd(z) = J c exp (u ln z - 5u ln u)/(e2niM - 1) dw . 

The contour C is given by (4a, b) where q>0 is taken to be я/2. 
Proof. Expressing the integrand ofl ,(z) (4) i n polar coordinates (g, q>) and (r, Ѳ) 

one obtains 

(8) zu = exp [e(cos cp ln r - Ѳ sin cp) + [Q(s[n ç l n r + Ѳ c o s ^vj $ 

e x p ( - 5 u l n w ) = 

= exp [OQ(cp sin c> - cos cp ln e) ~ Щ$іп 9 l n e + 9 c o s ^ ^ 

і/(е2яі" - 1) = l/(exp (2niQ cos cp ^ 2nQ sin cp) - 1) . 
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Giving all these factors together one easily findes that the integrand of Iô(z) is 
for Q tending to infinity and \q>\ ^ q)0 < n|2 uniformly majorised by the term 
exp (-ÔQ ln Q cos q>0). Using the Cauchy theorem, 

9o{z) = h(z) 

for all z in the cut complex plane z, because the integrand of Iô(z) is a meromorphic 
function u in the whole complex right halfplane with simple poles at the points 
u = 1, 2 , . . . of the real positive axis. Let us investigate a behaviour of the integrand 
of Iô(z) on the rays (4b) when g tends to infinity. One can always choose such q>0 

and ö0 that 

(9) sin q>0 > 1/2 , tg q)0 > 4 ln R|tj, ö0q)0 < rj|2 , 

where ц and R are some constant (4). For such q>0 and 50 we get 

(10a) \zu exp (-5u in u)\ = exp [^(cos q>0 ln r — Ѳ sin q>0) + 

+ <>д(с0 sin 9o — c o s <Po ^n £>) < e x P (^o I*1 2/2 — ^r7/8) ; 

(10b) | е 2 л і м - 1| < 1 , 

uniformly for z є A(q, Ř). Thus the integrand of/^(z) is shown to be majorised by the 
term 
(11) exp(^ 0 ln2/2 - orj|$) 

for Q tending to infinity and q> = y0. Note that the bound remains to be valid also 
for ф0 = ті/2, because the relations (9) under which is derived remain unchanged 
for such ф0 if d0 satisfies the relation 

(12) 0 < ô0 < Ф -
However, for our purposes this restriction on č0 is unimportant. Completely ana­
logously one can treat the case of q> — ~-(p0- The estimations like (10a, b) are slightly 
different in this case but the resulting bound on the behaviour of the integrand 
ofJ^(z) when g tends to infinity is the same. Let us take now some z є A(rj, 00). It is 
always possible to choose constants R and q>0 = q>0(r\, R) such that \z\ < R and q>0 

satisfies (9). For all |^ | from the interval <q>0,7i/2> the integrand of/^(z) has been 
shown to be uniformly majorised by (11) for Q tending to infinity. Using the Cauchy 
theorem, 

J c exp (u ln z - Su ln u)/(e2ni" - 1) àu = /,(z) , 

and the proof is over. 

We emphasize that Lemma 1 enables us to work with a fixed contour C indepen­
dently on the regions A(r], R) where R tends to infinity and r\ is fixed. We can in­
vestigate the asymptotic behaviour of Iô(z) without any difficulties now. In the next 
it will be convenient to introduce a function h(u), 

(13) h(u) = exp (iu Ѳ - öu ln u)j(e2niu - 1), 
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so that 

(14) I,(z) = lc^-h(u)du. 

According to (13) h(u) has simply poles at the points u = 1, 2, ... ofthe positive real 
axis. The dependence of h(u) on the parameter 3 will not be written down. The parts 
ofthe contour C given by the relation (4b) are now lying on the imaginary axis. It 
is useful to consider the two parts (4a) and (4b) of the contour C separately. We 
shall write Iô(z) in the form 

(15) h{z) = - і ІГ/2 e ielnr h[u(g, ті/2)] d£ -

- і Я72 e" i e l n r h[u(g, - я / 2 ) ] áQ + Kô(z), 
where 

(16) Kô(z) = Je"lnr%)dw 

and the integral is taken in positive sense along the semicircle (4a) (cp0 = я/2). The 
first two integrals on the r.h.s. of (15) are of the Fourier type and their asymptotic 
behaviour for r tending to infinity can be easily evaluated, although the Riemann-
Lebesgue lemma can not be used directly (the integration runs over the unbounded 
interval). 

