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LOOP COHOMOLOGY 

K. W. JoHNSON, Kingston and C. R. LEEDHAM-GREEN, London 

(Received December 3, 1984) 

1. INTRODUCTION 

Associated with every algebraic category there is a cohomology theory. In the 
category of groups cohomology theory is well-established, and one of the inter­
pretations of the higher cohomology groups of a group leads to the considerations 
of extensions in the category of loops ([6]). In general very few algebraic tools are 
available in the category of loops and so there is a possibility that the cohomology 
theory will lead to interesting algebraic insights into categories of varieties of loops. 
This is the point of departure of this paper. In it the basis is laid for the study of 
cohomology theory for any variety in the category L ofloops and the theory is worked 
out for L itself. Not surprisingly, the cohomological functors in this case are trivial 
in the sense that L1 is an extension functor (corresponding to H2 in group theory) 
and Ln = 0 for n > 1. However, from the point of view of homological algebra the 
situation is less trivial in that L affords an example of a balanced category, i.e. the 
cohomology theory vanishes on injective modules. This is a rather rare but important 
property. As is well-known, the category of associative loops, i.e. groups, is also 
balanced and it was thought interesting to investigate the category of commutative 
loops, which turns out not to be balanced. One of the interesting facets of the work 
is that the concept of module in the category of a variety of loops is in general much 
less trivial than that in the category ofgroups, and in fact the investigation ofmodules 
in the categories of Moufang and Bol loops, which was initiated by contact with the 
work in this paper, has already given insight into the structure of such loops ([ l3] , 
[15]). 

The appropriate definition of a loop module is given in § 2. We remark that relative 
to L the multiplicative structure of the loop is brought into play only insofar as it 
determines the identity element, but for other varieties the multiplication becomes 
more important. In § 3 the group Ext (ß , A) of extensions of a Q-module A by 
a loop Q is calculated. In § 4 the cohomology groups L"(Q, A) are defined and it is 
proved that they have the properties mentioned above. A brief description of the 
'standard' cohomology theory of an algebraic category is given in § 5, via Rinehart's 
approach. It is shown that the cohomology groups defined in § 4 are indeed the stan-
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dard cohomology groups. In § 6 it is shown that L is balanced and that the category 
of commutative loops is not. 

A quasi group is a set Q with a multiplication defined in such a way that, if ah = c, 
any two of a, b and c determines the third. A loop is a quasi-group with identity 1. 
Thus a group is an associative loop. We use the dot notation to avoid excessive 
brackets; for example a . bc = a(bc). An abelian loop is required to be associative 
as well as commutative; in this case composition may be denoted by + . The kernel 
of a loop homomorphism has the natural meaning as in group theory. The set of 
non-identity elements of a loop Q is denoted by Q*. 

An algebraic category is a category whose objects are sets endowed with operations 
of given arity, subject to identity relations, and whose morphisms are the set-
theoretic maps that preserve these operations. For example, L is an algebraic 
category with one nullary operation given by the identity element and three binary 
operations. If ab = c the first of these operations takes (a, b) to c, the second takes 
(a, c) to b, and the third takes (fo, c) to a. These operations are subject to the obvious 
relations. A variety in an algebraic category is an algebraic category obtained from 
the original one by imposing further relations. Thus the category of groups is 
a variety in the category ofloops. An algebraic category has free objects, characterised 
by the usual universal property, and fibre products. For example, in (S, *), the 
category of pointed sets, every object is free. The fibre product, or pull-back, 
d x c C2 of two homomorphisms yt: Ct ~> C, i = 1, 2, is the sub-object {(cl5 c2): 
7ici — Уіст] of Ct x C2. If C is a fixed object in an algebraic category Cthe category 
CjC is defined as follows. An object of CjC is an object in C supplied with a homo­
morphism into C (formally an object of C|C is a homomorphism in C with codomain 
C) and if yt: Cř ^> C, i = 1, 2, are objects of C|C then a morphism from y2 to y1 

in C|C is a homomorphism Ѳ: C2 ^> Cl such that y2 = ухѲ. In general, C|C is not 
equivalent to an algebraic category. Finally we mention some 'forgetful' functors. 
First there is the functor V: L ~> (S, *) taking the loop Q to the underlying set of Q, 
with special element 1. Then if Q is a fixed loop there is a forgetful functor from 
L|Q to (5, *) taking y: H ^ Q to V{ti). 

