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1. INTRODUCTION

This paper deals with the asymptotic properties of the equation
(1.1) z=f(t2),

where f is a continuous complex-valued function of a real variable ¢ and a complex
variable z. It is convenient to write the equation (1.1) in the form

(1.2) z = G(t, z) [h(z) + g(t, 2)] ,

where G is a real-valued function and h, g are complex-valued functions, t or z
being a real or complex variable, respectively. The function h is assumed to be
holomorphic in a simply connected region Q containing zero, and to satisfy the
conditions h(z) = 0<z =0, h20) =0 (j =1,2,...,n — 1), h*(0) % 0, where
n = 2is aninteger. The technique of the proofs of the results is based on the Liapunov
function method with the ,Liapunov-like” function W(z) defined in [1]. Several
results of this type were proved in [2], [3]. The assumptions of these results imply
that z(t) = 0 is a solution of (1.2). In the present paper, we attempt to remove this
restriction. The last section deals with the application of the results to equations

(1.3) z=q(t z) — p(t) 22
and
%= xy(t, xx~1).

The asymptotic behaviour of solutions of the Riccati differential equation, which
is a special case of (1.3), was investigated e.g. in [6], [7], [8], [9]. For completeness
notice that the case n = 1 was studied in several previous papers such as [4], [5].

Throughout the paper we use the following notation:

C — Set of all complex numbers
N — Set of all positive integers
R — Set of all real numbers
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I — Interval [t,, o)

Q — Simply connected region in C such that 0 e Q

S(a,0) — Set{zeC:|z — a| = ¢}

b — Conjugate of a complex number b

Reb  — Real part of a complex number b

Arg z — Principal value of the multivalued function arg z

C(I')  — Class of all continuous real-valued functions defined on the set I'
C(I) — Class of all continuous complex-valued functions defined on the set I’

#(Q) — Class of all complex-valued functions holomorphic in the region Q

CII' — Closureofasetl’ = C

BdI' — Boundaryofasetl’ = C

C'(I) — Class of all continuously differentiable complex-valued functions defined
onl

k, W(z) — see [1, pp. 66—67]

Apy A, T, T 7, ¢ — see [1, pp. 73—74]
IntI' — Interior of a Jordan curve with the geometric image I
Let " e T [p and &S~ €T [p be fixed. Then &¥* = {K(1):0 < 1 < 4.},
&~ ={K(A): - < A < o}, where K(1) are the geometric images of Jordan curves
such that 0 € K(7), the equality W(z) = A holds for z e K(1)\ {0} and K(2,)\{0} =
< Int K(4,) for 0 < Ay < A, < Ay or K(A,)N{0} c IntR(%) for A_ < Ay < A, <
< 0. Define
K(d)= U R(E)N{0} for 04 <4, <4,
Ay<p<iz
and
K(21,2;) = U K@~{0} for Ai- <1, <l <.

Ax<p<iy

2. MAIN RESULTS

Consider the equation

(2.1) 2 = G(t, z) [h(z) + ¢(1, 2)],

where G(t, z) [(z) + g(t, z)] e E(I x Q), GeC(I x (2~{0})), he #(Q), ge
e C(I x (2~{0})). Assume that h(z) = 0<>z =0 and h9(0) =0 (j = 1,2,...
eoyn — 1), h™(0) % 0, where n = 2 is an integer.

Theorem 1. Let 0 < 3 < A,. Suppose that sy €l and that for any T > s, there
are dp 2 0 and E1(t) e C[s,, T) such that
(i) inf |z’ > Or for any T > s,

2eBdQ
(i) 9 < Ay or Ef(t) <0 for te[so, T), T > so,

and
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(iii) the inequality

(2.2) 6(t, 2) Re {k 19(0) [ 1 + AT < By
h(z)

is fulfilled for t e [sy, T), z€ K(0, 9), |z| > 6.

If a solution z(t) of (2.1) satisfies

z(t) € K(0, 9) L {0}

for te(tl, o), where [t,, ®) is the right maximal interval of existence of z(t) and
1, = 8o, then @ = oo.

