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Czechoslovak Mathematical Journal, 40 (115) 1990, Praha 

CONTRIBUTIONS TO THE ASYMPTOTIC BEHAVIOUR 
OF THE EQUATION z = / ( i , z) WITH 
A COMPLEX-VALUED FUNCTION / 

JOSEF KALAS, BrnO 

(Received February 4, 1988) 

1. INTRODUCTION 

This paper deals with the asymptotic properties of the equation 

(1.1) z=f(t,z), 

where / is a continuous complex-valued function of a real variable t and a complex 
variable z. It is convenient to write the equation (1.1) in the form 

(1.2) i = G(t, z) [h(z) + g(t, z)] , 

where G is a real-valued function and h, g are complex-valued functions, t or z 
being a real or complex variable, respectively. The function h is assumed to be 
holomorphic in a simply connected region Q containing zero, and to satisfythe 
conditions h(z) = 0<^>z = 0, hu\0) = 0 (j = 1, 2 , . . . , n - 1), h{n\0) Ф 0, where 
n ^ 2 is an integer. The technique ofthe proofs ofthe results is based on the Liapunov 
function method with the ,,Liapunov-like" function W{z) defined in [1]. Several 
results of this type were proved in [2], [3]. The assumptions of these results imply 
that z(r) = 0 is a solution of (1.2). In the present paper, we attempt to remove this 
restriction. The last section deals with the application of the results to equations 

(1.3) z = q(t,z)-p(t)z2 

and 
x = xy(t, xx _ 1 ) . 

The asymptotic behaviour of solutions of the Riccati differential equation, which 
is a special case of (1.3), was investigated e.g. in [6], [7], [8], [9]. For completeness 
notice that the case n = 1 was studied in several previous papers such as [4], [5]. 

Throughout the paper we use the following notation: 

C — Set of all complex numbers 
N — Set of all positive integers 
R — Set of all real numbers 
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I — Interval [ř0, oo) 
Q — Simply connected region in C such that 0 є Q 
S(a, g) - Set {z є C: \z - a\ = 0} 
b — Conjugate of a complex number b 
Re b — Real part of a complex number b 
Arg z — Principal value of the multivalued function arg z 
C(r) — Class of all continuous real-valued functions defined on the set Г 
C(r) — Class of all continuous complex-valued functions defined on the set Г 
Ж(0) — Class of all complex-valued functions holomorphic in the region Q 
C1 Г - Closure of a set Г c C 
Bd Г — Boundary of a set Г c C 
C*(/) — Class of all continuously differentiable complex-valued functions defined 

on / 
k, W(z) - see [ l , p p . 6 6 - 6 7 ] 
X+, Л_, ^ + , 3T', q> - see [1, pp. 7 3 - 7 4 ] 
Int Г — Interior of a Jordan curve with the geometric image Г. 

L e t ^ + e < r + / c ) and ye3r-jq) be fixed. Then У+ = { Х ( Я ) : 0 < Я < А + } , 
9*~ — {K(X): A_ < X < 00}, where Х(Я) are the geometric images of Jordan curves 
such that 0 e K(X), the equality W(z) = À holds for z e R(X) \ {0} and R{X^) \ {0} c 
c Int K(X2) for 0 < Ai < A2 < Я+ or £(Я2) \ {0} c Int K(X) for Д_ < Л± < À2 < 
< 00. Define 

К(Хи Я2)= U ^ ( ^ \ {0} for 0 £ Яі < Я2 ^ Х+ 
Я і < ^ < Я 2 

and 
X(Ai, Я2) = U K(fi) \ {0} for Я„ ^ Я2 < Яі ^ 00 . 

Я2<Д<Лі 

2. MAIN RESULTS 

Consider the equation 

(2.1) z==G(t,z)[h(z) + g(t,z)], 

where G(i, z) [ft(z) + flf(r, z)] є C(/ x O), G є C(/ x (ß \ {0})), h є Jf(i2), # є 
eC(l x (ßч{0})). Assume that h{z) = 0oz = 0 and hu\0) = 0 (j = l , 2 , . . . 
..., л - 1), й(ю(0) ф 0, where n ^ 2 is an integer. 