Lemma 2. Let h(u)be defined by (13). Then 

- i |5°/2 e ielnr h[u(g, я/2)] d£ ~ -h(i|2) e i lnr/2/ln r + o(l/ln r) {r ^ 00) ; 

- i f"/2 e~ ie lnr Л[и(в, - я / 2 ) d^ - -h(-i|2) e- i l n r /2/ln r + o(l/ln r) 

(r ^ 00) , 

uniformly in A(n, 00). 
Proof. In virtue of the theorems on the asymptotic behaviour of the Fourier 

integrals [7, 8] it suffices only to show thatfunctions h(±io) are integrabile on the 
interval (1/2, 00). We have 

fc[fi(g, я/2)] - {exp (g(KO|2 - Ѳ) - i5 e ln с)}/(екр (2тсв) - 1), 

k[tt(e, - я / 2 ) ] = 

= {exp [ е ( - 2 я + 0 + я^/2) + i^^ ln g]]|(l - exp (-2ng)), 

so that the functions h(±ig) are exponentially decreasing when g tends to infinity, 
uniformly for z e A(rj, 00), since č satisfies the bound (12). On the other hand h(u) 
is regular on the rays (4b) with q>0 = я/2, so that integrability of h(u) on theses 
rays is obvious. 

Now it remains to find an asymptotic behaviour of the part Kö(z) of Iô(z) (15). 
The method of stationary phase is unapplicable to Kô(z) (no stationary point exists 
for large r), so that we will proceed other way. Because of the term exp (g ln r cos cp) 
it is advantageous to deform the semicircle (4a) to the left halfplane u. An obstacle 
appears at the origin due to the branch point of the integrand here. Hence the 
resulting integration contour is taken as on the figure 1 (£ fixed). We denote by Kh 
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where 1 й 1 á 7, the integral taken along the part 1 of the resulting contour. One gets 

(17) K47) = ± e x p ( ± i ln r/2) f0 e - n n r h(±ij2 - t) ât, 

(18) K2(6) = + i exp (~Cln r) J^2 e ™ * ( ± * - 0 d 5 • 

(19) K4(e) = f, euInr Л(м) dw , 

(20) K3(e) + K5(e) - f£ e " r I - [ / 2 - ( - 0 - /г + (-0] d ř > 

where u = í + is and A + ( -1) or A ~ ( - 1 ) are the values of h(u) on the upper or down 
side of the cut respectively. Now we are in a position to prove the following Lemma. 

Lemma 3. Vr and Vöfrom the interval (0, о0У, where S0 < n|n, 

lim K3(e) + K5(e) 
fi^0 

exists and 
lim (K3 + X5) (e) = 2i f0 {exp ( - i z - St ln i)} sin (Sin) di/(l - e~2ni ř). 

Proof. Firstly 

fc"(-i) - /î + ( ~ 0 = exp(-ifO){exp[af(lni - ітс)] -

- exp [St(ln t + k)]]/(exp (-27cii) ~ 1) = 

= 2i[exp (-itO - «5/ ln i)] sin (Stn)|({ - exp (-2nit)), 
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so that the integrand on the r.h.s. of (20) is a regular function on the whole interval 
(0, Ç). Therefore this interval is finite the integral 

jíe~tlnr[h~(-t)- h + (-t)]dt 

exists. Hence 

U m ß e - ' l n r [ Ä - ( - i ) - h+(~t)]dt = J c
oe- t I n r [ fc"(-0 - h+(-t)]dt. 

e^O 

Let us now estimate the integrals (17, 18, 20) when r tends to infinity. As we have 
mentioned above we expect the leading term of the asymptotic expansion of Iô(z) 
for z tending to infinity to be of order O(l), so that the following roughly estimates 
are sufficiently for us. 