There have been previous treatments ofextensions ofloops, see [ l ] , [4], [6]. 

II. LOOP MODULES 

If Q is a loop requirements of two kinds must be met in defining a Q-module. 
First we require a Q-module A to have sufficient structure for the split extension 
Q C A of A by Q to be defined. The loop Q C A has underlying set Q x A, and 
identity (1, 0), and the projection П on the first variable is a homorphism with kernel 
isomorphic, as abelian group, to A. It must also satisfy the following two conditions. 

(2.1) The map q ^ (q, 0) is a splitting of П . 

(2.2) For all q e Q and a e A, (q, a) = (q, 0) (1, a) . 
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In order to define a ß-module A a structure map fi: A x A x ß x Q ^> A must 
be defined so that, writing (al9 a2\ ql9 q2) for д(аІ5 a2\ ql9 q2), multiplication in 
ß C A is given by 

(2.3) (qi9 ax) (q2, a2) = (qxq2, (al9 a2; gl5 #2)) 

It is easy to see that ^ defines a ß-module ifand only ifthe following four conditions 
are satisfied. 

For all fixed ql9 q2 e ß, a quasi-group structure is defined on A by 

(2.4) (al9 a2) ~> (al9 a2; qu q2) . 

For all 

(2.5) ql9 q2 e Q , (0, 0; qu q2) = 0 . 

For all 

(2.6) a e A and q eQ , (0, a; 1, g) = (a, 0; g, 1) = (0, a; q, 1). 

For all 

(2.7) яІ9 a2 є Л , (al9 a2; 1, 1) = t^ + a2 • 

One further condition on а loop module arises as follows. I f# i s any loop supplied 
with homomorphism y into Q & derivation from Я to A is a map d: H ~> Л such 
that & ^ (уй, òtì) is a homomorphism of H into ß C A, i.e. such that, for all 
hl9h2eH9 

(2.8) S(hth2) - (5Л„ <5й2; yftl5 уй2). 

For every fixed H and 7 we require the derivations of H into A to form an abelian 
group under addition induced from A. This will be the case if, for all аъ аъ bl9 b2 є А 
and ql9 q2 є ß, 

(2.9) {аг + a2, bt + b2; ql9 q2) = (al9 bx\ qu q2) + (a2, b2\ ql9 q2) . 

For then, if5 l 5 ö2 are derivations with ôih1 = ah Sth2 = bi9 i = 1, 2, one has 

(<?i + c2)(M2) = <5i(Ma) + S2(hth2) = (al9 bx\ yht, yh2) + 

+ (<*2> Ь2; yftl5 уй2) = (ai + a2, Ьх + b2\ yhl9 yh2) = 
= ((Si + <52) Ai, (<^ + ö2) h; yhl9 yh2) . 

So, òt + 52 is a derivation. Conversely, if the derivations of H into A are to form an 
abeUan group for every H and 7, then condition (2.9) is necessary. For if H is free 
on [hl9 h2] then al9 al9 bt and b2 can be chosen arbitrarily. 

Note that (2.9) imphes (2.5) and, in conjunction with (2.6), impHes (2.7). Thus 
a Q-module (strictly a Q-loop-module) A is defined to be an abehan group with 
structure map jw satisfying (2.4),(2.6) and (2.9). Another consequfence of (2.9) is that, 
for all a9 b є A and ql9 q2 є ß, 

(2.10) (a9 b; qu <l2) = («, 0; qí9 q2) + (0, b; qÍ9 q2) . 
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So, for all #i, <?2 є ß , we define maps L(ql9 q2) and R(qu q2) from A into itself by 

(2.11) a^quq2) = (a9Q;ql9q2), 

aR(qu q2) = (0, a; qu q2) . 

Note that (2.3) now becomes (ql9 a±) (q2> a2) = ( ^ ^ «і ЬО?і, g2) + a2 R(qi9 q2)). 
In view of (2.10) R and Ldetermine the module structure of Л. By (2.4) and (2.9) 
#(#i ,<h)andL(g b g 2 )areautomorphisms^ of A9 and (2.6) implies that, for all 
^ f t 
(2.12) L(<z, 1) = R(q, 1) = JR(1, q) = lA . 

