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Czechoslovak Mathematical Journal, 40 (115) 1990, Praha 

ON INTEGRATION IN BANACH SPACES, XI 
(INTEGRATION WITH RESPECT TO POLYMEASURES) 

IvAN DoBRAKOv, Bratislava 

(Received August 17, 1987) 

INTRODUCTION 

In the case of integration with respect to an operator valued measure m: 0> ~» 
-^> L(X, Y) countably additive in the strong operator topology, ^-measurable 
functions/: T^ X with continuous L^pseudonorm rft(f, •): cr(^) -+ [, +oo] form 
a complete pseudonormed linear space &x(m), which shares many important 
properties ofthe classical JS?i(ju) spaces, see Parts II — YII. In particular, the Lebesgue 
Dominated Convergence Theorem (LDCT) holds in J^ (m) , see Theorem 11.17. 

Concerning integration with respect to a d-polymeasure Г: X ^ ^ L(d)(Z(-; Y) 
separately countably additive in the strong operator topology, in Theorem IX.7 we 
extended the LDCT to the class &і(Ґ) of integrable d-tuples of functions (/ř) = 
= (fi, . . . ,/d) whose multiple L rgauge i>gauge f [ ( / i ) , ( # ) ] : X c 7 (^0 ~* [°> + 0 0 ] 
is separately cpntinuous, see Definition 2 below. If c0 ф 7, t h e n / є i f ^ m ) if and 
only i f / is ^-measurable a n d m ( / , T) < +oo. For d > 1 the analog is not true 
for the class &i(r) Nonetheless, it is true for the greater class J^x(f) introduced 
by Definition 3. Namely, in Theorem 5 we prove the ,,if" part, and, postponing 
the case of dimensions d > 2 to the forthcoming Part XIII, in Theorem 8 we prove 
the implication (/f) є £Л(Г) => f [ ( / ř ) , (Щ < + oo for d = 2. 

That <&i(r) is the ,,right" class is confirmed by Theorem 6 (Fubini theorem in 
&i(F)) and Theorem 10 (LDCT in J^ (F) ) . As a byproduct we explain why a third 
of the definition of strict MT integrability in [1] is enough, see the paragraph after 
Corollary 3 of Theorem 6. 

We shall use freely the notation and concepts of the previous parts, treated as 
chapters, particularly the abbreviated notation from Part VIII. 

THE CLASSES <ех(Г) AND &Х(Г) 

Throughout this paper, if not specified otherwise, we assume that Г: X ^ ^ 
~> L(d)(Xt-; Y) is a given operator valued d-polymeasure separately countably additive 
in the strong operator topology with locally cr-finite semivariation f on Xcr(^f)9 see 
the beginning of Part IX = [13]. 

8 



Let us first introduce a useful notion. 

Definition 1. For each i = 1, ..., d let fhfifll: Ti ^ Xh n = 1, 2 , . . . be ^ - m e a ­
surable functions. We say that the sequence of d-tuples (Д„), n = 1, 2, . . . converges 
Г-almost everywhere, shortly T-a.e., to the d-tuple (/f) if there are sets Nt є cr(^.) 
i = l , . . . , d such that f(Nl9T29...,Td) = ...=t(Tu...,Td-l9Nd) = 0, and 
/i,n(ii) ^ / i (*i) f o r e a c h U e r f - Nh i = 1 , . . . , J. 

Obviously, in our previous theorems we may replace convergence everywhere of 
d-tuples of measurable or integrable functions by convergence Ґ-а.е. 

The title of this section indicates that there are two worthwhile generalizations 
of the space Sß^m). Having in mind the notions from Parts I and II let us recall 
that a function g: T^ X belongs to JžP^m) if g is ^-measurable and its Li-pseudo-
norm m{g, •): a(0>) ^> [0, +oo] is continuous (equivalently, exhaustive). By Corol­
lary of Theorem II.5 then rh(g, T) < + oo. (Here is an elementary proof of this fact: 
Put G = {t є T, g(t) * 0}, take Gk є &>, к = 1, 2, ... such that Gk S G and m(Gk) < 
< + oo for each k = 1, 2 , . . . . Define G'k = Gk n {t e T, \g(t)\ й Щ, k = 1, 2, ... . 
Then G — Gk \ 0, hence there is a k1 such that rh(g, G — Gkl) < 1. But then 
m(g, T) = m{g, G) ^ m(g, Gkl) + 1 ^ kx fh(G'ki) + 1 < +oo.) This suggests the 
following, as we shall see, ,,strong" generalization of Jšf^m). 

Definition 2. Let gt: Tt ~> Xh i = 1, ..., d. We say that the d-tuple (gt) belongs 
to с^і(Г) if g{ is ^-measurable for each ř = 1 , . . . , d, and the Lx-gauge jT[(#i), (•)]: 
Xff(^f) ~> [0, + oo] is separately continuous (equivalently, separately exhaustive). 
ByTheoremVIII .6thenf[(^i) , (Ti)] < +oo. 

The last fact may be again proved in an elementary way. The following lemma is 
also immediate. 

Lemma 1. Let (д^є&^Ґ). Then: 

l)If(fud2>--->9d)e&i(r), then (fí + gug29..,9gd)e^í(r). The analogs 
holdfor the coordinates i — 2, ..., d. 

2)Iffi'.Ti^Xi, i = l , . . . , d , are &>rmeasurable and \fi(ti)\u\9i(ti)\ for 
Г-almost every (i£) є XTh then ( j Q e J ^ r ) . 

3) If q>i'. Ті ~> K, і = 1, ..., d, are bounded scalar valued ^cmeasurablefunc-
tions, then (q>ig^e&i(r). Particularly (а^^е&^Г) for any scalars ah i = 
= l , . . . , d . 

4) If U: Y^ Z is a bounded linear operator, then (gt) GJ^(UT). 
It is easy to see that Theorem IX.7, with the convergence Г-almost everywhere, 

is a generalization to &і(Г) of the Lebesgue Dominated Convergence Theorem 
in i ^ ( m ) , i.e., of Theorem 11.17. By this theorem &±(Г) с «^(Г). The next theorem 
is a generalization ofTheorems 11.16 and V.1, i.e., ofthe Vitali Convergence Theorem 
in &t(m). 