Theorem 1. Let 0 < 3 ^ Л+. Suppose that sQ eI and thatfor any T> s0 there 
are 6T ^ 0 and ET(t) e C[s0, T) such that 

(i) inf |z| > ST for any T > s0, 
zeBdQ 

(ii) 3 < X+ or ET(t) й 0 for t e [s0, Г), T > s09 

and 
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(iii) the inequality 

(2.2) G(t, z) Re \k hin\0) Гі + g{t, z) й Er{t) 
h(z) JJ 

isfulfilledforte[so, T), zeK(0,&), \z\ > ÔT. 
Ifa solution z(i) o/(2.1) satisfies 

z ( r ) eK(0 ,S )u{0} 

for t e(ř l 5 co), where [ř l5 co) is řAe rig/tř maximal interval of existence of z(ř) aná 
*i ^ 50, íAen co = co. 

Proof. Suppose co < oo. Then # = A+ andthere is ř* e (řl9 co) such that |z(r)| > с>ш 

for ґ є [i*, co). For ř є [i*, co) we have 

gfe gT fc A(n)(0) | 1 + 
h(z 

W(z) = G(ř, z) Pf(z) Re 

where z = z(t). Using (2.2) we get 

W(z(t)) й Ejt) W(z(t)) 
and 

(2.3) Uw(z(t)) exp [-f;. Ejs) ás]} í 0 . 
át 

Integrating (2.3) over [i*, ґ] c [í*5 co) we have 

JF(z(i)) exp [ - J J . JE*(s) ds] - W(z(t*)) й 0 , 
whence 

W(z(t)) й W(z(t*)) exp [J|, £e(s) ds] ^ W(z(t*)) = S* < S . 

Thus z(r) є ClK(#*) c K(0, #) u {0}, which is a contradiction with the supposition 
co < oo. Therefore co = oo. 

Theorem 2. Lei 0 < # ^ A+. Assume that Sj eI, Sj ^ 0 /or j e N. Suppose there 
are functions Ej{t) є C[f0, oo) such that 

(i) for j e N 

(2.4) lim inf j ; o Ej(s) ds = - oo 
ť^oO 

holds; 
(ii) the inequality 

(2.5) G(*, z) Re |fc fc«(0) [ l + ^ | g ВД 

isfulfilledfor t ^ Sj, z e K ( 0 , 3), |z| > fy, ; є A/. Define 

ô = inf c5; . 
ieiV 

/ / a solution z(i) o/(2.1) satisfies 

z(t)eK(0,&)v{0} 
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for t > t1, where t1 ^ t0, then 

(2.6) l im in f | z ( i ) | z<5 . 
f^oo 

Proof. Put J(j = {t ^ s/. z(t)eK(0, 5), |z(r)| > fy}. For ř є ^ we have 

W(z) = G(t, z) FP(z) Re |fe fc<">(0) Гі + ^ y ^ l l , 

where z = z(í). By virtue of (2.5) we get 

W{z{t)) й Ej(t) W{z{t)) 

for t є Jfj. This inequality is equivalent to 

(2.7) i { f F ( z ( 0 ) e x p [ - f t E , < s ) d s ] U O . 
di 

If (2.6) is not true, there exist e0 > ô and т > tí such that |z(i)| ^ e0 for ř ^ т. 
Choosing j є A/ so that öj < e0 and integrating (2.7) over [Г, i ] , where ř >̂ Г = 
= max (т, Sy), we obtain 

W(z(t)) exp [ - f t Ej(s) ds] - W(z(r)) exp [ - ft E/s) ds] =£ 0 . 
Hence 

W(z(t))S W(z(T))expU'rEj(s)ds] 

for t ^ T. From (2.4) it follows that 

lim inf W(z(t)) = lim inf |z(i)| = 0 , 
f^-oo i^oo 

which is impossible. Thus we have proved (2.6). 