Conversely, given automorphisms L(ql9 q2) and R{qu q2) of A for all ql9 q2 є A, 
satisfying (2.12), and using (2.10) and (2.11) to define a suitable structure on A it is 
easy to check (2.4), (2.6) and (2.9), so that A becomes a ß-module. In view of this 
remark we define the enveloping algebra E(Q) of ß to be the integral group ring of 
the free group on symbols 

{Se{qu q2): qx є ß , q2 є ß*} u {0t(ql9 q2): ql9 q2 є ß#} , 

and define &(q9 1) = 9t{q, 1) = M(l, q) = 1 for all q e ß . So a ß-module may 
equivalently be regarded as a right £(ß)-module. In particular, it makes sense to 
speak of an injective ß-module. Note that E(Q) depends on the identity element 
of ß , but not on its multiplicative structure. Technically the functor E factors through 
pointed sets. 

Let J (ß) , the representing module for ß , be the right £(ß)-module on generators 
{5 : q є ß} with defining relations 

(2.i3) wr2 = Çu,qïiqi,q2)9 i-e-

q~ql = q[ L(ql9 q2) + q~2 Rfai, q2) > 

for all ql9 q2 є ß . Putting q1 = q2 = 1 gives T = 0. Clearly J(Q) represents deri­
vations in that, taking y = lQ, 

Der(ß, A) = Hom£ ( Q )(J(ß), A) . 

More generally, given any y: H ^ ß , 

Der(H, A) = Hom£(H)(j(H), A) , 

where A is an Я-module via y. 
The constructions in this paragraph can be paralleled in any algebraic category. 

It is easy to check that our definition of ß-module is precisely as required to ensure 
that the split extension ß C A is an abelian object in the category L|Q of loops 
over ß . In [7] Lawvere proves that if C is any algebraic category and C є C then the 
category ofabelian objects in C|C is equivalent to the category of modules over some 
ring E(C) and that derivations are represented by some E(C)-module. For example 
if C is the category of groups, respectively abelian groups, respectively Lie algebras 
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over some field, then E(C) is the integral group ring of C, respectively the ring of 
integers, respectively the enveloping algebra of C. 

Since the category of groups is a variety in the category of loops, the integral 
group ring I{G) of a group G is a homomorphic image of the enveloping algebra 
E(G) of G, and since the augmentation ideal l(G) represents derivations for groups, 
/(G) = J(G) ®£(G) %(G). Given a Z(G)-module A, in the (group) split extension 
of A by G one has {gua^(g^a^) = ( t f iô^ t f J^ iâWz) f o r a l 1 QuQi^G a n d 

a l5 a2
 є ^L Since this must also be the loop split extension L(gl9 g2) is conjugation 

by g2 and R(gl9 g2) is the identity map. Thus the natural map E(G) ^> I(G) is given 
by L(gl9 g2) ^> g29 R(gi, g2) ~̂  !• Note however that, if Q is a loop, J(Q) cannot 
in general be embedded as a submodule in E(Q), or in any free E(Q)-module. For 
suppose that q є Q is of order 2. Then by (2.13) q(R(q, q) + L(q9 q)) = 0. But q ф 0 
since a derivation need not take q to 0, and L(q, q) 4- #(g, g) is not a zero divisor 
in £(Q) s m c e t n e integral group ring of a free group is a domain, see [14]. The 
isomorphism ofJ(G) ®£ ( G ) Z(G) onto /(G) is given by g ® 1 ^ 1 — g. 

III. EXTENSIONS 

The first problem is to decide what is to be meant by an extension of a loop Q 
by a module A. In the first place an extension must be an exact sequence 0 ~» A ^ 
^ Я ^ я Q ^ 1, i.e. a surjection of H onto ß with kernel A. It remains to consider 
the module structure. For all al9 a2 є A and hu h2 є H define (au a2; hu h2) by 

(3.1) hla1 . h2a2 — hlh2 . [at, a2; hu h2) . 

So (a1? a2\ hu h2) є A, and the second and last requirement is that 

(3.2) (au a2; hu h2) = (au a2; nhu nh2) , 

where the right-hand side is defined by the given Q-module structure 011 A. For 
example the split extension is a module extension. 