Theoreml. For each i = l , . . . , d let fi9fin\Ti^Xi be ^rmeasurable, let 
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(Дп)є^і(0 for eacn n = l > 2 , . . . , and let ( Д „ ) ^ ( Д ) Ґ-almost everywhere. 
Then the following conditions are equivalent: 

a) ( /0 є £x(ť) аиаГ[(Д„) , (Л,.)] - f[(/,)> ( ^ ) ] / o r еасй (Л;) є Xa(<^); 
b) the L^gauges ^ [ (Д и )>( # ) ] : Х#(^ г) ^ [0, +oo] , и = 1,2, . . . аге separately 

uniformly continuous (equivalently, separately uniformly exhaustive on X^ř.), and 
c) ^[(Д«)> (At)] ^ f [ ( / i ) , ( ^ ) ] uniformly with respect to (At) є X<r(^); 

я л і г/ řftej; йо/d, then 

limU)(/Jdr = i^(/,.)dr 
n^oo 

uniformly with respect to (At) є Xcr(^). 
Proof. Clearly a) => b) by separate monotonocity and separate continuity of the 

j^-gauge f [ ( / i ) ' ( ' ) ] * Xtf(^j) ^ [0, +co). The equivalence i n b ) is a consequence 
of the Fatou property of the J^-gauge, see Theorem VIII.4 and also Theorem 11 
in [22]. 

b) => c). For each i = 1 , . . . , d put Ft = U \tt e Tb ftJtt) Ф 0}, where Д 0 = Д 
и = 0 

By local er-finiteness ofthe semivariation f on X a ( ^ ) , see the beginning ofPart IX, 
there is a sequence of d-tuples of sets (Fi>fc) e XPh k = 1, 2 , . . . such that Fik 7і Ft 

for each i = 1, ..., d, and r(Fik) < + oo for each k = 1, 2, . . . . 
Owing to the Fatou property of the multiple J^-gauge, see Theorem VIII.4, we 

have 
ПШ'ШІ = ЩЛІМ4Я ^ liminff[(|/ř>„|),( ;̂)] 

Л 

for each (Ai)eXa(0>i). Hence ( / , ) e ^ ( r ) by b). Thus f ß / M ) , ( T , ) ] < + oo for 
each n = 0, 1, 2 , . . . , where ( Д 0 ) = (^) . 

For ^ e ^ ) put ^ ( ^ ) = supf [ (A, , , , /2 , , , , . . . , / ^ ) , ( ^ 1 ? T 2 , . . . ,T d ) ] } n e 
є{0, 1, . . .}. Similarly we define дг: a(&-) ^> [0, +oo] for i = 2, ..., d. b) implies 
that each ^ , i — 1 , . . . , d, is a subadditive semimeasure in the sense of Definition 1 
in [22]. Since the EgorofT-Lusin theorem, see Section 1.4 in Part I, still holds if ß 
is a semimeasure, for each i = l,...,d there are sets iV;Gff(^) and F'itke&h 

k = 1, 2, . . . such that ^ (N ř ) = 0, F;>fc и i7; - iVř, and on each F'itk9 k = 1, 2 , . . . 
the sequence/ř-s„, n = 1, 2, ... converges uniformly to the function/^. 

Finaly, put ' Flk = F M n F ' M n {f, є Tř, | / ř(ř ř)| â fc}> ' = 1 , -» d, and к = 
= 1, 2 , . . . . Without loss of generality we may suppose that |Д„(^)| й 2k for each 
ti є F*fc, і = 1 , . . . , d, and к = 1, 2 , . . . . 

Let s > 0. Since ^*& ? Fi — JV. for each i = 1, ..., J, by b) there is a positive 
integer &£ such that 

f[(/<), (..., Г , - ь F , - Nj - F* t e , Г ; + 1 , . . . ) ] < e|2d 

for eachj = 1 , . . . , d. Hence 

r[(/0, K J ] â Г[(Л), (г,)] = f[(/0, (F, - *<fl á 
^ [ ( / i M 4 ) ] + a/2. 
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Since the uniformly bounded sequence Д„-Х^,кв> n = l , 2 , . . . converges uni­
formly to the function fi. xF*tke for each i = 1, ..., d, and since f(F*tke) < + oo, 
there is a positive integer n0 such that 

im/.-,,,x(nj]-^[(/o,(nj]|<2/2 

for n ^ и0. Hence b) => c). 
Trivially c) => a). 
The last assertion ofthe theorem is a consequence ofTheorem X.11. The theorem 

is proved. 
The following theorem is a generalization of Theorem II.5. 

Theorem 2. Let (#ř) є J ^ ( r ) . Then there are countably additive measures 
A , : * 0 ^ ) ^ [ O , l ] , * = l , . . . , a , such thatt[(gi)>(...iTj^u',Tj+i,...)]: o{0>^ 
~» [0, +oo) is (c> — є) (equivalently (0 — 0)) absolutely XfContinuous for each 
j = 1, . . . ,d . 

Proof. Let ^{(#i)} = {(fi)eXS(&>i,Xi), \fi\ й \gt\ for each i = l , . . . , rf} and 
let ^ { ( ^ 0 } = { о > ( / о , с о ( / о ( Л 0 = Ь о ( / ^ Г , ( / , ) e ^ { ( ^ ) } } - Since S ^ ) ( A , ) S 
á T[( /0 , (^i)] á f[(flfi),(i*i)] for each (/i)e^{(ff,)} and each (A,)eXa(^), the 
family Jt{{g$ ofvector d-polymeasures on Xai^P^) is separately uniformly countably 
additive. Now the assertion of the theorem immediately follows from the well known 
result of Bartle, Dunford and Schwartz, see Theorem 1.2.4 in [3] (r[(# ř), (T^)] < 
< + oo). The theorem is proved. 

The next corollary is a generalization of the second part of the *-Theorem from 
Part I. Its validitiy is obvious. 

Corollary. Let the semivariation Г:Х^>
І~^ [0, +oo] be separately continuous. 

Then for each (At) є X0>{ there are countably additive measures Xjt^Aiý Aj n &j ~» 
~» [0 ,1] , ; = 1, . . . ,d , such that t(...,Aj-l9 '9Aj+i9 ...):Ajn 0>j ^ [0, +oo) is 
[3 — s) absolutely Ay^)-continuous for each j = 1, ..., d. The analog holds if 
each 0>b i = 1 , . . . , d is replaced by a ( ^ ) , and in both cases the semivariation f has 
locally control d-polymeasure on X a ( ^ ) . 