Analogously we can prove the following two theorems: 

Theorem Г . Let Я_ ^ 9 < oo. Assume that s0 eI and thatfor any T > s0 there 
are öT ^ 0 and ET(t) є C[s0, T) such that 

inf |z| > ôT for any T > s0 , 
zeBdi2 

$ > A_ or ET(t) S Ofor t e [s0, T), T > s0, and the inequality 

g(t, z) (2.2') - G(t, z) Re jfc hin\0) | 1 + й ET(t) 
h{z) 

is fulfilled for t є [s0, T), z є X(oo, 3), |z| > č)r. / / a solution z(t) of (2.1) satisfies 

z(t)eK(oo,$)v{0} 
tor te(t1, co), where [fl9 ш) /s /7ze r/#ftr maximal interval of existence of z(i) and 

/ i ^ so> t n e n œ — co-

Theorem 2'. Let A_ ^ 5 < oo. Assume that SjeI, Sj ^ 0 for jeN. Suppose 
there are Ej(t) e C[*0, oo) such that 
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(i) for j є N 
(2.4') lim inf j ; o Ej(s) ás = - 00 

Í^OO 

holds; 

(ii) the inequality 

(2.50 - G(t, z) Re k h^(0) Гі + ^ 1 | й Ej(t) 

isfulfilledfor t ^ Sj, zeK(oo, 9), |z| > 5,,j є N. De0ne 
Č = inf Ö : 'j 

jeN 

Ifa solution z(t) q/(2.1) satisfies 

z(i)GK(oo,a)u{0} 

for t > tu where t1 ^ ř0, í/геп 

(2.6') liminf|z(i)| ^ 5 . 
ř^-oo 

Theorem 3. Suppose there exist a region Q^ c 0, an R > 0 arcd a nonnegative 
function B(t) e C[i0, oo) such íftaí G є C(/ x ß ^ , g є C(J x Ох), 

JJB(s)d5<00 
and 
(2.8) G((, z) Re {z[h(z) + g(t, z)]} g |z| ß(0 

/or ( ^ í0, z є O,,, |z| < R. If a solution z(t) of (2.1) satisfies 

(2.9) l i m i n f | z ( i ) | ^ o < K 
ř^oo 

and z(t) e Qx u {0} for t > tl9 where tx ^ í0, then 

lim sup |z(f)| g č . 
í^oo 

Proof. It can be easily derived that 

(2.10) ± |z(i)| = G(t, z(t)) |z(i)|-1 Re {z(i) [h(z(t)) + g(t, z(f))]} 
dt 

holds for t e Jí = {i > tx: z(t) * 0, \z(t)\ < R}. Let т > řt be such that z(t) - 0. 
Then 

l i m КОІ-ІФ)! = l i m Ш = |z(t)| = |G(t, 0) g{r, 0)|. 
i ^ r+ ř — T i ^ t + ř — T 

Similarly 

lim 1<')|-1^)1 = lim Ш = _|z(x)| = -|G(t,0)g(x,0)| . 
I^t - t — T <^t- í — T 

35 



Therefore d|z(r)|/di exists ifand only if G(t, 0) д(т, 0) = 0. In this case d|z(r)|/di = 0. 
Put M1 = {t > tt: z(t) = 0}, Ж0 = {t > t±: G(i, 0) g(t, 0) = 0}. It is known 

that the set Jt± \ M0 is at most countable. Using (2.10) and (2.8), we obtain 

''s|GM0)[*W0) + *M0)]| . 5KOI 

^KO|SB(0 

for ř є ^ . Define 

1— \z(t)\ whenever t є Ж , 
dí ' v n 

0 whenever t e Ж1 . 

It is clear that 

(2.11) \B%t)\u\G(t9z(t))ih(z(t)) + g(t>z(t^, 

(2.12) B*(t) й B(t) 
for t > tx such that |z(i)| < Я. By (2.10) and (2.11), the function B*(t) is con­
tinuous on Ж u . # 0 . Any set Жг c e#! \ Ж0 is at most countable. Moreover, 
jB*(r) is bounded on any compact subinterval of Ж u ^ = {ř > t±: |z(f)| < # } . 

Hence, taking (2.12) into account, we get 

(2.13) | z ( 0 | - | z ( a ) | = f i B * ( s ) d s g J i B ( s ) d s 

for í > a > řx provided a, t є ^ u Ж1. 
Choose є, 0 < г < R — ô. Let T > tt be such that T g t2 й t3 implies 

feB{s)ds<e|2. 