(21) |^i(7>| Ž cont Jfc e" ř In ř ât < const/ln r (r ^ oo), 

(see for instance [9]), 

(22) K2 + K6 = 0([exp ( - Ç l n r)]/ln r) (г ^ oo), 

because these integrals are transparently of the Fourier type. Eventually 

(23) \КЪ 4- K5\ g const f0 e" ř l n r àt < const/ln r (r ^ oo). 

All the integrals have beenjust shown tend to zero for z tending to infinity. The last 
integral (19) is dealt with the following Lemma. 

Lemma 4. For all z in the cut complex plane 

limX4(e) = - 1 , 
£^0 

uniformly in ö such that 0 < ô ^ ô0 < tf|11* 

Proof. K4(e) = J4 exp (u ln z » ôu ln w)/(exp (2rciw) - 1) dw. Let us expand 

exp { — ôu ln u) into the power series 
00 

(24) exp ( - ôu ln u) = £ ( ~ bu l n uYln ! • 
n = 0 

Obviously lim M ln u = 0, so that (24) converges for all u from the cut complex 
\u\^0 

plane. This convergence is uniform on each compact set of this plane. Specially for 
any finite positive M > 0 and |w| й M the relation 

00 

(25) X4(e) = £ ( - S y | n ! U e" l n Z(" l n ")"/(e2"'" - l ) d " 
n = 0 

holds. Now we wish to prove uniform convergence of the r.h.s. of (25) in e, for 
0 < г < M and M sufficiently small. In other words we want to prove that 

QO 

limJQ(e) = £ (-Sy|nl lim i4e" lnz(« ln u)"/(e2*1" - 1) áu . 
£^0 Л = 0 £^0 
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и = e 
и = e1 

Let us consider the individual integrals on the r.h.s. of(25). 

a) n = 0: In this case the integral can be immediately performed and the result is 

J4 exp (u ln z)/(e2niM - 1) du = -27ci Res (eMlnz/(e2nitl - 1); 0) = - 1 , 

because of the simple pole of the integrand at the origin. 
b) n = 1: 

(26) J4 eMlnzw ln w/(e27IiM - 1) du = l/(2ra) f4 ln w du + 

+ Í4 [eMlnz/(e2niM - 1) - l/(2ratt)] и ln w dw . 

The first integral on the r.h.s. of (26) can be also performed and the result is 

(l/(2ra)) J4 ln u du = (l/(27ii)) (u ln u — u) 

The second one can be majorised in the following manner for M < l/e: 

|wlnw| й M(|lnM| + тс), 

|еи1пг/(е2пім ~ 1) ~ l/(2raw)| ^ iV(z), 

where iV(z) depends on z only, so that 
j 4 [eMlnz/(e2iM - 1) - 1/(2яш)] u ln и du g 2яе iV(z) M(|ln Af| + тс). 

This means that 
1. lim f4 eMlnz u ln м/(е2лїм - 1) du = 0 , 

є^О 

2. |J4 e"lnzu ln uj(e2niu - 1) du| g 2тіМ2 N(z) (|ln Af| 4- тс) + M < 
<M(| lnM| +n)N(z). 

c) n > 1 : Persuing the case b) of n = 1 step by step one obtains 
J4 eMlnz(w ln u)nl(c2niu - 1) dw = (l/(2Tci)) J4 w""1 ln M du + 
+ U [eMlnz/(e2niM - 1) - l/(2Tciu)] (и ln и)" dw , 
|l/(2Tci) J4 u""1 ln u du\ й eM""^|ln M| + тс)п , 
|J4 [ettlnz/(e27liu - 1) - l/(2niu)] (и ln u)n du| £ 
g 2TC8iV(z)Mn(|lnM| + тс)", 

i.e. 
1) lim J4 [eulnz/(e2niM - 1)] (u ln u)" dw = 0, 

e^O 

2. ||4ем1пг(и1пи)и/(е2пім - l)dw| й Af"(|lnM| + Tc)"(2TcMN(z) + 1) = 
= N(z) M"(|ln M\ + тс)и 

uniformly in e є (0, M>. 
Giving all the cases n = 0, n = 1 and n > 1 together we are led to the following 

assertions: 
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1. The series on the r.h.s. of (25) is absolutely majorised by the convergent series 
00 