We are now ready to prove the following generalization of Theorem V.4: 

Theorem 3. Let (g^ e J ^ ( r ) . Then for each s > 0 there is a positive integer Ne 

such that whenever ie{ì,...,d),fììj:Ti^Xh j = l , . . . , iV e are 0>fmeasurable 
Ne 

and X | / i j | ^ k i | ' then ?[(-~>0і-и/и>9і+и---)>(тіУ1<е f°r at least one 

Je{U...9Ng}. 
Proof. Let e > 0. Using theorem 2 and its Corollary, similarly as in the proof of 

Theorem V.4 we obtain positive integers Ni}B, i = 1 , . . . , d with the corresponding 
properties. Clearly Ne = max{iV ie, ie{l,...,d}} has the required property. The 
theorem is proved. 
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Let us again have the setting ofParts I and II. If 7does not contain a subspace 
isomorphic to the space c0, shortly if c0 ф У, then by Theorem II.5 each ^-measurable 
function g: T^>X with finite L^pseudonorm ra(#, T) < +oo belongs to &^m). 
Since, due to the nice example of Hans Weber, see Part VIII, there are Hilbert 
space valued bimeasures defined on the Cartesian product of two cr-rings which are 
not uniform bimeasures, the analog of Theorem II.5 for <^i(r) for d > 1 does not 
holds. The idea how to define the ,,right" «£?і(Г) came from the following simple 
characterization of elements of S£^m). This theorem may be proved similarly as 
Theorem 1 in [15]. 

Theorem 4. Let g: T^> X. Then g є J£x(m) if and only if g is ^-measurable and 
each 3P-measurablefunctionf: T^>X with | / | ^ \g\ is integrable. 

Definition 3. Let gt: Tt ^>Xb i = 1, . . . ,d . We say that (gt) belongs to £?і{Г) 
if gx is ^-measurable for each i = 1 , . . . , d, and for any ^-measurable functions 
fi'. Ti^>Xi9 i = l , . . . , d , the inequalities |*/ř| <̂  \gt\ for each i = l , . . . , d imply 
that (fi) is an integrable d-tuple, i.e., (/ř) eJ>(T). 

Obviously <$i(f) c Jzfj(r). Further, we immediately obtain 

Lemma 2. The assertions ofLemma 1 still hold ifJ&^T) is replaced b y J ^ ( r ) . 
For a ^-measurable function g{. Tt ~> Xh i e {1, ..., d] and k = 1, 2, ... put 

0>дик~{ЦеТь gfa)l*l|k)n&i 
00 

and let 0>g. = (J â?guk< Then &9i is evidently a č-ring and gt is ^.-measurable. We 
k=i 

shall use this notation as well as the following fact. 

Theorem 5. Let c0 ф Y, let gt: Tf ^ Xt be ^rmeasurable, i = 1, ..., d, and let 
t[(g,), (T()] < +oo. Т/геи (0г) є ^ ( Ґ ) . 

Proof. For every і = 1 , . . . , d take a sequence # м є S(^ i 5 Zř«) such that gitn(ti) ^ 
^flfi(ři) and \дівЯ(и)\ s |^,(^)| for each f ,eT,. Clearly gitneS(0>gt,Xt) foreach 
и = 1, 2 , . . . . Let Г = Г: Xá%f ^ L^(Z, ; 7). 

For any given n2,..., nd є {l, 2, ...} and v4f є c r ( ^ ) , і = 2, ..., d, the mapping 
(ЛІ5 x±) ^> JM<) (xj . Хл15 02,«2>—> 0d,nJ d r ' > ^ i є ^V> * i€JT l 9 defines a measure 
Wi,{A2,...,Ad),(n2,...,rtdy^gL^L(Xi^,Y) countably additive in the strongoperator 
topology, whose semivariation on a set Aie0>

guk is bounded by к.Г[(дь(Т$\ 
for all n2,..., nd = 1, 2 , . . . , and all (A2,..., 4d) є a ( ^ 2 ) x ... x a(^gd). By sym­
metry in coordinates the analogs hold for the coordinates i = 2 , . . . , d. 

Since obviously тиіѣ)Л.)(диТ1)йГ[(ді),(Ті)]<+со, and с 0 ф 7 Ь у as­
sumption, gx є а Р і ( т 1 і ( . ш ) by Theorem II.5. Thus according to Definition 1.2 the 
function gx is integrable with respect to the measure mlj(.)>(.), and \Ai gx dmÍÁ.)Á.) = 
= lim }Л і 01>И1 dm1)(.))(.) є Y exists for each Aí e aÙPgi)9 hence also for each A t є 

иі^-оо 

eo(0>i). Since this is true for every n2,...,nd = l , 2 , . . . and every ^ , e c r ( ^ , ) , 
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і = 2, . . . ,d , and since clearly $Ai g1>nx dm1)(.))(.) = $(Ai)(9i,m)dr, we immediately 
obtain that (gl9 g2)„2, •••> ö'd, JeSi(r) and 

i(^i)(a'i.e2.n2.---,ffd,Jd^ = l imJ M i ) (â f 1 > ( )dr 
Пі^оо 

for each и 2 , . . . , nd = 1, 2 , . . . and each (Лг) є X a ( ^ ) . 

Similarly (#1? x2 . хЛ2, ^3,»3» • • •> #<*,J є ^ і ( г ) a n d 

f(A,) (#1> *2 • bb> #3,n3> • • •» 9d,na) аГ = 

= ]ІтііЛп(019пі9Х2 - Хл2> 03,и3' • • •> 9d,nd ) d T 
Пі^ОО 

for each х2 є X2 and each А2 є сг(^2), for any given n 3 , . . . , nd and Л І 5 Л 3 , . . . , Aà. 
This equality implies that for any given n3, ..., nd and Al9 Аъ,..., Ad the mapping 
(Л2, x2) ~> JM<) (öfls x2 . Хл2, #з,и3> • ••> 9d,nd) <*Г\ A2 є ^ 2 J *2 є ^ 2 , defines a measure 
w2,(.),(-): ^ 2 ""* Д^29 У) countably additive in the strong operator topology, 
whose semivariation on a set Л 2 є ^ 2 > к is bounded by fc. r [ ( 0 i ) , ( ^ ) ] < + oo. 
Continuing as above we obtain that (gi9 g2, g3}„3,..., даіПа)еУ2(Г)9 and 

i ( i o ( ^ b 0 2 ? 9ъ,пЪ) • • -5 0d,Hd 

) аГ = lim lim f(il<) (#M i) d r 
И 2 ^ 0 0 Пі^ОО 

for each n 3 , . . . , rcd = 1, 2 , . . . and each (A) є X a ( ^ ) . 
Continuing in this manner we finally obtain that ( # ; ) e J ^ ( r ) , and 

J(A,) (^i) d r = l i m •• • l i m J(il,) (#Mi) d r 

nd"*oo « i ^ o o 
for each (4,) є Xflr(0>,). 