In view of (2.9), there is at ^ T such that 

K*i)| < <3 + г/2 • 
Suppose there is i* > c7x such that |z(i*)| = 5 + г, |z(i)| < 5 + e for te [a, i*]. 
By (2.13) we have 

|z(i*)| g |z(aO| + fo B(s) ds < S + e/2 + e/2 = á + є , 

a contradiction. Therefore |z(i)| ^ č + є for t ^ о*! and 

lim sup |z(i)| ^ č . 
ř^-oo 

Theorem 4. Leř д^ є C, a,-, Ду, č є R be such that ßj ^ ř0, 0 ^ ô < ay — |a,-| for 
j є А/, осу ~> á a s j ~> oo. Suppose there is a region Qx c & sMcfr íňař 

(2.14) G(i, z) Re {(z - a,) [fc(z) + flf(r, z)]} < 0 

isfulfilledjor t > ßj and z e Qt n S(a,-, a,.), j є N. If a solution z(t) of (2.1) satisfies 

(2.15) l iminf|z(i) | й & 
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and z(t) E Q1 u {0} for t > tu where tx ^ t0, then 

lim sup |z(r)| ^ ô . 
ř^oo 

Proof. Clearly üj -* 0 as j ^> oo. Choose s > 0. Pick ; є N such that |o,-| + 
+ 0Lj < ô + г. Let yj є Й be such that ö < jj < cCj — |a^|. From (2.15) it follows 
that there is a > max(ti9ßj) for which |z(<r)| < уґ Now we have |z(a) — a\ ^ 
^ |z(cr)| + |ay| < jj + |fljj < ay. Since (2.14) implies 

~ |z(i) - aj\ = a ; 1 G(f, z(i)) Re {(^ř) ~ ^ ) [%(0 ) + ^ > 2(0)]} < ° 
dř 

for all ř ^ с such that |z(i) — o,-| = a,-, we infer that |z(i) — a ĵ < oij for ř ^ a, 
whence 

|z(f)| ^ |fl,-| + <Xj < S + 8 

for t ^ cr. Thus 

lim sup |z(i)| ^ č . 
ř^-oo 

3. APPLICATION TO EQUATIONS 'z= q(t,z)-p(t)z2 AND x= xy/(t,'xx'1) 

In this section we shall consider the equation 

(3.1) z = q(t,z)-p(t)z2, 

where q є C(I x C), p e Č(l) and 

(3.2) x = x ^ ( i , x x " 1 ) , 

where ^ є Č(l x C). Notice that the choice y(t, z) = —P(t) z — ß(i) leads to a linear 
equation x + P(t) x + Q(t) x = 0. Supposing a, ß є C^(J), £ є C(l) and j8(i) ф 0 for 
teI, we can easily verify the following lemma: 

Lemma 1. Put 

P(t) = ß-Ht) + Q{t), 

q(t, z) = ß Ý(t, (z + a) ß~x) + Qz2 + (ß - 2a) jT*z + 

+ (ß - a ) a j T 1 - dc. 

(i) Afunction z(t) is a solution o/(3.l) defined on an interval J c J ifand only if 

z{t) = ß(t) x(t) x_ 1( í ) - oc(t) , 

where x{t) is a solution o/(3.2) on J. 
(ii) Afunction x(t) is a solution o/(3.2) defined on J a I if and only if 

x(t) = Ѳ exp Ul [z(s) + a(s)] jr*(e) ds] , 

w^ere Ѳ is a constant differentfrom zero, co є J, and z(r) zs a solution o/(3.l) on J. 

In view of Lemma 1 we shall obtain the results concerning the asymptotic be-
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haviour of the solutions of (3.2) as immediate consequences of the results concerning 
the solutions of the equation (3.1). If a e C, a + 0, then (3.1) may be written in the 
form 

(3.3) Ž = G(t, z) [h(z) + g(t, z)] , 

where h{z) = — az2, G(t, z) = 1 and g{t, z) = q(t, z) + az2 — p(t) z2. From 
[1, Example 1], where Q = С, Ь = —a, we have h'(z) = —2az, ft"(z) = — 2a, 
n = 2, W{z) = exp [Re(2az"1)], A+ = A_ = 1, fc = -a. The sets £(Л), where 
0 < X < X+ = 1 or 1 = A_ < Я < oo, are circles with centres a(lnA)-1 and radii 
|a| | ln l | " 1 , K(0,l) = {zeC:Re(az) < 0}, X(oo,l) - {zeC:Re(az) > 0}. 