% ) X < 5 " / n ! ( | l n M | +7c)"Af, 
n = 0 

uniformly for e є (0, M>, where M < l/e; 
00 

2. limK4(e) = I ( -<5)"/n! 1іт|4е"1пг(и1пм)"/(е2лі" - l )du = - 1 , 
є^О и = 0 E^0 

q.e.d. 

Lemma 4 complete the proof of Theorem 2, because from Lemmas 1 - 3 we already 
know that 

gô(z) = КДг) + 0(l/ln r) (z ^ oo, z є J(rç, co)) . 

Using Lemma 4 we have that 

g(z) = - 1 + 0(l/ln r) (z ^ oo, z/J(q, oo)) , 

what justifies the relation (5). 

3. MITTAG-LEFFLER THEOREM 

As it has been mentioned above the Mittag-Leffler theorem is a version of the 
Lindelöf theorem for the general case [1]. 

Theorem 3 (Mittag-Leffler). Suppose that 
00 

1. Yj Ajfi) z" *s an entirefunction of zfor every positive ö; 
n = 0 00 

2. that q>ö(z) := ^Ajo) 2" ~* */0- ~~ z) w ^ e n ^ ~̂  ^+, uniformly in any closed 
n = 0 

and bounded domain containing no point of the line <1, co); 

3. thatf(z) is the principal branch ofan analyticfunctionregular at the origin 
and represented there by the Taylor series 

00 

(27) I a„2", 
и = 0 

with nonzero radius of convergence R0. 
Then 

(28) ^A,{e)a,,z"^f(z) 
n = 0 

when ô ^> 0 + , uniformly in an arbitrary compact set A interior to the Mittag-
Leffler star off(z). 

We remember that the Mittag-Leffler star of/(z) means the domain obtaining by 
drawing rays through zero to every singular point o f / (z ) and removing from the 
plane the parts of the rays beyond the singular points. In the next we will deal only 
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with representation of An(ö) as given by the Lindelöf theorem. Another possible 
representations of An(ô) are given in [1] and [10]. 

Using Theorem 2 we are able to give the following generalization of Theorem 3: 

Theorem 4. Letf(z) satisfies the hypothese 3 of Theorem 3 and, in additon, is 
regular in a region Q (see fig. 2) with the boundary given by 

i) two abcissas i(a, ß) and - i ( a , ß), where 0 < a < R0 and a ^ ß; 
ii) the semicircle {z = a exp (i0) | я/2 ^ Ѳ ^ Зя/2}; 

iii) two rays {z = x + iy | y = ±ß ± (tg 0O) . x, 0 < 0O < я/2}. 
Let 

P = {z = r exp (i<p)| |c>| й q>o < Ѳо) , 

P(r) := P n {z| \z\ й r} , ß(r) := Q n {z| |z| й r} . 

Thenfor each e > 0 exisís 5wcft a ô(s) thatfor 0 < ô ^ á(e) 

(29) | /(z) - £ Л„(5) a„z"| ^ г/2я JeQ(vr) | /(u)/u| |du| , 
n = 0 

uniformly in z e P(r), where y is some constant, y > 1. 

Before the proof of the theorem let us note the following. 

R e m a r k 1. Under the assumption of the theorem the integral on the r.h.s. of (29) 
converges for every finite r, what means that the series on the l.h.s. of(28) converges 
to / (z ) uniformly in the region P(r) as should be due to the Mittag-Leffler theorem. 
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Nontrivial case is whenever the integral on the r.h.s. of (29) converges when taken 
along the boundary of the region Q, because its convergence justifies uniform con­
vergence of the l.h.s. of (28) t o / ( z ) in the unbounded region P. 