Proof. Suppose @ < 0. Then § = 1, and there is * & (t,, ) such that |z(¢)| > &,
for t € [1*, w). For t € [t*, ) we have

W(z) = G(t, z) W(2) Re{ 5 (0) [1 . gff( z ]}

where z = z(1). Using (2.2) we get

W(=(1) £ Eaft) W((1))

and
(23) S—t{W(z(t)) exp [— [t Eo(s) ds]} < 0
Integrating (2.3) over [1*, 1] = [1*, w) we have

W(z(t)) exp [ — [ Eo(s) ds] — W(z(1*)) £ 0,

W(z(t) < W(z(t%)) exp [ Eo(s) ds] < W(z(t*)) = 9% < 9.

Thus z(r) e C1K(9*) = K(0, 9) U {0}, which is a contradiction with the supposition
o < . Therefore w = oo.

whence

Theorem 2. Let 0 < § < A,. Assume that s;el, 6; = 0 for je N. Suppose there
are functions E(t) e C[ty, ) such that

(i) for jeN
(2.4) liminf [} Ejs)ds = —o0
t— 0
holds;

(i) the inequality

25 62 Re{ H(0) [1 G Z)]} < E,(1)

h(z)
is fulfilled for t > s;, z € K(0, 9), lzl > 0;, je N. Define
5§ = inf§;. '
JjeN

If a solution z(t) of (2.1) satisfies

z(r) e K(0, 9) u {0}
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for t > t,, where t; = t,, then
(2.6) lim inf Iz(t)l <9.
t—=>

Proof. Put #; = {t = s;: z(t) € K(0, 9), |2(t)| > &;}. For t e .4; we have

W(z) = Glt, ) W(z) Re {k 1(0) [1 + %}} ,

where z = z(t). By virtue of (2.5) we get

W(z(1)) = Ej(1) W(=(1))
for t € ;. This inequality is equivalent to
@7 S {WE0)exp [ () ds]) < 0.

If (2.6) is not true, there exist &, > & and t > #; such that |z(t)| = &, for t >
Choosing je N so that §; < ¢, and integrating (2.7) over [T, ], where t = T
= max (r, 5;), we obtain

W(z(t) exp [~ [i, Ej(s) ds] — W(z(T)) exp [ [, E,(s) ds] < 0.

W((1)) = W(=(T)) exp [ E/(s) ds]
for t = T. From (2.4) it follows that
lim inf W(z(z)) = liminf |2(z)| = 0,

T.

Hence

which is impossible. Thus we have proved (2.6).
Analogously we can prove the following two theorems:

Theorem 1'. Let A_ < 3 < 0. Assume that sy €1 and that for any T > s, there
are 81 = 0 and E4(t) € C[so, T) such that

inf]z] > 0r forany T>s,,
zeBdQ

8 > A_or Ef(t) £ 0 for te[sy, T), T > s, and the inequality
(2.2') —G(1, z) Re {k h™(0) [1 + 9—(’—2)]} < Eq(t)
h(z)
is fulfilled for te[s,, T), ze K(w0,9), |z| > 8. If a solution z(t) of (2.1) satisfies
z(t) e K(o0, 9) L {0}
tor te (1, ®), where [t;, w) is the right maximal interval of existence of z(t) and

f1 = So, then o = co.

Theorem 2'. Let A_ < 9 < oo. Assume that s;el, 6; 2 0 for je N. Suppose
there are E(t) € C[t,, ) such that

34



(i) for jeN
(2.4) liminf {j, Ej(s)ds = — o0
t— 0
holds;
(i) the inequality

(2.5) —G(t,z) Re {k h™(0) [1 + g(;t(,_g))]} < E1)
zZ

is fulfilled for t = s;, z € K(o0, 9), |2| >d;,jeN. Define

6 = infJ;.

