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Czechoslovak Mathematical Journal, 40 (115) 1990, Praha 

ON COMPLETE a-IDEALS IN SEMIGROUPS 

FRANCESco CATiNo, Lecce*) 

(Received May 30, 1988) 

By X* we denote the free monoid over an alphabet X. Let S be a semigroup. 
By &(S) we denote the semigroup of all subset of S under set product with the unity 0. 
For a є {0,1}* we shall define fa\ 0^S) •+ 0>(S) as follows: fi(A) = A±A2 . . . An 

if a = a^2 . . . aw, oit e {0, 1}, where 

_ / A fo) až = 1 '- Ь 

A i ~ \ S ft>r*, = 0 

We put Л = {0, 1}* \ {1}* and fa : = /f. Let a є Л. A subsemigroup M of а semi­
group 5 is called an a-ideal of S iffa(M) ç M (see [6]). If, especially/a(M) = M, 
thenwe say that M is a complete a-ideal of S. 

In this note we shall characterize the semigroups in which every a-ideal is complete. 
For the undefined notions and notations we refer to [ l ] . 
It is well known (see [6]) the following 

Lemma 1. Let a, ß e A and A, B non-empty subsets of a semigroup S. 
(i)IfAczB thenfa(A)czfa(B); 

(n)faß(Ä)=fa(A)fß(A); 
(iii) AflA) s fXA) and flA) A c fa(A); 
(W)JJtA)fJtA)sfJiA); 
(v)fa(Aufa(A))çzfa(A). 

The following lemma is an extension of Lemma 1 (v). 

Lemma 2. Let a e A and k a positive integer. IfA is a non-empty subset ofa semi­

group S, then 

fa(A u A2 u . . . u Ak u flA)) £ flA) . 

Proof. At first we prove that 

(1) / a ( i u i 2 U . . . u / ) ç / a ( i ) 

byinductiononthelength J(a)ofa. It clear that the result is true for Z(a) = 1. 
Assume now that /(a) ^ 2 and the result holds for every word ß such that l(ß) = 
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- /(a) - 1. 

Case 1 : a = lß. Then ß є А andfß(A и . . . u Ak) c fß(A). Using Lemma 1 (ii), (iii) 

fa(A u A2 и . . . u Ak) = (Л u A2 и . . . и 4*)/^04 u ^ 2 u • • • u ^k) £ 

S (Л и Л2 u . . . u Л * ) / * И s 4/ , ( i4) и Л 2 / , (Л) u .. . u 4* / , (4 ) = 
= Л/ , (Л) u i4(il/Xi4)) u . . . u Л * - 1 ^ / ^ ) ) S .. . £ Л / ^ 4 ) = 
= fM=fM)-

Case 2 : a = Oß. lfßeA, 

fa(A u Л2 u . . . u Ak) = S/ДЛ u Л2 u . . . u Л*) s SfJtA) =fa(A). 
If ß ф A, a = yl with 7 є A. This is dual to case 1. 

Now, by Lemma l(i), (v) and by (l) , 

/ a ( i u i 2 U . . . U ^ u / a ( i ) ) ç 

£ fjA u A2 u ... u Ak u fjA u Л2 u . . . u Ak)) £ 

çzfa(AvA2v...vAk)^f(A). 

Theorem 3. Let A be a non-empty subset of a semigroup S. Then A u A2 u . . . 
. . . u Al(cc)~x ufa(À) is the smallest a-ideal of S containing A, where /(a) is the 
length ofa. 

Proof. Since ( і и і 2 и „ . и і , ( ї Н и / а ( 4 ( i u ^ u . . . u i ^ " 7 , ( 4 ) c 
S A2 u A3 u . . . u A1^-1 u Al(a) u Afa(A) u (л і ( а ) + 1 u Л 2 / (Л)) u . . . 
. . . и (Л 2 ^>- 2 u A**-*flA)) u (/а(Л) Л u . . . u / a ( i ) ^ * > " 1 ) vfAA)fJtA) Я 
Є Л2 u Л3 u . . . u Л / ( а ) _ 1 u . . . u Л 2 / ( а ) " 2 u / . ( i4) s Л2 u . . . u Л ^ " 1 ufa(A) 
we see that Л u A2 u . . . u Л* (а)_1 ufjA) is a subsemigroup of S containing A. By 
Lemma 2 it is an a-ideal of S. Moreover, let B be an a-ideal of S containing A. Then 
Au . . . и Л ' ( а ) _ 1 ufa(A) c Bufa(B) s Б. 

If Л is a non-empty subset of a semigroup <S then Л u Л2 u . . . u Л* (а)_1 и / а (Л) 
is called the a-ideal generated by A and denoted by (Л)а, where /(a) is the length of a. 

Let a є Л. A semigroup 5 is called a-semigroup if every a-ideal of S is complete. 

Theorem 4. Leř а є Л. А semigroup S is an a-semigroup if and only if a є/а({а}) 
for all a є S. 

Proof. Suppose that every a-ideal of S is complete. Let a e S. Then, by Theorem 3 
and Lemma 2, a e {a} u ... u {a1™'1} u / . ({a}) = fa({a} u . . . UJa '<"Hu/^{*) ) ) s 

=/Л«})-
Conversely, if A is an a-ideal of 5. Then, by Lemma l(i), a є/а({я}) £ Л(^) f ° r 

all а є А. Hence A is a complete а-ideal of S. 
R e m a r k s . 1) If а = 10 then any а-ideal of S is a left ideal of S. By Theorem 4, 

every left ideal of S is complete iff a є aS for all a є S (see [2]). 
2) If а = 101 then any а-ideal of S is a bi-ideal of S. By Theorem 4, every bi-ideal 

of S is complete iff S is a regular semigroup (see [7]). 
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3) If a = 1011 then any a-ideal of S is a (l,2)-ideal of S (see [3]). By Theorem 4, 
every (l,2)-ideal of S is complete iff S is a completely regular semigroup (see [4]). 