Let us note that by symmetry in coordinates the analogs are valid for any permuta­
tion of { 1 , . . . , d}. Note finally that in Theorem 10 below we show that і^і(Г) c 
c= ^ і (Г ) in general. The theorem is proved. 

Suppose now that each Xh i = 1, ...,d. is finite dimensional. Then according 
to Corollary of Theorem X.5 we have У(Г) = J ^ ( f ) . Further f[(#*), (Гй)] < +oo 
for each ( ^ ) e / ( f ) by Theorems VIII.2 and VIII.3. Hence we have obtained the 
following 

Corollary. Let each Xh i = 1,2, . . . befinite dimensional and let c0 ф Y. Then 
s(r) = j,{r) = <e,{r). 

One of our most important results is the following 

Theorem 6. (The Fubini Theorem in &Х(Ґ).) Let (gt) є &±(Г), let d > 1 and let dx 

be a positive integer such that 1 ^ d± < d. Then: 

о)ЫеЛ(Г); 
1) {9i,--;9d1>xdí + 1 . X A d í + í>--'>xd.XAa)eS(r)for each x , 6 l j and Ate0>gt9 

i = dx + 1, ..., d. 
2) Let ( ^ ! , . . . , A , J e c r ( ^ ) x .. . x a(0>dl) be given. For each XieXi and 
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Ate0>gi9 і = di + 1, . . . , d pwř 

^di,(i4b...,i4A)(^di + l5 • ' • ' A 0 (Xd! + b •••> *d) = 

= ( i ( A b . . . , ^ ) ( ^ b - - - ^ p . . O ^ K , + l - - - , A ) ( ^ + l - - -^d) = 
= íui) (9u>-'> 9dx> xdi + 1 . ^ д + 1 xd • Хла) d r . 

Then rdlÁ.ý^gdi + 1x...x^gd^Ďd~d^(Xdl + u...,Xd;Y), rdM is separately 
countably additive in the strong operator topology, and its semivariation tdu(.) 
is finite valued on 0*gdl + lfk 

x .. . x 0>gdk for each k = 1,2, . . . . Hence rdi0) is 

locally o-finite on 0>
gdl + 1 x . . . x 0>gd and also on v(&gdt + 1) x . . . x o(0>gd). 

3) ( ^ + p . . . , ^ ) e ^ i ( r , ^ . ) ) / o r e a c / i ( - ) = ( ^ ! , . . . , ^ ) e a ( ^ ) x .. . x c(0>di), 

^,(.)fe+i-,4K+iv,^)] ^%<),W], and 
i(iidi+b...,Ad)(o'di + i ' - - -^d)d^d i . ( . ) = i ( i4 , ) (^ i )d r 

/o r eacft (Af) є Xff(^j), and 
4 ) W + b...^d)(0rfi + l > - - - > 0 d ) d ^ = 1(Лі)(оРі)ёГ = 

- i(iii,...,iidx) (#i> • • •> 0*) d Í(...^dl + 1,...^d) (..., flfdl + i , . . . , gd) dF) 

for each (Ai) e x v{&i), where the dx polymeasure 

к...Аа1+и...м(--'>0аі + і>--->0і)аГ:0>в1 x . . . x 0>gdx^ 

- L ^ , . . . , I ^ ; y ) 

is defined similarly as the (d — d^-polymeasure in 2), and has similar properties 
as the latter. 

Proof. We now prove the theorem under the additional assumption that 
f[(#i)> (Tř)] < + oo. In Theorem 8 below we prove that for d = 2, (gt) є ^Х(Г) => 
=> f[(sf,-), (Tř)] < + oo. In the forthcoming Part XIII, Theorem 12 we will prove this 
implication for an arbitrary dimension d. 

Having this additional assumption we first show that the proof of Theorem 5 
remains valid in this new situation. To this end we must show that gx є ^f 1(m 1 ( . ) ( . )) 
in the notation of this proof. According to Theorem 4 we must prove t h a t / i : Tx ~*^i 
is integrable with respect to the measure m1(.)(.) provided fx is 0>gi measurable 
and | / i | S |flfi|. L e t / i be such a function. 

Since {fug2,n2>-->9d,n2)e^(r) ЬУ t n e definition of і?і(Г), the set function 
v0» Ы Л і ) = iu , , . . .Md)( / i^2 f « 2 J - . . 9 ^« d )dr , ^ e o ( ^ ) , is a countably additive 
vector measure by the separate countable additivity of the indefinite integral with 
respect to Г, see Theorems IX.3 and IX.4. 

Let / M : Tt ^ Xl9 n = 1, 2, ... be a sequence of 0»gi measurable functions such 
that/1>M -> / j and |/1>fI| / \ft\. Since the semivariation rf*i,(.),<o i s ^-finite on i ^ l ? 

each/ l j M , n = 1, 2 , . . . is integrable with respect to mi,(.),(.)-
For Atea(^gi) put ѵи(Лі) = b u / i ^ d m ^ . ^ = 
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= i(*....Md (Л. ff2..a.-' » " . J d r ' " = l j 2 ' " - ' a n d l e t 

^ A _ V 1 MéíL 
^ ^ - „ й г і + ѵДг,)' 

Then ju: c r ( ^ J ^ [0, 2] is a subadditive submeasure in the sense of Definition 1 
in [21] ( v ^ ) ' = sup{|v,(Bi)|, В1єорв1), Bx с: A,}, i.e. ѵи is the supremation 
of vw, see Definition ѴІП.2). 

Put F = {t^T^ / i ( i i ) Ф 0} є a ( ^ J . According to Egoroff-Lusin theorem, 
see Section 1.4 in [5], which remains valid for the subadditive submeasure ft, there 
is a set N є a(0>gi) with fi(N) = 0 and a sequence of sets Fk є 0>gi, k = 1, 2, ... such 
that Ffc и F — N, and on each Fk, k = 1,2, ... the sequence / l f „ , и = 1, 2, . . . 
converges uniformly to the function/^ Since the semivariation *foi,(.)>(-)(̂ ) *s tf-fmite, 
without loss of generality we may and will suppose that m1(.)j(.)(Ffc) < +co for 
each k = 1,2, ... . But then, clearly, the functions fi . ZrkuN' & = *>2 ' ••• a r e 

integrable with respect to the measure m1)(l))(<) and 

$Aifi • X^uivdm^(.)^ = lim \AJUn. Zffcu«rdwi,f.)/o = 

n^> oo 

= Hm fub...,^d) {fi,n • Zfku^ 02,«2>-.., #<f,J d r = 

n^oo 

= iiAu....A*) (fi ' XFkuN, 9z,m> • ••> 0 d , J ^ Г = V0(^i П (F* U JV)) 
for each A1 є ѵ(&*ді) and each Ä: = 1, 2, ... . Since f1 . XFkuN -*fi> a n d s i n c e t n e 

indefinite integrals ifi'XFkvjNàm1(,h(.) = v0('n(FkuN)), fc = l , 2 , . . . are uni­
formly countably additive by the countable additivity of the vector measure v0: 
a(^gi) ~* Y>fi *s i n t eg r able with respect to the measure m1>(.))(.) and $Al fx dm1)(.)i(>) = 
= v0(^i) for each A1ea(0>

gi) by Theorem I.16. Hence gieSP1(mlfim)3Í.))i which 
we wanted to show. 