For a є С, а ф 0, A > 0, B > 0, ö є (0, я/4] denote 

QAtB(a) = {z e C: -A Re [a2z2] - В\іт [a2z2]\ > 0} , 
Qâ(a) = {z = fie^: fi e R \ {0}, Arg â + я/2 - ö < S < Arg â + тс/2 + S}. It can 
be easily verified that 

QA)B(a) c Qn/4(a) = {z є C: Re ( a V ) < 0} 
for any A, B > 0, and for any A, B > 0 there exists <>0 є (0, тс/4) such that 
(3.4) Qô(a) c QA)B(a) for 6 e (0, <S0] . 

The following lemma will be useful in our further considerations. 

Lemma 2. Suppose there are a є C and C ^ 0 such that 
(3.5) Re[5jp(r)] > 0 for teI, 
(3.6) lim inf Re [ä p(tJ] > 0 , lim sup |lm [ä p(tJ]\ < oo , 

i^co ř^-oo 

(3.7) Re [a q(t, z)] ^ - C|lm [a2z2] | /or t є J , z є £2я/4(а) 
and 
(3.8) ^f(r,0) ф 0 for tel. 
Then every solution z(ř) o/(3.1) satisfying at tx ^ ř0 гйв condition Re [a z(it)] ^ 0 
fulfils Re [a z(r)] ^ 0jfor aZ/ ř > tt for which z(t) exists. 

Moreover, Re [a z(i)] > 0 provided z(t) Ф 0. 
Proof. Let A, B > 0 be such that 

Re [5 p(t)] ̂  \a\2 A , |lm [S K')]| ^ M* (B " C) 
for t ^ ř1# There exists a соє(0,тс/4) with the property Qôo(a)cz QAB(a). For 
/ ^ tt such that z = z(t) є О 0̂(а) we obtain 

— Re [a z(i)] = Re [a z(i)] = Re [a #(i, z)] - Re [a p(i) z2] = 
dř 
= Re [a g(i, z)] - \a\~2 Re [â p(í) a2z2] = 
= Re [a g(f, z)] - |a|"2 {Re [a p(r)] Re [a2z2] -
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- Im [ap(t)] Im [a2z2]} ^ - C | l m [a2z2]\ - A Re [ a V ] -

- (B - C) |lm [a 2 z 2 ] | ^ -A Re [a2z2] - Б | і т [ a V ] | > 0 . 

If z{i) = 0 we have 

(3.9) - Re [a z(tJ] = Re [a q(t, 0)] > 0 
àt 

от 

(3.10) — Re [a z(t)] = Re [a q(t, 0)] = 0 . 
àt 

With respect to (3.8) we infer that 

- Im [a z(t)] = Im [a q(t, 0)] + 0 
át 

in the case (3.10). Taking into account that Re [az] = 0 implies z є Qňo(a) u {0}, 
we get Re [я z(r)] ^ 0 for all ř ^ řt for which z(í) is defined. Clearly, Re [a z(i)] > 0 
if z(i) ф 0. 

Remark. If the condition (3.8) of Lemma 2 is replaced by Re [я q(t, 0)] > 0, 
we get the assertion Re [a z(i)] > 0 for all t > tx for which z(t) exists. 