In the case of groups every surjection with abelian kernel is a module extension 
for the appropriate action of the quotient group on the kernel. In the case of loops 
the corresponding result is false in that given a short exact sequence as above, 
(al9 a2; hu h2), as defined in (3.1), may not be determined by аг, a2, %hx and nh2, 
so that (3.2) is not satisfied for any g-module structure on A. 

3.1. Lemma. Let 0^A ^1 H ^n Q -^ 1 be an exact sequence of loops, where A 
is abelian. Use i to identify A with its image in H. Then the sequence is a module 
extensionfor a suitable Q-module structure on A if and only if,for all h e H and 
0, b є A, 

(3.3) ha . b = h . ab , 

and,for all ai9 a2, bu b2 є A and hl9 h2 є H, with the notation o/(3.l) , 

(3.4) (a1 + al9 bt + b2; hl9 h2) = (al9 bt; hl9 h2) + (a2, b2; hl9 h2) 
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Proof. Assume that the sequence is a module extension. Then (3.4) follows from 
(2.9) and (3.2). Also, ha . b = ha . lb = h(a, fo; fo, 1) = h{a, b; nh, 1) = h . ab since 
L(nh, 1) = R(nh, 1) = lA. 

Conversely, assume that (3.3) and (3.4) hold. Let ah bt e A and hi e # , i = 1, 2 
Then 

(^ i^ i • ^2^2) (#i> ai\ hibi> h2b2) = (h1bi . аг) (h2b2 . <я2) = 

= (/?t . M i ) (Л2 • Ь2а2) = hxh2 . (Ьі 4- а ь Ь2 + a2; ftl9 /i2) = 

= ( M 2 . (ЬІ5 Ь2; /гІ9 /i2)) ( а ь a2; hu h2) = 

= (híb1 . h2b2)(aXi a2; hu h2) . 

Thus (3.2) can be said to deflne ( а ь #2; nhu nh2) unambiguously. Then (2.4),(2.6) 
and (2.9) follow, so A becomes a Q-modute and we have a module extension. 

Let A be a ß-module and Ext (g , Л) denote the set of module extensions of A 
by Qj modulo the usual equivalence as in group theory; that is, two extensions are 
equivalent if the middle terms are isomorphic via an isomorphism inducing the 
identity on A and ß. There is a natural addition on Ext (Q, A) given by the Baer sum. 
Given two module extensions 0 ^ A ^> H A Q ^ 1, i = 1, 2, the Baer sum is 
defined as follows. Take the fibre product Hx xQH2; this has a natural homo-
morphism onto Q with kernel A x A. Dividing out by {(a, —a); a eA} gives rise 
to a loop H with a surjection onto Q with kernel A. This is a module extension, and 
is the Baer sum of the given extensions. Thus Ext (g , Ä) becomes an abelian group 
and is covariant in A, contravariant in Q, in the usual way. The zero element of 
E x t ( Q , ^ ) corresponds to the split extension. Clearly the extension 0^A^ 
~> H ^71 Q ^> 1 is equivalent to the split extension if and only if 71 has a one-sided 
inverse. Thus if Q is free every extension splits and Ext (Q, A) = 0. 

We now calculate Ext (ß , A) in terms of cocycles. To construct a module extension 
0 ^> A ^lH ^n Q ^> 1 as above, form H on the underlying set Q x A, with 
n(q,a) = q,ia = ( l , a ) , and (4 , a ) = ( ^ , 0 ) ( l , a ) . L e t ( ^ b 0 ) ( ^ 2 , 0 ) = {ЧіЧгЛ^иЧі)) 
in H, where/: Q x Q ^> A. Since (1, 0) is to be the identity element of H we have, for 
all q e Є, 

(3.5) / ( l , e ) = / ( * , l ) = 0 . 

Any map satisfying (3.5) will be said to be a cocycle. Then, in # , 

(tfi> ai) ІЯ^ a2) = (<2ъ 0) (1, at) . (q2, 0) (1, a2) = 

= ( ї ь 0) (<h, 0) . (al9 a2; qu q2) by (3.2)" 

= (<i1q2>f(<i1> 42)) K > «2; « і . Ы = ( í i « 2 . / ( « i » «2) + (flb e 2 ; «і» «2)) 

by (3.3). So/determines H, and clearly any cocycle/ determines a module extension 
in this way. 