Thus the rest of the proof of Theorem 5 remains valid under the given assumptions 
of this proof. Hence (gt) eJd(r) and 

(*) ї(Ао(ді)аГ= lim ... lim i(ÄO(gitnt)dT 
" p ( d ) ^ 0 0 П р ( 1 ) ^ 0 О 

(for each (At) e Xa(^i) and each permutation p of { 1 , . . . , d]. 
Now 0) immediately follows from (*). 
1) is clear from the definitions of 0>gi and of ^ і ( Г ) . 
2) follows from (*) by the uniform boundedness principle and by the Vitali-

Halm-Saks-Nikodym-(VHSN)-Theorem for polymeasures, see the beginning of 
Part VIII. 

3) and 4) are direct consequences of (*) and of the corresponding definitions. The 
theorem is proved. 

We immediately have the following 

Corollary 1. Let (gt) є =^і(Г). Then the integrals on the right hand side below 
exist, the polymeasures obtained are separately countably additive in the strong 
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operator topologies and have a-finite semivariations, and 

ІшіддаҐ = b,<7dd(i(A,-,,-)(0a-i' - )d( . . .d(J(^ , . . . ) (02, . . . ) . 
. d ( U , . . , ( < 7 b . . . ) d r ) ) . . . ) 

for each (Ai) e Xa(^gi). The analogs hold for all permutations of {1, ..., d) and all 
decompositions of d as a sum of positive integers. 

The next corollary requires the following 

Remark . Let m:^0~^L{X,Y) be countably additive in the strong operator 
topology, let g:T^X be ^0-measurable, and let its J^-pseudonorm m(#,*): 
a (^ 0 ) ^ [0, +oo] be continuous. Then rh{g, T) < +oo by Corollary of Theorem 
II.5 (now the simple proof at the beginning of this section does not work since the 
semivariation m may take the value + 00 on some sets of 0>o, see Section 1.1 in Part 
I). Hence 0>gtk cz 0> cz 0і for each k = 1,2,... by the TschebyschefF inequality, 
see Corollary of Theorem II.1. Thus &q cz a(&), hence g is ^-measurable. This 
implies that g є J£x(m). In this way the requirement of cr-finiteness of the semivaria­
tion m is not needed for the definition of Jšf^m). We use this fact in the following 

Corollary 2. Let g{. T{ ~> Xx he gPçmeasurable, i = 1 , . . . , d. Then thefollowing 
two conditions are equivalent: 

a) (gi)eJ?x(r), and 
b) thefollowing d conditions hold: 

1) g^^^^^^y(-,X2.XA2^'-^d'XAa)ar)foreach(A2,...,A^e^^ x . . . 
. . . x 0>gd and each (x2,...,xd)eX2 x ••• x Xd in the sense of the preceding 
Remark. This implies: 

A) For each (A2,..., Ad) є &дг x ... x P^d and each (x2,..., xd) e X2 x . . . x Xd 

the measure \{.,A2,...,Ad) (', *2 • XAz>->-> xd • Хла) аГ: 0>gi ~> L(Xl9 Y), countably ad­
ditive in the strong operator topology, has a-finite semivariation on &>gi, gx is 
integrable with respect to this measure, (gt, x2 . %Al, ..., xd . Хла) Є^(Г), and 

Ux ві d(h;A2,...,Ad) (*, *2 • XA2, — i *d • XAd) dT) = 

= i(At) (01, *2 • XAv • • -, *d • XAd) d r 

for each Ax є ff(^); 
B) for each A± e a(0>gt) we have | ( Д ь . . 0 (gl9 ...) dT: 0>g2 x . . . x0>gd ^ 

^Ďd~1\X2,...,Xd;Y), and it is separately countably additive in the strong 
operator topology. 

2) g2 Є <&l($(Au;A3,...,Aa) (ві> *> *3 • XA3, •••> *d • XAd) <*Г foT each 
(Ax,A3,...,Ad)eo-(0>gí) x 0>дъ x . . . x 0>gd and each (x3,...,xd)eX3 x . . . x Xd 

in the sense of the preceding Remark. This implies: 

• • • d) gd e &i($uu...,A4-t,.) (di, • • •> 9d-u ' ) d r ) for each (Ai> • • -> Ad-i) є 
e f f ( ^ J x .. . x o-(^>

gd_1) in the sense of the preceding Remark. This implies 
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A) For each (Au...,Aä-x)ea(^gi) x . . . x o{0>gd_) the measure 
io4i,...,4d-i,.)(0i'--->0d-i> ')аҐ:0>да^>Ь(Ха, Y), countably additive in the strong 
operator topology, has a-finite semivariation on 0>gd, gd is integrable with respect 
to this measure, (g^ є / ( f ) , and 

k ^ d ( J ^ , . . . , ^ . , , . ) ( ^ i - - - ^ c / - b - ) d r ) = iut)(gt)dT 
for each Ad є o"(^J . 

If a) holds, then the analogs of b) hold for all permutations p of { l , . . . , d]. 
1ЇХ = K is the space of scalars, and m: @> ~> L(K, Y) = 7 is a countably additive 

vector measure, then J^(m) = «^(m), see Part II. Hence we easily obtain 

Corollary 3. Let each Xh i = l,...,d be a finite dimensional Banach space. 
Then in b) of the preceding Corollary 2 we may replace the requirements #ř є 
є J^ ( . . . ) , і = 1, ..., d by the requirements gt є J{...), i = 1, ..., d. 