JjeN

If a solution z(t) of (2.1) satisfies

z(t) € K(o0, 9) U {0}
fort > t,, where t, = t,, then
26)  liminf|z()] < 5.

t—> 0

Theorem 3. Suppose there exist a region @y = Q, an R > 0 and a nonnegative
function B(t) € C[to, ) such that Ge C(I x @), g€ (I x @),

foo B(s)ds < o
and

(28) G(1, z) Re {z[h(z) + g(t, )]} < |2 B(Y)

for t = to, z€Q,, |z| < R.If a solution z(t) of (2.1) satisfies

(2.9) liminf |z(1)] < 6 < R

and z(t) e Qlt;«j{o} for t > ty, where t; Z to, then
lim sup |z(1)] < 5.

Proof. It c:l:o be easily derived that

@10) L] = 6o 20) (9] Re (2) DG + ot 20

1;})11;1; for tedl = {t > t;:2(t) % 0, |z(t)| < R}. Let © > 1, be such that z(r) = 0.
tim LOL= O _ iy O _ 1)) = [(e,0) oz, 0).

t+ t—7 tot+ T — T

Similarly

tim POL= 120 _ i 1200 — o)) = —6(e, 0) 6z, 0)] -

tog— t—7 tot—t — T
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Therefore d|z(7)|/dt exists if and only if G(z, 0) g(z, 0) = 0. In this case d|(<)|/dt = 0.
Put = {t > t;: z(t) = O}, M, = {t > t;: G(t,0)g(t,0) = 0}. It is known
that the set .#; \ ./, is at most countable. Using (2.10) and (2.8), we obtain

=01 = ot 20) D) + o))

d

— t)| =< B(t

<1e(0)] = B0)
for t e . Define

d
— |z(¢t)] whenever te A,
pe(o) = Jar " y

0 whenever te /.
It is clear that

@11)  |B¥(0)] = [6(t, 2(1)) [a(=(1)) + o(t. 2(1))]]

(2.12) B*(t) < B(t)

for t > t; such that |z(f)| < R. By (2.10) and (2.11), the function B*(f) is con-
tinuous on A U M. Any set M, < M\ M, is at most countable. Moreover,

B*(t) is bounded on any compact subinterval of . U .#, = {t > t;: |2(t)| < R}.
Hence, taking (2.12) into account, we get

@13)  [0)| - |2(o)| = 5 B*(s) s < [} B(s)ds
fort > o >t provided o, te M U M,.
Choose ¢, 0 < ¢ < R — 6. Let T > t, be such that T < ¢, < t; implies

JiB(s)ds < g/2.
In view of (2.9), there is oy = T such that
lz(c))| <6 + ¢f2.

Suppose there is * > ¢ such that |z(t*)| = 0 + ¢, lz(t)l < & + ¢ for te[a, t*].
By (2.13) we have

|z(t*)| < |z(oy)| + fi, B(s)ds <& + &2+ 2 =5 +e,
a contradiction. Therefore lz(t)l £d+efort=o;and
lim sup |z()| < 6.
t— o0

Theorem 4. Let a; € C, «j, B;, 6 € R be such that f; = t,, 0 £ 6 < a; — ‘ajl for
jeN,a; > 6 asj — co. Suppose there is a region Q; < Q such that

(2.14) G(t,z) Re {(z — a;) [h(z) + g(t, 2)]} <O
is fulfilled for t > B; and z € Q, " S(a;, o)), j € N.If a solution z(t) of (2.1) satisfies
(2.15) lim inf |z(1)| < & '
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and z(t) € Q, U {0} for t > t;, where t; = t,, then
lim sup |z(1)] £ 6.
t— o0
Proof. Clearly a; - 0 as j — co. Choose ¢ > 0. Pick je N such that [aj| +
+a; < & + & Let y;€ R be such that 6 <y; < «; — |a;]. From (2.15) it follows

that there is ¢ > max (¢, ;) for which |z(c)| < y;. Now we have |z(c) — a;| <
< |z0)| + |aj| < v; + |a;| < a;. Since (2.14) implies