Proof. Under the hypotheses of the theorem for z interior to P(r) holds 

(30) / (z ) = і/(2яі) $тю [/(«)/«] [1/(1 - */«)] àu . 

Let ô > 0 and denote by a>(u) the function 
00 

(31) co(u) := 1 + X exp (-on ln n) un ~ l /(l - w) . 
n = l 

This function is regular in complex plane u except for the point u = 1, where it has 
a simple pole, and u = oo, where it has an essential singularity.For each r > 0 and 
u є dQ(yr), z' є P(r) 

z'/w = r'JQ exp i(0 — q>) є J : = A(rj, oo) u {z| |z| ^ 1/y} , 

where ^ = Ѳ0 — 9o a n d d(rj, oo) is defined in the same way as in the section 2. In 
other words for each s > 0 one can choose such a o(s) that for any r > 0 and 
u є dQ(yr), z' e P(r) 

(32) 0 й \o>(z'ju)\ < e , 

for all ô such that 0 < ö ^ ö(s). On the other hand from (30-31) if follows that 

(33) f(z) = (l/(2*i)) $SQ(yr) (f(u)|u) àu + 
00 

+ (l/(2ra)) I exp (-ЙП ln n) z" Jaa(yr) (/(u)/w"+1) àu -

n = l 

- (V( 2 7 l i ) ) idQ(yr) (0>(z|u)f(u)|u) du . 
Performing the first two integrals one obtains 

00 

f{z) = f(0) + £ exp(-Sn ln n) a,,z" -
n = l 

- (l/(2ni)) JaQ(yr) (co(z|u)f(u)|u) du , 
or 

00 

/ (z ) - X A(# ) «.*" = (l/(2™)) W , (<o(z|u)f(u)|u) áu 
n = 0 

respectively. From above we know that (32) holds uniformly for z є P(r) if u є dQ(yr), 
so that 

00 

|/(z) - X 4 # 0 e-z"| ^ (e/2n) iac(K) (/(«)/") d« 
л = 0 

q.e.d. 

Note that the contour along ß(yr) can not be deformed without change of (32). 

210 



4. CONCLUSION 

As we have said above the results obtained can be applied for example to the 
Rayleigh-Schrödinger perturbation theory. Let H0 be a closed linear operator acting 
in a Banach space and let V be another closed linear operator acting in this space, 
which is relatively bounded with respect to Я 0 , with relative bound equal to zero. 
We will be interested in the resolvent operator R^{z) = (tf0 + XV— z)~ l defined 
for z not in the spectrum of H = H0 + XV. Usual perturbation theory starts from 
the identity 

R,(z) = R0(z)[l + A K * o ( z ) ] - 1 . 

By our assumptions VR0(z) is a bounded operator, so that the series 
00 

(34) [1 + XVR,{z)Y' = X (-Я)" tVRo(z)f 
n = 0 

will converge in norm for ||AFJR0(z)|| < 1. The role of our results and in general of 
analytic regular summability methods is now obvious. They can immediately provide 
analytic continuation of the r.h.s. of (34) and in such way enable us to study the 
resolvent operator RÄ(z) for larger domain of z (see also [ l l ] ) . 

Having at our disposal an information about the position of singularities of / (z) 
(27) more strong results could be achieved using a conformai mapping. This depends, 
however, on a particular case. Another problem is to compare the numerical efficiency 
ofthe methods described here with the methods ofPadé approximants becoming very 
popular in physics [12]. As it has been proved the Mittag-Leffler summability 
method can at best sum the series on the r.h.s. of(27) uniformly on some unbounded 
ray only if/(z) is regular in a larger sector-like region. Tn [13] the analytic momentum 
summability methods are studied. A summability method have been constructed 
giving analytic continuation of the r.h.s. of (27) due an absolute convergent integral 
on each ray lying in the Mittag-Leffler star of / (z) . It is shown that such methods 
are deeply conected with entire functions tending to zero in every radial direction 
except for one. 

I am indebted to J. Fischer and J. Fuka for continuous interest in my work and 
for stimulating discussions. I thank also the Department of Mathematical Physics 
for kindly hospitality during my stay there. 
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