Combining Lemma 2, Theorem Г and Theorem 2', we obtain the following 
generalization of Theorem 1 of [7] : 

Theorem 5. Let the assumptions (3.5), (3.6), (3.8) and 

(3.11) Re[ f l$( f ,z ) ]^>0 for teI, zeC 

be satisfied. Suppose there exist D(t) є C(/) and ö ^ 0 such that 

(3.12) \q(t,z)\uD(t) for teI, zeC, 

(3.13) \a\ lim sup Z>(r) ^ Ö2 lim inf Re [a p(i)] . 
i^oo i^-ao 

Tftew any solution z(r) o/(3. l ) satisfying Re [a z ( r J ] ^ 0, where tt ^ i0, satisfies 
the condition 

l iminf |z(i) | й ô 
ř^-oo 

and Re [a z(r)] ^ 0 /o r í ^ tv 

Proof. From Lemma 2 it follows that Re [a z(tJ] ^ 0 for all t ^ řx for which 
z(t) exists. It is sufficient to prove that z(i) exists for all t ^ i t and that 

l iminf |z ( i ) | s<5* 
r^oo 

for any ö* > ô' Choose ôT > 0 such that 

\a\ ô~2 D(t) < inf Re [a p(t)] for t ^ t0 
fžtQ 
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and put S = Я_ = 1, Sj = t0 (j = 0, 1, 2 , . . . ) , Ет(і) = 2[|a| ô~2 D(t) - Re [З p(í)]]. 
Then 

- G ( i , z) Re jfc A<">(0) Гі + ^ і і Л І = 2 Re [3z~2 q(t, z)] - 2 Re [З p(t)] й 

S 2\a\ \z\~2 D(t) - 2 Re [ap(t)] 
and hence 

- G(ř, z) Re Jfc ft<">(0) Гі + á í i i l l l <g 2 | a | ^ 2 Z)(r) - 2 Re [S p(i)] = ET(t) 

for ř g> t0, z eK(co, 1), |z| > dT. In view of Lemma 2 we have z(i)eX(oo, 1) u {0} 
for t є (řl9 co), where [ř l5 co) is the right maximal interval of existence of z{t). Using 
Theorem Г we obtain œ = oo. 

Put now c^ = á*, E,(i) = 2[|a| ò*~2 D(i) - Re [З p(í)]]. For í ^ í0, zeK(oo , 1), 
|z| > S* wehave 

-G(t,z)RJkh^(0)ll +áíL^11^2[|a|á*-2D(ř)- Re[3p(i)]] =ВД-

|a| lim sup Z)(r) < č*2 lim inf Re [3 p(r)] , 

Since 

we have 
lim inf Jí0 ^y(s) ás = — oo . 

ř^oo 

By Theorem 2' we get 

l iminf |z(i) | й ô* . 
ř^oo 

Theorem 6. Leř řAe assumptions (3.5), (3.6), (3.8) and (3.11) be satisfied. Suppose 
there exist D{t) e C(l) and ô ^ 0 such that 

(3.14) \q(t,z)\ ^D(t) for teI, zeC, 

(3.15) iZDtf)dt<co. 

Then any solution z(r) o/(3. l ) satisfying Re [a z(ix)] ^ 0, where tx ^ ř0, satisfies 
the condition 

l iminf |z(i) | = 0 
f^oo 

and Re [a z(tj\ ^ 0 for t ^ ^ . 

Proof. Let ô > 0 be arbitrary. For any T > t0 choose ôT > 0 such that 

\a\ D(t) < b\ inf Re [3 p(t)] for ř e [í0, T) , 
ř ^ ř o 

and put 3 = Я_ - 1, s,. - í0 (j = 0, 1, 2 , . . . ) , ET(t) = 2[ |a | cS~2 Z)(r) - Re [3 p(t)]]. 
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Then 

- G{t, z) Re Jfc ft<">(0) Гі + ^ Щ й 2|fl| ô~2 D(t) - 2 Re [5 p(i)] = ET(t) 

for ř ^ ř0, z є jK(oo, 1), |z| > <5T, and £T(ř) g 0 for t є [í0, T). Because of Lemma 2 
we have z(t)eK(oo,l)v{0} for ře(ř l 5co), where [fi,u>) is the right maximal 
interval of existence of z(t). Making use of Theorem V we get co = oo. 