For the particular case d = 2, Xx = X2 = У = C — the field ofcomplex numbers, 
and a separately countably additive bimeasure ß: 0>x x ^ 2 ~> C in Definition 2.6 
in [ l ] , see also [2], the concept of the strict jS-integrability of a pair (gu g2) of &>r 

measurable functions g{. T{ -+ C, i = 1,2 was introduced by the following three 
requirements, in our notation: 

(i) g1eJ(ß(-,A2)) for each А2є0>д2, and g2eJ(l{Au.){gu-)aß) for each 
A,ea(^), 

(n)g2eJ(ß(Ax^)) for each Аг€0>ді, and gxeJ(\{.iÄ2)(-,g2)aß for each 

A2 є a ( ^ 2 ) , and 
О") Ілг 9i d(J(i4lf.) ( í i , •) d0) = fAl flf! d(J(#iila) (•, g2) aß) for each (Ai9 A2) e 

^Wx«-
By Corollary 3 above (i) o (gXi g2) є J£x(ß) o (ii), and they imply (iii). Note further 
that according to Theorem 5 and Theorem 8 below, (gi9 g2) e £?x{ß) if and only 
ЯЩ9и9г)ЛТ»Тг)]< +0 0 ' 

We shall need the following useful theorem, which by virtue of Theorem 5 is 
a generalization of Theorem VIII.5. 

Theorem 7. Let (gt) є £?Х{Г), let Aiftt є o(gP^), n = 1, 2 , . . . , і = 1, . . . , d, and let 
^i,n ~* 0for each і = 1, ..., d. ТТгегс r[(#i)> (^f,w)] "* 0 as n ~* °°-

Proof. Since Ait„ ~> 0 if and only if lim sup Л і и \ 0, we may and will suppose 
n 

that Aif„ \ 0 for each i = 1 , . . . , d. Suppose ^[(#*)> (^i,«)] > я > 0 for each и = 
= 1, 2, . . . . Put n0 = 1. By the Fatou property ofthe multiple Li-gauge Г[(#), (•)], 
see Theorem VIII.4, there is an nx > n0 such that 

fl(9i)>(Ai,no-Ai,nJ]>a. 
By the definition of f[( ')>(')]> s e e Definition VIII.3, there are uitXeS(^>

i,Xi) 
with \иіл\ й \0i\ . ХАі,п.-Лі.пх> * = !>-**> J > s u c h t h a t 

| J < r > i . i ) d T | > e . 
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Repeating the above consideration we obtain a subsequence {nk} c {n}, and for 
each fc = 2 , 3 , . . . we obtain functions иике${0>ьХ^ i = l , . . . , d , such that 
K * | á |flfi| • ХАі.пь^-Аі.пк f o r e a c h ř" == *>---> d> a n d 

|í(rť)K*)dr| > *• 
00 

Put U; = Yé U«.*> Z = *' •*•' ̂  T h e n M = k«| fo r eaCh * = 1? •"» d ' nenCe (Ui) Є 

fc=l 

є / ( Ґ ) . Since иіл = Mf. /Ai,nfc.!-iii,nfc f o r e a c n z* = 1 ' • • • > d a n c l e a c n fc = Ь 2> ••• ' 
and since v4Mk_ x — ^4i}„k ^ 0 ad A: ^ oo for each i = 1 , . . . , d, according to Theorems 
VIII.1, IX.3and IX.4we obtain that 

* < | f ( r > u M r | = | W ^ , - ^ ) ( ^ ) d r | - 0 

as к -* oo, a contradiction. The theorem is proved. 
In the forthcoming Part XIII we will prove the analog of the next result for ar­

bitrary d. 

Theorem 8. Let d = 2 and let (fuf2) є Xt(t). Then f [ ( / l 9 / 2 ) , (Tl9 T2J] < +oo. 
Proof. For i = 1, 2 put Ft = {i, є Th / ř(í ř) Ф 0} є ф**). By the assumed local 

cr-finiteness of the semivariation f on Ft n tf(^i) x F2 n cr(^2) there are F'i>r є ^ І 5 

r = 1, 2, . . . , ï = 1, 2 such that F'ir / F f as r ^ oo for both i = 1, 2, and 
f ( F i r , F2r) < + oo for each r = 1, 2, . . . . Put 

F,,r = {*,eF,, | / ž ( ř f ) | š r } n F ; , r 

for r = 1, 2, . . . and / = 1, 2. Obviously 

Щ / ь / 2 ) , {Tu Г2)] = f [ ( / x , A ) , (F l 5 F2)] £ 

^ f [ t f 1 , / 2 ) . (F1 > r , F 2 , r ) ] + f [ ( / 1 ? / 2 ) , (F x - FUr, F2 ,P)] + 

+ Д / і , Л ) 5 (^i,r, ^2 - F2,P)] + f [ ( A , A ) , (Fi - F l j P , F 2 - F2,P)] 

for each r = 1, 2 , . . . . Clearly t[(fuf2), (FUr, F2>r)] й r2 . t(FUr9 F2,P) < +oo for 
each r = 1, 2, ... . Since F£ — Fir \ 0 as r ~> oo for both í = 1, 2, according to 
Theorem 7 there is an r'0 such that f [ ( / i , / 2 ) , (F t - F1>P, F 2 - F 2 r ) ] <; f [ ( / i , / 2 ) , 
(Fx — F1>ro/, F 2 — F 2 r o ' ) ] < 1 for each r ^ rr

0. Hence to prove the theorem it 
suffices to show that there is an r0 ^ r'0 such that Г [ ( Л , / 2 ) , (Ft — F 1 P o , F 2 r o ) ] + 
+ ^ [ ( / i ' / 2 M F 1 > r o , F 2 - F 2 j r o ) ] < + o o . Suppose the contrary. Then either 
f[(fuf2)>(F1 — F l rk,F2>Pfc)] = +00 for an infinite subsequence r b fc = l , 2 , . . . 
wi thr t ^ Го,огГ[(/х . / 2 ) , ( F l r k , F 2 — F 2 r k ) ] = +ooforaninfinitesubsequencerb 

Ä: = 1,2, . . . with r1 ^ ró-
By symmetry in coordinates it is enough to suppose that f [ ( / i , / 2 ) , ( F 1 / c 5 F 2 — 

— F2jfc)] = +00 for each k = 1, 2 , . . . , where Ei>k = Firk and r t ^ r^, i = 1, 2, 
fc = 1, 2 , . . . . Put k0 = 1. By the definition of the multiple L^gauge, see Definition 
VIII.3, there is a pair (u'ltUu'2}1)eS(0>

1,X1) x S ( ^ 2 , X 2 ) such that \u'ul\ S 
й | / i | • XEi.t è rx, \и'2Л\ й \fi\ . XF2-E2tl and 

| i (FbF2-E,,^)("i ,b^2,l)dr | > ЗАГі . 