Now let the cocycle fL: Q x Q ^ A define the extension Hh for 1 = 1, 2. These 
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extensions are equivalent if and only if there is a map a>: Q ~> A, with co(l) = 0, such 
that (q, a) ^ (q, a + coq) is an isomorphism of Ht onto H2. This is easily seen to 
be equivalent to 

(3.6) f2(qu q2) - fx{qu q2) = oo{q^ - (œqu coq2; qu q2) . 

A map g: Q x Q ^ A given by g(qu q2) = <x>(q^) - (œqi9 œq2; qu q2) for 
some ш: Q -^> A with co(l) = 0 is a coboundary. In view of (2.6) a coboundary is 
a cocycle. Clearly the coboundaries form an abelian group under addition induced 
via A, and (3.6) shows that Ext(ß, A) is bijective with the group of cocycles/: ß x 
x ß -^ A modulo the coboundaries, the bijection being natural in both variables, 

and hence an isomorphism. 

IV. LOOP COHOMOLOGY 

For any loop ß we make the following definitions: 

*-i(e) = J(fi); 
Bo(o) is the free £(ß)-module on {[q]: q e g*}, put [1] = 0 ; 

B^Q) is the free E(Q) module on {[qu q2]: qu q2 e Q*) , 

put [q, 1] = [1, q] = 0 ; 

Bn{Q) = {0} for n > 1 . 

di' Bi(Q) ^> B0(Q) and d0: B0(Q) ~> J(Q) are ß-module homomorphisms given by 

di[qi, q2] = qiq2 ~ ([qi]> [<22]; «і» Ы a n d 4 Ы = 5- ° n e checks immediately 
that these are well defined, i. e. that dx[q, 1] = dt[\, g] = d 0 [ l ] = 0 for all q є ß . 

The definition of J ( ß ) shows that 

(4.1) Bt(Q)^B0(Q)^d°J(Q)^0 

is exact. We shal] see in § 6 that d± is injective, a fact which may make the definition 
of Bn for n > 1 more natural. If A is a ß-module the loop cohomology groups 
jL*(Q, A) are defined to be the cohomology of the sequence 

0 ^ Hom ö(£ 0(ß) , Л) ^ * Hom0(£L(ß), A) ~> 0 ^ 0 ~> . . . , 

where d* = HomQ^!, A), so that 

L°(ß, Л) = HomQ(J(ß), A) st Der(Q, A), 

L*(ß, Л) = Нот 0 (Б і (о ) 5 4)/im d? , and 

£"(ß, Л) = 0 for w > 1 . 

Now H.omQ(B1(Q),A) is naturally isomorphic to the group of cocycles, and 
a coboundary is just an element in the image of d*, where 'cocycle' and 'coboundary' 
are as defined in § 3. Thus 

L*(Q,A)czExt(Q,A). 
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We finish this section with two simple remarks needed in the next section to prove 
that the cohomology groups defined here coincide with standard cohomology. 

4.1. Proposition, If Q is a free loop and A is a Q-module then L"(Q,A) = 0 
for all n > 0. 

Proof. Only the case n = 1 needs to be considered, and we have already seen that 
Ll(Q, A) ~ Ext(g, A) = 0 whenever Q is free. 

If H is a loop supplied with a homomorphism y: H -* Q the Q-module A 
becomes an #-module so that Hom£(H)(#i(#), Ä) is defined for i = 0, 1, and 
Hom^_)(B,-(-), A) can be regarded as a functor from L|Q to Abop. 

4.2.Proposition. The functors Hom^_)(B^(-) ,A), z = 0 , l factor through 
pointed sets. More precisely if V: LjQ ~> (S, *) is the forgetful functor there are 
functors Tt: (£, *) ~> Abop, i = 0, 1, such that 

Н о т £ ( _ } ( Б , ( - ) , Л ) с ТУ. 

Proof. If (S, *) is a pointed set define S л S to be the pointed set obtained from 
S x S by identifying all elements of the form (s, *) or (*, s), and taking this to be 
the special element. Let \A\ denote the underlying pointed set of^; i.e. the underlying 
set of A with special element 0. Then define 

T0(S) = (S,*)(S,\A\), 

i.e. the set-theoretic maps of S to A taking * to 0, and 

Ti(S) = (S,*)($ л S,\A\). 