Put now Sj = Ö, Ej(t) = 2[|ii| Č"2 Z)(r) - Re [a p(i)]]. As 

- G ( r , z ) R c | f c f c ^ O ) [ l + ^ | a A X 0 

for ř ^ ř0, z eX(oo, 1), |z| > а,- and 

lim inf JJ0 Ey(s) ds = — oo 
í^oo 

we obtain 
liminf|z(i) | ^ 5 

í^oo 

by Theorem 2'. Since č > 0 was chosen arbitrarily, 

liminf|z(f)| = 0 . 
f^oo 

By virtue of Theorem we get 3 

Theorem 7. Let the assumptions of Theorem 6 befulfilled and let 

fS |K0 - H d ř < °°-
Тйеп аиу solution z{t) o/(3.1) satisfying Re [a z(^)] ^ 0, w/tere ft ^ ř0, satisfies 
the condition 

lim z(i) = 0 . 
i^oo 

Proof. Choose R > 0 and put Qt = K(oo, 1), J3(i) = Z)(r) + \p(t) - a| Д2 . 
Obviously 

G(t, z) Re {z[A(z) + g(t, z)]} = Re {z[<z(i, z) - p(i) ^2]} = 

= - |z|2 Re [az] + Re {z[q(t, z) - (p(i) - a) z2]} ^ 

ž\z\\q(t9z)~(p(t)-a)z>\S 
^\z\[D(t) + \p(t)-a\R2] = \z\B(t) 

for ř ^ t0, z є f21? |z| < R. With respect to Theorem 6 and Lemma 2 the assumptions 
of Theorem 3 are satisfied with ô = 0 and therefore 

lim z(t) = 0 . 
f^OQ 

Similarly we obtain the following generalization of Theorem 2 of [9] : 

Theorem 8. Let the assumptions of Theorem 6 befulfilled and let Im [â p(r)] = 0 
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for t ^ t0. Then a'hy solution z(t) of(3A) satisfying Re [a z(^)] ^ 0, where tx ^ tö, 

fulfils 
lim z(t) = 0 . 
í^oo 

Proof. Choose Д > 0 and put Пх = X(oo, 1), B(í) = D(ř). It is clear that 

G(i, z) Re {z[fc(z) + e(/, z)]} = Re {z[e(i, z) - p(t) z2]} -

- Re [z g(i, z)] - |z|2 Re [ a " 1 p(f) az] ^ 

s' |z| |e(r, z)| - |z|2 | a | " 2 Re [5 p(t)] Re [az] ^ |z| B(t) 

for ř ^ ř0, z є ß b |z| < R. In view of Theorem 6 and Lemma 2 the assumptions of 
Theorem 3 are satisfied with 3 = 0 and hence 

lim z{t) = 0 . 
f^oo 

Using Theorem 4, we can generalize Theorem 1 of [9] : 

Theorem 9. Let the assumptions (3.5), (3.8) and (3.11) be satisfied. Assume there 
exists D(t) є C(l) such that 

\q(t,z)\ й D{t) for teI, zeC, 

lim D(t) = 0 
i->co 

and suppose 

(3.16) limp(r) = fl. 
i^oo 

Then 
lim z(t) = 0 
i^oo 

for any solution z(i) o/(3.1) satisfying Re [a z(^)] ^ 0, where tt ^ i0. 
Proof. Choose R > 0 and put Qx = K(oo, 1), B(t) = D(i) + # 2 | p (0 - a\, 

Ö = 0. Letjo є N be such tha t ; 0 > 3R"1 . Set 
a j = \a\ a~\J + io ) " 1 i a ; = 20* + Jo)"1 • 

In view of Theorem 5 and Lemma 2 we have z(t) e Qx u {0} for t > tt and 

l iminf |z(i) | = 0 . 
i^oo 

Putting z = aj + ocje^, where # є R, we obtain 

G(i, z) Re {(z - 3,) [fc(z) + ff(r, z)]} = 

= Re {(z - Sy) [ - a z 2 + g(t, Ž)]} g 

^ R e { - a ^ - ' * a(aj + a /* ) 2 } + \z - a,-| |flr(i, z)| = 

= a,-{Re [~аа)е~ш - 2aajas - aotje^] + \g(t, z)|) . 