18 



Put 

00 00 

Let 9\ = U Et k n 0>x and 0>'2 = U E2>k n ^ 2 . For £ 2 є ̂ 2 and x 2 e I 2 put 
*=1 ' k = l 

W « i , i ( E 2 ) *2 = J<*t.b*2) (W1,1> *2 • XE2) d r . 

Clearly mM1 t: ^2 ~~> Ц^2> ^)> a n d it is countably additive in the strong operator 
topology. Further, since иІЛ is a 0>\ — simple function, and since the semivariation t 
is finite on 0>\ x - ^ 2 » t n e semivariation тггЫ11 is finite on 0>'2. Similarly as we showed 
that дг є ̂ i(^i,(.),(-)) *n t n e P r o°f °f Theorem 6 we conclude t h a t / 2

 є ^?i(mui,i)-
Put 

al = Л « і . і ( / 2 > ^ ) < + ° 0 -

Since |i(F1,F2-JS2,fco) (ui,i> w2,i) dJT| > 2.3 and £2,fc ^ ^2 a s & ~* °°> by the separate 
countable additivity of Г in the strong operator topology there is a k1 > k0 = 1 
such that 

lUri,B2M-*2*>) (м іД' м2,і) dT| > 2.3 . 
Put 

W 2 , 1 = M2,1 • XE2,k1-E2,k0 ' 

Let 
ř « 2 , i ( £ l ) * 1 = i(B1,F2) (*1 • %Et, W 2 , l ) d r 

for £ x є ̂ i and X! eXx. Then /U21: ^ i ^ L(Xl9 7), it is countably additive in the 
strong operator topology, and has finite semivariation iU2l on 0>\. Now similarly 
as above we obtain tha t / x e <á?i(/M2fl). Put 

bt =î„2il(fi>
Ti) < + 0 0 -

By assumption f [ ( / l 5 / 2 ) , (£1>kl, F 2 - £ 2 ^ ) ] = + 0 0 - For n = 2, 3, ... we 

proceed successively in the following way: given ( « і , и - і > " 2 , и - і ) є ^ ( ^ і » ^ і ) x 

x S(0>'2,X2)9 a„_! and Ъя-и we have ^ [ ( / ь / г М ^ і ^ . ^ ^ - E2tkn_J] = +00 
by assumption. Hence there are (uř

ín, u2t„) e S ( ^ i , Xt) x S(^2, X2) and /c„ > Л:и_1 

such that |w'M| ^ | / i | . Z E l i W K » | ^ |/2| . Zft ,^-f t*, . , and 

|W 2 )Kn,W2, n )dr | > 2 " . r ^ . 3 . ( l + ^ - O ( l + bi ) . . . . 

••••(i + y . 
Put 

« 1 , = 2~w • d . (1 + hY1 (1 + b, , - i )" 1 - WUn 

and 
U2,n = u2,n • XE2,kn-E2,kn-l • 

Clearly 
Knlu2-".(l + b,y1 (l + K^)-1. 
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Similarly as above, 
an = * (2 . i j ) ( / a . T2) < +oo and b„ = 12>„(Л, ^ ) < +oo . 

J = 1 

oo 

Obviously £ | u ? , * ( ř 0 | й |/i(ri)| < +oo for each r , eT , , for both i = 1,2. Put 
00 M = 1 

wi = Z M/,«» * == Ь 2- Then obviously wž: Tř ~> Xt is ^--measurable and |wřJ g |/; | 
n = 1 

for both і = 1, 2. Hence (uu u2) є ^ (Г) by the definition of ^ ( Г ) . Let y(Au A2) = 
= Ьь^2)("і»«2)<іГ, ( i b i j e a ^ ) x <r(^)- Then y : a ( ^ i ) x < x ( ^ ) ^ Y is 
a separately countably additive vector bimeasure, see Theorem IX.4. Put A2n = 
= £2,ки ~" Ei,kn-v n — 1> ^' ••• • Then Л2}П, w = 1, 2, . . . are pairwise disjoint sets 
from a (^ 2 ) , hence y(i7!, ^2,n) ^ 0 as n ~> oo. Let rc0 be such that |y(i7!, ^2,n0)| < 1-
Then 

3(1 + Я „ 0 - і ) < | i ( F i , A 2 , n . ) ( " l , n o ^ 2 , B o ) d r | = 
00 tlo~ 1 

= |f(FiM2,n.)(Mi - I w u - Z " 1 j ^ 2 . J d f | < 
j = no+l j - í 

00 

< ! + |f(FiA.*)( Z " l , ř " 2 , n o ) d r | + 
j = no+l 

no— 1 
+ |i(f^2,,,.)( Z " i , y , " 2 , J d r | < 

j = i 

<l+2-*bJil + bJ-*+a^, 
a contradiction. The theorem is proved. 

The analog of the next theorem for ^i(r) is evidently valid. 

Theorem 9. Let ( / i ) e Jz^ ( r ) , /o r eac/î î = 1, ..., d, let 0>\ c ^ be a ô-subring 
and suppose f'i is ^[-measurable. Denote by Г' the restriction F ' = Г: X^J ^ 
~> Ь(<?)(Х^ 7), and suppose that the semivariation Ґ is locally cr-finite on Xa(^Q-
Then (/i) є JS^(r) , a n i 

(1) W>(/Odr = W)(/0<ir 
/o r eac& (Л'г) є X a ( ^ ) . и ' řS a^S0 locally a-finite on Xa(^[).) 

Proof. Put F[ = {ti є Th /,'(i,) Ф 0} є o-(^;.), і = 1, . . . , d. By the assumed local 
o--finiteness of the semivariation Г on Xa(gP[) there are j F " r e ^ - , r = l , 2 , . . . , 
i = 1, ..., J such that F"ir S F[ as r ~> 00 for each i = 1, ..., J, and t(F"i$r) < + 00 
for each r = 1, 2 , . . . . Define F'u = {í ře Tř, |/i(r,)| g r} n F/>r, i = 1, ..., d and 
r = 1, 2 , . . . . Then (Fl) e Xe(0>% f ( F ^ ) < + oo and f [ ( / 0 , (F{,,)] й rd P{F'.J < 
< + co for each r = 1, 2 , . . . , and F'ir S F\ for each i = 1, ..., d. 