Clearly T0 and Tx define functors in the usual way satisfying the required conditions. 

V. STANDARD COHOMOLOGY 

In this section a brief account of standard cohomology will be given, followed 
by a proof that the loop cohomology defined in section 4 is the standard cohomology 
of loops. If <€ is a suitable category, A is an abelian category, and T: <в ^> A is 
a functor, the problem is to define the derived functors of T It should be mentioned 
in passing that it is no longer necessary to assume that A is abelian; this is an im­
portant development as it allows algebraic K-theory and Baer invariants to appear 
as derived functors. We shall restrict attention to the case when A is abelian and is 
either an algebraic category or the category CjC for some algebraic category C 
and object C of C. Henceforth A and <s shall denote such categories. If C is an object 
in any algebraic category C there is a canonical definition of C-module and of 
a derivation into a C-module A, as mentioned at the end of section 2. Then deriva­
tions define a functor Вег( — ,Л) :С/С~»ЛЬ о р whose derived functors are the 
standard cohomology functors C * ( - , A). 

The derived functors of a functor T: # ~* A can be defined in several equivalent 
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ways. For example one can use triples, see Barr and Beck [3]; or simplicial resolutions, 
see Tierney and Vogel [17] or André [2] § 7; or Andre's definition in [2] § 1 in terms 
of models. We shall use yet another approach due to Rinehart [ i6] . 

A surjection in <& is defined as follows. If %? is an algebraic category this is the usual 
definition. If # is C|C for some algebraic category C and object C of C a morphism 

Ѳ 
cz - cQ 

c 
in C|C is a surjection if Ѳ is. Similarly we use,the familiar definition of free object 
in C, and define F ~* C in C|C to be free if F is. Note that ^ has fibre products. 
If %> is algebraic this is the usual construction. If # is C|C the fibre product of Ct ~> C 
and C2 -+ C over C0 ~* C is just the fibre product Cx x Co C2 in C supplied with the 
composite Cx x C2 ~> C0 ^ C. 

Let T: ^ ^ Л be a functor such that, whenever g: B0 is a surjection in 

T(BX x^B,)^T(B,)^T(Bo)^0 

is exact, where a = Г ^ ) — T(7i0) and ß = T(g), ní and n0: Bt xBoBl ~> # 0 

are the projections. Then Г is said to be right exact. This formulation of right 
exactness generalises the usual definition ofright exactness between abelian categories. 
It can be shown that D e r ( - , A), as above, is right exact for any algebraic category C. 

Let U^ß, A) denote the category of right exact functors from # to A, regarded as 
a full subcategory of the category (^, A) of all functors from c£ to A. (There is a set-
theoretic difficulty here which can be removed by replacing with a suitable sma'l 
category, e.g. by the use of Grothendieck universes.) Then the inclusion functor 
/ : R(%>, A) ~> (#, A) is an additive right exact functor between abelian categories 
with derived functors SnI: R(<&, A) as in the standard theory of abelian categories. 

We shall need three simple facts. The first is standard, and the others are to be 
found, for example, in [16]. 

1. The sequence T2 ~> Tt -*• T0 in the abelian category (#, A) is exact if and only if, 
for all objects B of V, T2(B) ~> Tt(B) ~> T0(B) is exact. This remains true if # 
is replaced with any (small) category. 

2. Let $F denote the full subcategory of free objects in c6. Then restriction induces 
an equivalence between Rfó, A) and (#' , A). Thus, in view of 1, a sequence 
T2 -> Tx -» T0 of functors is exact(in R(<g, A) if and only if T2(F) -+ T^F) ~> 
~* T0(F) is exact in A for all free F in (€. 

3. If D satisfies the conditions imposed on # ; e.g. if rá; is an algebraic category; 
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and if V: <& ~+ D preserves pull-backs, and takes free objects to free objects and 
surjections to surjections; and if T: D -* A is right exact, then 7Vis right exact 
and Sn(TV) = Sn(T)VfoT all n ^ 0. 

Let Q be a loop, A be a Q-module, and Gt denote the functor Hom^_) ( l^ ( - ) , A) 
for i = 1, 0 as in section 4. 