(% |2(t) = a;| = 0" G(t, (1)) Re {(=(1) — @) [W(=(0)) + g(t, 2(1))]} <O

for all ¢t = o such that |z(r) — a;| = «;, we infer that |z(f) — a;| < a; for t 2 o,
whence

lz()] < |a;| + 2j <6 + ¢
for t = ¢. Thus

limsup |z(t)] < 6.
t—> o0

3. APPLICATION TO EQUATIONS 7 = q(t, ) — p(t) z* AND % = x (¢, xx~ 1)

In this section we shall consider the equation
(3.1) z = q(t, z) — p(t) 2%,
where g e C(I x C), pe C(I) and
(32) %= xy(t, xx71),
where y € C(I x C). Notice that the choice Y(t, z) = —P(t) z — Q(f) leads to a linear

equation % + P(t) x + Q(f) x = 0. Supposing o, f € C'(I), ¢ € C(I) and B(t) * 0 for
t € I, we can easily verify the following lemma:

Lemma 1. Put
p(1) = B7H(1) + oft) »
at,z) = By(t. (z + ) 1) + 02> + (B — 20) B 'z +
+(B-)ap ™t — .
(i) A function z(t) is a solution of (3.1) defined on an interval J < I if and only if
() = B 50 () — o0,

where x(t) is a solution of (3.2) on J. ‘
(ii) A function x(1) is a solution of (3.2) defined on J < 1 if and only if

x(t) = @ exp [[;, [2(s) + o(s)] B~(s) ds] ,
where O is a constant different from zero, w € J, and z(t) is a solution of (3.1) on J.

In view of Lemma 1 we shall obtain the results concerning the asymptotic be-
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haviour of the solutions of (3.2) as immediate consequences of the results concerning
the solutions of the equation (3.1). If a € C, a = 0, then (3.1) may be written in the
form

(3.3) z = G(t, z) [h(z) + g(t, 2)] ,
where h(z) = —az?, G(t,z) =1 and ¢(t, z) = q(t, z) + az> — p(t) z>. From
[1, Example 1], where @ = C, b = —a, we have h'(z) = —2az, h'(z) = —2a,
n =2 W(z)=exp[Re(2az™")], A, = i_ =1, k= —a. The sets K(1), where
0<A<ay=1lorl=4_<A< oo, are circles with centres a(In 1)~" and radii
|a] |In 4]~*, K(0,1) = {z € C: Re (az) < 0}, K(o0, 1) = {z € C: Re(az) > 0}.
ForaeC,a #+ 0,4 > 0,B > 0,6 € (0, n/4] denote

Q,5(a) = {ze C: —A Re [a?z?] — B|Im [a*z*]| > 0},
Qya) = {z = pe’*: pe R\{0}, Arga + nf2 — 5 < 9 < Arga + n/2 + &}. It can
be easily verified that ,

Q,.8(a) = 2,4(¢) = {ze C: Re (a%2?) < 0}
for any A4, B > 0, and for any 4, B > 0 there exists , € (0, 7t/4) such that
(3.4) Qs(a) = Q4 5(a) for 5€(0,5,].

The following lemma will be useful in our further considerations.

Lemma 2. Suppose there are a € C and C = 0 such that

(3.5) Re [a p(t)] > 0 for tel,
(3.6) liminf Re [a p(f)] > 0, limsup |Im [@ p(t)]| < 0,
t—= t—
(3.7) Re[agq(t, z)] =2 - C‘Im [azzz]| for tel, zeQ(a)
and .
(3.8) q(t,0) £ 0 for tel.

Then every solution z(t) of (3.1) satisfying at t; = t, the condition Re [a z(t,)] = 0
fulfils Re [a z(t)] = O for all t > t, for which z(t) exists.
Moreover, Re [a z(t)] > 0 provided z(t) # 0.

Proof. Let A, B > 0 be such that
Re [a p(1)] = |a|2 A, |Im [a p(t)]l < |a|2 (B-C)

for t 2 t,. There exists a &, € (0, n/4) with the property @;,(a) = Q4 4(a). For
t = t, such that z = z() € Q;,(a) we obtain

% Re [a z(t)] = Re [az(t)] = Re [a g(t, z)] — Re [a p(t) 2°] =

= Re[aq(t, z)] — |a| "% Re [a@ p(t) a?2?] =
= Re[aq(t, z)] - |a!~2 {Re [a p(t)] Re [a%z%] —
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— Im[a p()] Im [a?2*]} 2 —C|Im [a®2%]| — A4 Re [a?2%] —
— (B — C)|Im [a*2*]| 2 — A4 Re [az?] — B|Im [a*z*]| > 0.
If z(t) = 0 we have