Now, we remark that in general the intersection of complete a-ideals of a semi­
group S need not be complete (see [2]). 

Theorem 5. Let aeA. If A,B are complete a-ideals of a semigroup S, then 
(Л u B)a is a complete a-ideal of S. 

Proof. By Lemma l(i), i u ß =fa(A)ufß(B) c / ^ u B ) . Thus, by Lemma 
l(iii), (A u B)k £ /a(v4 u B) for all positive integers k. Hence (A u B)a = (A u B) u 
u (A и Б)2 u . . . u (A u B)'<">-1 u / . ( A u B) s / , ( 4 u B) s fa((A u B)e). 

It is clear that the product of two a-ideals of a semigroup, in general, will not be 
an a-ideal (see [6]). We will prove that the product oftwo complete a-ideals of a semi­
group is an a-ideal when a є A and a containing a 1. But we first need some auxiliary 
statements. 

Let a є A. If a = 0" for some n positive integer, we put a* = 0. If a = аха2 . . . an 

and there exists j > 1 such that a,- =t= <*i we put 

a * = f*i<W. i f a* * a i 
[ a ^ if an = oLj 

We remark that a* e {0, 10, 01, 101, 010}. 

Lemma 6. Lei aeA and let A, B be complete a-ideals of a semigroup S. Then 
fa(AB)^fa*{AB). 

Proof. Let а = a t a 2 . . . а„. If a1 = 1 then there exists j > 1 such that ocj = 0. 
ThmfjAB) £ ABf^^_XAB)Sf.^.,.jAB) £ ABSfJ,AB). 

If a„ = 0 then fjAB) £ ЛБЯ = /а .(ЛБ). If a„ = 1 then /а(ЛВ) s ЛВЯЛЯ = 
= /AAB)-

Now, we suppose that a1 = 0. If ay = 0 for all je{2,...,n) then evidently 
/ЛАВ) £ S = /JAB). Ifa„ = 1 for some A > 1, then/,(4B) £ SAB/efc+l..^(i4B) £ 
£ SABSfan(AB) if there is r such that h + 1 й r < n and ar = 0 or /а(АВ) £ 
Є SAB/JAB). Thnsfa(AB) £ SABS=/a.(AB) ifa„ = 0 and/a(4J3) £ ЯЛВЛВ £ 
S S^ß=/ a . ( ^ß ) i fa„ = 1. 

Lemma 7. Lei а є Л, а* ф 0 and let А, В be complete a-ideals о/ а semigroup S. 
Then/t.(AB) £ AB. 

Proof. If a* = 01 then a = 0a' with a ' e { 0 , l } * . Thus /x.(AB) = SAB = 
= S/ЛА) B = SS/a.(A) B £ S/ , . (4) Я E /а(Л) В = AB. The case а* = 10 is dual 
to the preceding case. If a* = 010, then /a,(AB) = SABS = S/,(4)/,(J3) S £ 
^/ЛА)/ЛВ) = AB- I f a * = 101, then U{AB) = ABSAB £ ABSB = 

= А/лв) s/лв) £ л/а0а(в) s A/.XB)u(B).../«,(*)' • - /J*) s/..(^) • • • 
.../aj(B).../^(B) £ Л/ а(В) = ЛВ, where a = axa2 . . . а и . 

Lemma 8. Let а є Л, а* Ф 0 and /eí A be a complete a-ideal o/ a semigroup S. 
Then/a.(A) = A. 
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Proof. If oe* = 010 then fjA) = SAS = Sfx(A)S <=fJ(A). The cases а*є 
є {01,10} are similar. If a* = 101 then fjA) = ASA = fx(A) Sfx(A) = fx0x{A) s 
^L{A). 

Moreover, by the proof of Lemma 6, fa(A) £ /a*C<4)- Thus A = /a*(^). 

Theorem 9. Lei a є Л, а* Ф 0. The product of two complete oc-ideals A, B of a semi­
group S is an a-ideal. 

Proof. We prove that AB is a subsemigroup of S. Ifa* = 010 then, by Lemma 8, 
ABAB = ABASBS s ASASBS ç ASBS Я AB. We proceed similarly if а* є 
e{01,10,10l}. 

Furthermore, by Lemma 6 and Lemma l,fJ^AB) £ AB. Thus AB is an а-ideal of S. 
We remark that if а є A and а* Ф 0, in general, the product of two complete 

а-ideals will not be complete and if a* = 0, the product of two complete a-ideals 
need not be an a-ideal. 

Let а є Л, а* Ф 0 and let S be an а-semigroup. Let Fa be the set of all a-ideals 
of S. By Theorem 9 Fa is a semigroup respect tothe set product. 

Theorem 10. Let а є Л, а* ф 0. Л semigroup S is an а-semigroup ifand onlyifFa 
is an а-semigroup. 

Proof. Let S be an а-semigroup and let Л be an element of Fa. Then Л = /а(Л) є 
efl*({A]). Thus, by Theorem 4, Fa is an а-semigroup. Conversely, if Л є Fa, by 
Theorem 4, Л є/а

Га({Л}). Hence Л £ /а(Л). 
Remarks. 1) If а = 101, then by Theorem 10, S is regular iff the semigroup of 

all bi-ideal of S is regular (see [7]). 
2) If а = 1011, then by Theorem 10, S is completely regular iffthe semigroup of 

all (l,2)-ideals of S is completely regular (see [5]). 
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