5.1. Proposition. The sequence 0 ^ Gi ^ á l G0 ^ ó o Der ( — , Ä) ~» 0, w/iere 5j 
and č0 are induced by d1 and d0 (cf. § 4), is an exact sequence in R(L|Q, ABop). 
Also, Sn(Gi) = 0for i = 0, 1 and n > 0. 

Proof. If T is any functor from (S, *) to an abelian category A then Tis right 
exact and SnT = 0 for n > 0; for every object in (£, *) is free, so ir((S, *), Л) = 
= ((S, *), A). Now as in Proposition 4.2, G( = T,F, where V: L|Q -+ (S, *) is the 
forgetful functor. Clearly V satisfies the conditions of 3 above, and Tt is right exact, 
so Gi is right exact, and 5nGř- == (SnTi) V = 0 for n > 0. Exactness of the sequence 
is equivalent to the exactness, in Ab, of 0 ^> Der(F, A) ~> G0(F) ~> G^F) ~> 0, 
for all free F in L|Q. Exactness at Gt(F) is equivalent to Proposition 4.1, and exactness 
at the other points follows from the exactness of sequence (4.1), and does not rely 
on the freeness of F. 

5.2. Theorem. J/ Q is a loop and A is a Q-module, then Ln(Q, A), as defined in 
section 4, is the standard nth loop cohomology group of Q with coefficients in A, 
for all n ^ 0. 

Proof. Using Proposition 5.1, and 1 above, classical homological algebra shows 
that the standard loop cohomology Ln(Q . Ä), as defined in this section, is the nth 
cohomology group of the sequence ... ~> 0 ~> 0 ^ ^ i ( ô ) ~* ^o(ô) ~* 0 *11 Abop. 
But this is the definition of Ln(Q9 A) in section 4. 

VI. CLASSICAL COHOMOLOGY 

There is an alternative method of defining cohomology in an algebraic category C 
which does not in general agree with the standard cohomology of the last section. 
That is, if C is an object in C, A is a C-module, and E(C) and J(C) are defined 
analogously to the definitions given in section 2 for Z, we define the classical 
cohomology groups 0\C, A} of C with coefficients in A to be Ext£(C)(J(C), A). 
If C"(C, A) cz C(C, A) for all C and A then C is said to be balanced. For example 
the categories of groups, Lie algebras over a fixed field, and associative algebras 
over a fixed field, are balanced. Thus if C is the category of groups then C"(C, A) ~ 
~ C(G, A} ~ Hn+i(G, A) ~ ExtJ(G)(J(G), A) for n> 0, and C°(G, A) ~ 
~ C°<(G, Л> ~ Der(G, Л). These isomorphisms are all obvious (hence the name 
'classical cohomology group') except for the isomorphism between Cn(G, A) and 
C\G, A}. This can be proved in exactly the same way that the cohomology groups 
X"(G, A) of section 4 were proved in the last section to be isomorphic to the standard 
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cohomology groups; one uses the standard homogeneous resolution to obtain an 
acyclic resolution of Der(G, A) by right exact functors that factor through pointed 
sets. A similar argument can be used for Lie algebras or associative algebras. We have 
not yet proved that the category ofloops is balanced since we have not proved that dt 

in (4.1) is a monomorphism; this is clearly equivalent to the statement that 

L"(Q, A) Ä Exti ( û )(J(ô), A) for all n £ 0 . 

For the case where C is a variety of groups, see, for example, [8], [9], [10] and 
[11]. In [8] and [11] it is shown that various varieties are not balanced; for example 
the only balanced variety of groups containing all metabelian groups is the variety 
of all groups. In [12] it is shown that locally finite variety of groups F i s balanced 
if and only if every p-group in Fis abeHan. The proof used is very different from that 
used in this paper, since no standard resolution is produced. In [8] the group-
theoretic significance of the standard cohomology groups in a variety of groups is 
discussed. A similar investigation into the cohomology of varieties of loops might 
be of interest. 

An interpretation of standard cohomology in any algebraic category is given 
by Duskin in [5]. 

6.1. Proposition. Thefollowing conditions are equivalent: 

(a) the category of loops is balanced; 
(b) for every loop Q, dx in (4.l) is an injection; 
(c) for every injective Q-moduleI, L*(<2,/) = 0; 
(d) for every module extension ofa Q-module A by a loop Q there is an injection 

ofA into a Q-module B such that the induced extension ofB by Q splits. 