(3.9) (% Re [a ()] = Re [a q(t, 0] > 0

or

(3.10) di Re [a z(1)] = Re [a q(t, 0)] = 0.
’ t
With respect to (3.8) we infer that
(—‘:— Im [a z(t)] = Im [a g(t,0)] + 0
t

in the case (3.10). Taking into account that Re [az] = 0 implies z € Q;(a) U {0},
we get Re [a z(1)] = Oforallt 2 t, for which z(t) is defined. Clearly, Re [a z(¢)] > 0
if 2(z) + 0.

Remark. If the condition (3.8) of Lemma 2 is replaced by Re [a g(t, 0)] > 0,
we get the assertion Re [a z(r)] > 0 for all ¢ > ¢, for which z(t) exists.

Combining Lemma 2, Theorem 1’ and Theorem 2’, we obtain the following
generalization of Theorem 1 of [7]:

Theorem 5. Let the assumptions (3.5), (3.6), (3.8) and
(3.11) Rel[aq(t,z)] 20 for tel, zeC
be satisfied. Suppose there exist D(t)e C(I) and 6 Z 0 such that

(3.12) |q(t, z)| < D(t) for tel, zeC,
(3.13) |a| lim sup D(f) < 6% lim inf Re [@ p(1)] .
t— 0 t— o

Then any solution z(t) of (3.1) satisfying Re [a z(t,)] = 0, where t, = t,, satisfies
the condition

liminf |2(¢)| £ &
t— o0

and Re[az(f)] = 0 for t = t,.
Proof. From Lemma 2 it follows that Re [a z(¢)] = 0 for all t = t; for which
2(1) exists. It is sufficient to prove that z(r) exists for all # > ¢, and that

lim inf |(t)| < &*

t—= o0
for any 6* > - Choose o > 0 such that
|a| 672 D(t) < inf Re [@ p(t)] for =1,
t=to

39



andputd = A_ = 1,5; = 1o(j = 0, 1,2,...), Ef(t) = 2[|a| 677 D(t) — Re [a p(t)]].
Then

—6(1, 2) Re {k H(0) [1 . g(’é ;)]} — 2 Re [az"2 (1, 2)] — 2 Re [@ p(1)] <
< 2faf 2|2 () - 2 Re [a 0]
and hence

—6(t, 2) Re {k H(0) [1 + %l]} < 2Jals7? D(t) - 2 Re [a p(1] = Ex(1)

for t = t,, ze K(w0, 1), |z| > 7. In view of Lemma 2 we have z(f) € K(c0, 1) U {0}
for t e (t,, w), where [, ) is the right maximal interval of existence of z(f). Using

Theorem 1’ we obtain w = 0.
Put now 6; = 6%, E(1) = 2[|a| 6*2 D(t) — Re[a p(1)]]. For t = t,, ze K(o0, 1),
|z| > o* we have

—6(1, 2) Re{ h(0) [1 + (( ))]} < 2[a] 52 D(t) — Re [7 p()]] = E1).
Since
|a] lifr_{:}up D(r) < 5*2 lirtrlglf Re [a p(1)],
we have

liminf [;, Ef(s)ds = —c0 .

t— o

By Theorem 2’ we get

lim inf |2(1)] < 6*.
t—=>©

Theorem 6. Let the assumptions (3.5), (3.6), (3.8) and (3.11) be satisfied. Suppose
there exist D(t)e C(I) and 6 = 0 such that

(3.14) a(t, z)| < D(t) for tel, zeC,

(3.15) JeD(r)dt < .