For t > tl9 z є K(oo, 1) n {z є C: |z - aj\ = a,.} we have |z| g |'a^| + a,- ^ 
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= Ю + j 0 ) í < R and therefore, using the inequality cos (5 + Arg a) ^ - c o s co ^ 

— ~ |я;| oc/1 (see Fig. 1), we get 

Re [-aa*e~ia - laocjCij - aa*eiS] = 

= - |я| |a,.|2 cos (# + Arg a) - 2 ocj\a\ |ay| - |a| a? cos (# + Arg a) g 

ž | a | | a , . p a ; 1 - ^ | a | | ^ | 
and 

G(i, z) Re {(ž - â.) [h(z) + #(i, z)]} ^ 

á ay[|fl| K | 3 a J 1 - oCj\a\ \aj\ + |«(í, z) + (a - p(r)) z2 | ] ^ 

а«,[ИИ«7ЧНа-вф + л(0]. 
Since |a,| < ocj and 5(r) ^- 0 as / ^ oo, it is clear that for any j є Д/ there is ßj > tt 

such that 
G(t, z) Re {(ž - äj) [h(z) + g(t, z)]} < 0 

for ř > ßj and z є ß x n S(o;, a,), 7 є N. Now all assumptions of Theorem 4 are 
fulfilled and the assertion follows from Theorem 4. 

\ 4/mz 

Ш 

RetQzl=0 

Rez 

S(aj,<xj) 

Fig. 1 
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Let a , j S e ^ ( i ) , QeC(l) and ß(t) ф 0 for teI. Definingfunctions p(t),q(t,z) 
as in Lemma 1 and combining Lemma 1 withTheorems 5 — 9, we obtainthe following 
results concerning the equation (3.2): 

Corollary 1. Let the assumptions (3.5), (3.6), (3.8) and (3.11) befulfilled. If there 
exist D(t) e C(l) and ô ^ 0 such that the conditions (3.12) and (3.13) hold, then any 
solution x(t) o/(3.2) satisfying 

(3.17) Re [a(fi(tJ *(*i) x-*(*i) - a(*0)] ^ 0 , 

where t1 ^ t0,fulfils the conditions 

Re [a(j5(i) x(i) х_1(г) - a(ř))] ž 0 /o r í ^ íx , 

lim inf |jS(i) x(t) x"*(t) - a(i)| ^ 5 . 
Í^OO 

Corollary 2. Leí ř^e assumptions (3.5), (3.6), (3.8) and (3.11) befulfilled. Suppose 
there exist D(t)e C(l) and 5 ^ 0 such thatthe conditions (3.14) and (3.15) hold. 
Then any solution x(t) of (3.2) satisfying (3.17), where t1 ^ t0, fulfils the con­
ditions 

Re [a(j8(i) x(i) x - 1 ( ř ) - a(ř))] ^ 0 for t ^ ^ , 

lim inf \ß(t) x(t) х_1(г) - oc(f)| = 0 . 
ř^-oo 

Corollary 3. Let the assumptions of Corollary 2 befulfilled and let 

J S | K 0 - flidř < °°. 
Then any solution x(t) o/(3.2) satisfying (3.17), where tx ^ t0,fulfils 

lim [j8(r) x(i) x'*(t) - a(r)] = 0 . 
i^oo 

Corollary 4. Lei the assumptions of Corollary 2 befulfilled and let Im [ä p(tJ] = 0 
/ o r í ^ i0. ТТші a n j solution x(i) o/(3.2) satisfying (3.17), where tx ^ t0,fulfils 

lim [j8(r) x(i) x " ' ( 0 - a ( 0 ] = ° • 
t^OQ 

Corollary 5. Let the assumptions (3.5), (3.8), (3.11) and (3.16) be satisfied. Assume 
there is D(t) є C(l) such that (3.14) and 

lim D(t) = 0 
Í^OO 

hold. Then 

lim [jff(i) jc(i) x"*(0 - a(i)] = 0 
i^oo 

for any solution x(t) o/(3.2) satisfying (3.17), where tx ^ t0. 

Remark. Putting ß(t) = 1, a(i) = —^ P(r), c(t) = 0, a = 1, ^ ( i , z ) = 
= -P(t)z ~ Q(i), where PeC*(J) , QeC(l), we obtain several results from [9]. 
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