Proof. We have already seen that (a) is equivalent to (b). Clearly (b) si equivalent 
to (c) and (c) implies (d). Finally, (d) implies (c); for let ^eL*(Q, i ) , where I is 
injective. Then by (d) there is a g-module B and an injection i:I ~> B such that 
i*(C) = 0. But i, and hence i*, is a split injection; so £ = 0 as required. 

6.2. Theorem. The category of loops is balanced. 

Proof. We use criterion (d) ofProposition 6.1; it does not seem easy to check (b) 
directly. Let 0 ~> A ^> L^n Q ~> 1 be a module extension. Pick elements {tq: q e Q} 
such that n(tq) = q for all q, and tt = 1. Then for all q, re Q, tqtr = tqrf(q, r), 
where / is a cocycle as in section 3. Let B = A © M as abelian group, where M is 
a free abelian group on {mq: q є Q*}; put mt = 0. We turn B into a Q-module as 
follows. The action of Q on A is already determined. The action o f L a n d R on M 
are defined as follows. 

mr R(q, r) = mr — mq if r ф q and q + 1 Ф r , 

mt R(q, r) = mt if t Ф r or r = q or q = 1 or r = 1 , 

mq L(q, r) = mq - mr + mqr - f(q, r) if r Ф q and q Ф 1 Ф r, 
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mqL(q,r) = -mq + mqr-f(q,r) if r = q and ^ Ф І , 

mt L(q, r) = mt if t Ф q or q = 1 or r = 1 . 

For all q and r, R(g, г) and L(q, r) clearly extend to automorphisms of B. 
It remains to check that the induced extension E of B by Q splits. Define 

{$q' 4 є 6} <= £ by s€ = ^m€, so 5i = 1. Then for all q, r є Q, 

sqsr = iemg . řřmr = feír. (m€, mr; g, r) = 

= V/(^f' r) • (m* L(<2> r ) + ™r #(<?> r)) = 
= tqrf(q, r) . (mgr - f(q, r)) = tqrmqr = s e ř . 

So £ splits as required. 

If the category considered is that of commutative loops then the corresponding 
definitions ofcommutative loop modules and commutative loop cohomology functors 
are trivial translations of the above. If Q is a commutative loop and A is a Q-com-
mutative loop module then the only extra condition on the jR's and L's which define A 
is that L(x, y) = R(y, x) for all x, y in Q. A commutative cocycle/satisfies/(x, y) = 
= f(y, x) for all x, y in Q. Proposition 6.1 holds if the obvious changes are made: 
all loops are commutative and all Q-modules are Q-commutative loop modules 
and the cohomology functors are those for commutative loops. 

6.3. Theorem. The category ofcommutative loops is not balanced. 

Proof. It is sufficient to give an example ofacommutative loop Q and an extension 
of a Q-commutative loop module A by Q which does not satisfy (d) of 6.1 (after 
the changes mentioned above). Let Q be the Klein 4 group = {1, q, r, qr]. Let A 
be the cyclic group of order 4 generated by z, with trivial Q-action i.e. L(x, y) = 1 
for all x, v in Q. Define / : Q x Q ~> A by f(q, r) = / ( r , q) = z, and f(x, y) = 0 
for (x, у) ф (q, r). Let Hi be the resulting extension of A by Q. Suppose there is an 
injection of A into the Q-commutative loop module B such that the induced extension 
splits. We may consider Нл to be embedded in # 2 . If t: Q -^> H1 is a set theoretic 
splitting of Hx which defines / , i.e. txty = txyf(x, y) for x, y in Q, and s: Q ->• Я 2 

is a loop theoretic splitting of # 2 , i.e. sxsy = sxy for x, y in Q then sx = txmx where 
x e Q, mx є B and we may assume mx = 0. Since if x є ß , sx . ŝ  = sx2 — 0, we have 
0 = txmx.txmx = txtx.2mx = txi + / (x , x) + 2mx = 2т л . N o w s ^ = tqmq.trmr = 
= tqrf(q, r) + m9 H- rar. Hence m?r = / (g , r) + mg + mr. This is a contradiction 
since 2f(q, r) Ф 0. 

We note that if Q is a commutative loop with no element x such that x . x = 1 then 
Q satisfies condition (d). In particular this is true if Q has finite odd order. 
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