Then any solution z(t) of (3.1) satisfying Re [a z(t;)] = 0, where t, = t,, satisfies
the condition

lim inflz(t)l =0

t— 0
and Re[az(t)] 20 for t 2 t;.
Proof. Let 6 > 0 be arbitrary. For any T > ¢, choose d; > 0 such that

la| D(1) < 67inf Re[a p(t)] for te[1,, T),

t=to

andput§ = A = 1,5; = t,(j = 0,1,2,...), E(t) = 2[|a| 677 D(t) — Re [a p(1)]]-
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Then
—G(t, z) Re {k h™(0) [1 + gT(lt(:z)i)]} < 2'“! 572 D) — 2 Re [a@ p(t)] = Ex(t)

for t = ty, z€ K(w0, 1), |z| > 87, and Eq(t) < 0 for t € [1o, T). Because of Lemma 2
we have z(t)e K(oo,1) U {0} for te(ty, w), where [t,, ) is the right maximal
interval of existence of z(f). Making use of Theorem 1’ we get @ = co.
Put now §; = 6, Ej(t) = 2[|a| 672 D(t) — Re [a p(t)]]. As
~6(t, 2) Re {k 1(0) [1 + M]} < Ei)
h(z)

for t = t, z € K(o0, 1), ]z| > 6, and
liminf {j, E,(s)ds = — o0

t— o
we obtain
lim inf|z(t)| <9

t— 0

by Theorem 2’. Since 6 > 0 was chosen arbitrarily,

lim inf |2(1)] = 0.
t— o0

By virtue of Theorem we get 3

Theorem 7. Let the assumptions of Theorem 6 be fulfilled and let
Jio |p(r) — aldt < 0.
Then any solution z(t) of (3.1) satisfying Re [a z(t;)] = 0, where t; = to, satisfies
the condition
lim z(1) = 0.

t— o0
Proof. Choose R >0 and put @, = K(co,1), B(t) = D(t) + |p(t) — a| R%.
Obviously
G(t, z) Re {Z[h(z) + g(t, 2)]} = Re {z[q(t, z) — p(t) 2°]} =
= —|z|* Re [az] + Re {z[q(t, z) — (p(1) — a) 2°]} <
|z| |a(t, z) = (p(1) — a) 2%| =
< 2| [D(x) + [p(r) — a| R*] = |2 B(1)
fort = ty,z € Qy, |zl < R. With respect to Theorem 6 and Lemma 2 the assumptions
of Theorem 3 are satisfied with 6 = 0 and therefore

limz(f) = 0.

t—> 0

IIA

Similarly we obtain the following generalization of Theorem 2 of [9]:

Theorem 8. Let the assumptions of Theorem 6 be fulfilled and let Im [a p(t)] = 0
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fort = to. Then any solution z(t) of (3.1) satisfying Re [a z(t,)] = 0, where t; = t,,
fulfils
limz(t) = 0.

Proof. Choose R > 0 and put Q; = K(oo, 1), B(t) = D(z). It is clear that
G(t, z) Re {z[h(z) + g(t. 2)]} = Re {z[q(t, z) — p(t) 2*]} =

Re [Z q(t, z)] — |z|* Re [a™* p(t) az] <

[z[ Iq(t, z)| = |z|* |a| > Re [@ p(1)] Re [az] < |z| B(z)

fort = ty, z€ Qq, ‘zl < R. In view of Theorem 6 and Lemma 2 the assumptions of
Theorem 3 are satisfied with 6 = 0 and hence

limz(¢) = 0.

t— o0

Il

1A

Using Theorem 4, we can generalize Theorem 1 of [9]:
Theorem 9. Let the assumptions (3.5), (3.8) and (3.11) be satisfied. Assume there
exists D(t) e C(I) such that
|q(t, z)] < D(t) for tel, zeC,
lim D(z) = 0

t—= o0

and suppose
(3.16) lim p(t) = a.
t— o0

Then
lim z(f) = 0

t— o0
for any solution z(t) of (3.1) satisfying Re [a z(t;)] = 0, where t; = t,.
Proof. Choose R >0 and put @, = K(co, 1), B(t) = D(t) + R?|p(t) — a,
6 = 0. Let j, € N be such that j, > 3R™!. Set
a;=lala™(j +jo)™', ;=20 +Jo) "
In view of Theorem 5 and Lemma 2 we have z(t) € Q, u {0} for ¢ > ¢; and

lim inf |2(1)] = 0.
t= o

Putting z = a; + a,e’®, where 9 € R, we obtain
G(t, z) Re {(Z — @) [h(z) + ¢(t. 2)]} =
Re{(z — a;)[—az* + g(t, 2)]} <
Re {—we”® a(a; + 0} + |z — aj] |9(t, 2)| =
= a;{Re [—adle™™ — 2a0;a; — awte®] + |g(t, 2)|} .

For t> 1, zeK(w,1)n{zeC: |z - ajl = o;} we have Izl < lajl +o; £
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< 3(j + jo)~* < R and therefore, using the inequality cos (9 + Arg a) = —cos @ =

2 —|a;| a; ! (see Fig. 1), we get
Re [—ad%e™ ™ — 2aw;a; — adle™] =
= —|a||a;|* cos (3 + Arga) — 2a;|al|a;| — |a] & cos ($ + Arga) <
< laf |a,f* o5 " = ajla |ay|

and

G(t, z) Re {(z — @) [h(z) + g(t,2)]} <

< ocj[[al |aj]? aft - ozjlal |a;| + |a(t, 2) + (a — p(1)) zzl] <

< ocj[lal l“j| (xj"’(laj]z —of) + B(1)].
Since |a;| < o; and B(t) > 0 as  — oo, it is clear that for any j € N there is §; > t,
such that

G(t,z) Re {(z — a;) [h(z) + g(t,2)]} <O
for t > p; and ze Q, n S(a;, %;), je N. Now all assumptions of Theorem 4 are
fulfilled and the assertion follows from Theorem 4.

\ Amz

Relaz1=0
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Let o, fe C'(I), o€ C(I) and B(f) + O for tel. Defining functions p(t), q(t, z)
as in Lemma 1 and combining Lemma 1 with Theorems 5—9, we obtain the following
results concerning the equation (3.2):

Corollary 1. Let the assumptions (3.5), (3.6), (3.8) and (3.11) be fulfilled. If there
exist D(t)e C(I) and & = O such that the conditions (3.12) and (3.13) hold, then any
solution x(t) of (3.2) satisfying

(3.17) Re [a(B(ty) %(t;) x~*(1;) — a(t,))] 2 0,
where t, = t,, fulfils the conditions
Re [a(B(t) (1) x'(1) — «(1))] 2 0 for t=1t,,
lim inf Iﬁ(t) x(t) x~ (1) — oc(t)i <9.
t—

Corollary 2. Let the assumptions (3.5),(3.6),(3.8) and (3.11) be fulfilled. Suppose
there exist D(t)e C(I) and & = 0 such that the conditions (3.14) and (3.15) hold.
Then any solution x(t) of (3.2) satisfying (3.17), where t; 2 t,, fulfils the con-
ditions

Re [a(B(t) %(1) x7'(t) — «(t))] 2 0 for t=1,,
lim inf |B(t) X(1) x~*(t) — o(t)] = 0.
1=
Corollary 3. Let the assumptions of Corollary 2 be fulfilled and let

Jo|p(t) — a|dt < .
Then any solution x(t) of (3.2) satisfying (3.17), where t, = t,, fulfils
lim [B(t) x(t) x (1) — «(t)] = 0.
t— o
Corollary 4. Let the assumptions of Corollary 2 be fulfilled and let Im [a p(t)] = 0
for t = to. Then any solution x(t) of (3.2) satisfying (3.17), where t, = t,, fulfils
lim [B(1) x(t) x7'(t) — ar)] = 0.
t—>
Corollary 5. Let the assumptions (3.5), (3.8), (3.11) and (3.16) be satisfied. Assume
there is D(t) € C(I) such that (3.14) and
lim D(1) = 0

t—> o0

hold. Then
lim [B(t) x(t) x (1) — «(1)] = 0
t— o
for any solution x(t) of (3.2) satisfying (3.17), where t; = t,.

Remark. Putting (1) =1, «t) = =1 P(t), o(t)=0, a=1, Y, z) =
= —P(t) z — Q(t), where P e C'(I), Q e C(I), we obtain several results from [9].
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