Let w-: Tž ^ Z ř be ^--measurable, і — 1 , . . . , d, and let |w-| g | /- | for each ř. To 
prove the theorem we have to show that (u[) є ^%F') and that (1) holds. Since (/•) є 
G J ^ ( r ) , we have (u[)eJ(r). Hence y : X ( F i n ^ ) ) ^ 7 , y ( ^ ) = J W l ) (u i )dT, 
is a separately countably additive vector d-polymeasure. Now? to show that (щ) є 
є S(r'), according to Corollary 2 ofTheorem IX.4 it suffices to prove that (w-. XFi>r) E 
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eJ{V') for each r = 1, 2, . . . , and that for a given r, y{A\ n F- r) = 
= \uo « . * * , J d r for each (A't) є (F', n <j^'i))> hence for each (4)eX(F' l # r n <^). 

For each i = l , . . . , d take a sequence uJ^eS(^j,Jf, .) , n = l , 2 , . . . such that 
Hi ,B^u | and |иїр П |^ |и5| . Let r e { l , 2 , . . . } be fixed. Since f[(w' f),(F' / > r)]^ 
g rd r ( F ; r ) < + co and (ttf. XF'i>r) є J^i(F), by the proof of Theorem 6 we obtain 
that 

lim . . . l i m J ( ^ ) ( u ; , , , , . ^ ^ ) d r -
nj^-oo « i ^ o o 

= l i m . . . l i m J U i ) ( w i -XF^^u'2^.XF>2,r>-'>K,na'XF>4,r)dr = . . . 
«^^•00 «2~*°0 

... = ^(ulxF'Jdr = y{A,nFl) 
for each ( i ř ) e X ( F . ř n ^ ) , particularly for each ( ^ ) e X ( F ^ n ^ ; ) . But in the 
last case we may replace dF by dF' , hence (w-. Хг'і>г) e ^AX'), and the analog of (l) 
holds, which we wanted to show. Hence ( i i i ) e / ( f ) and the analog of (1) holds for 
(u'i). Taking (u'i) = {f[) we obtain (l). The theorem is proved. 

Let us note that if F(...) (xř): X ^ ^ Y has a locally control d-polymeasure for 
each (xf) є XXÍ5 then the assertion of the preceding theorem is a consequence of 
Theorem X.13. 

We are now ready to prove 

Theorem 10. (Lebesgue dominated convergence theorem in i f^F) . ) Letfhfin: 
Ti ^> Xh n = 1, 2, ... be 0*i-measurable for each i = 1, ..., J, Zei iue sequence of 
d-tuples (/,-,„), w = 1, 2 , . . . converge Ґ-almost everywhere to the d-tuple (/f), гша /eí 
řfrere exist a d-tuple (д^е^^Г) such that |Д„ | й \di\, і = l , . . . , d , Г-almost 
everywhere for each n = 1, 2, ... . Тйега (/,.), (Д„) є ^f1(F), rc = 1, 2, ... . and 

(1) lim WAjdr = W/Odr 
ni,...,rid^-oo 

/o r eacu (Лг) є Xa(^f). 
/ / ш eacfo of the d coordinates either the convergencefi>n{ti) ^fi(ti) is uniform 

with respect to tteTh or the multiple L^gauge f[(#i)> 0-->^*-i> * > ^ + ь - ) ] : 

a(0*i) ->• [0, +oo) is continuous in that coordinate, then the limit in (1) is uniform 
with respect to (Ai) є Xa(^i). 

Proof. Without loss of generality we may suppose that the second and third 
assumptions of the theorem hold everywhere. But then (fi), (Ди) є £?і(Г), n = 
= 1, 2, ... , by the definition of J^ (F ) . 

Next, the last assertion of the theorem follows easily from the proof of Theorem 
IX.7 in [13]. 

Put Gt = {ti e Ti7 Qi(ti) Ф 0} є e(0>i), i = 1, ... , d. By the assumed local o-
finiteness of the semivariation Г on Xa(^i), see the beginning of Part IX, there 
are (0/}„) є Xč?h n = 1, 2 , . . . such that Gin s Gt as n ̂  oo for each i = 1 , . . . , d, 
and t(Ain) < + oo for each n = 1, 2 , . . . . 

Let (Af) e Xa(^i). From the definition of ^-measurable functions, see Section 1.2 
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in Part I, we immediately see that for each i = 1 , . . . , d there is a countably generated 
á-ring 0>шо such that { G ; X = i c »wo Œ &ъ a n d t n e unctions flf,,z^/i^ 
и = 1, 2 , . . . are ^ í ) U i r measurable (hence also the functions Д и . xAi and / j . %Av 

n = l , 2 , . . . are ^ í>(^0-measurable). Further, take separable closed subspaces 
00 

X\ cz Z i ? i = 1 , . . . , d, such that gfä) u U/i ,n(^) <= ̂ i for each i. Obviously, in 
n=l 

our consideration we may replace Xt by X- for each i = 1 , . . . , J. Denote by Г ( Л і ) 

the restriction Г(Аі) = Г: X(G^ n ^*,(ло) ~* ^ ( X J ; *0- Evidently the semivariation 
f(Ai)(Gi)uf(Gi) is ff-finite. Hence, according to Theorem 9, (#;) ,( / ;)>(Аи) є 

e i f ^ r ^ ) ) , л = 1, 2, ... , and on both sides of (1) we may replace аГ by аГ(Аі). 
Owing to Corollary of Theorem VIII.11 and Theorems VIII.17 and VIII.19 the 

semivariation Г(Аі):Х(ОіГ\^ІЛАі))^^0, + oo] has a controld-polymeasure, say 
Xt x . . . x l , : X ( G , n ^ ^ [ 0 , l ] . 

Now it is easy to check that an analog of the proof of Theorem 3 in [18] yields (l). 
Namely, instead of(2) in that proof, by Lemma 2 and Theorem 7 there is an integer k0 

such that 
l)(Ai-Ni-G'i,bo)(fi,m -/і)аГ(Аі)\ S. 

U 2d . Гш [(fl,), (At - N, - G ; , J ] < e/4 , 

where G-}fco = Gik n {řž є Ть |^ř(řř)| á* fc0}, a n d ^ / , f c o i s a s i n t n a t Pr°°f- By Fubini's 
theorem (Theorem 6) and the inductive assumption we obtain the analog of (3) 
from the original proof. The rest follows similarly as in [18]. Thus the theorem is 
proved. 

Since for each ^-measurable gh i = 1, ..., d, there is a sequence of ^-s imple 
functions ghm n = 1, 2 , . . . such that gitn(U) ^ 9i(h) and |flf|,«(í|)|^|flri(ři)| f o r e a d l 

tt e Th we immediately obtain 

Corollary 1. jS^(jT) с J ^ ( r ) . 

The next corollaries are also immediate. 

Corollary 2. (Lebesgue bounded convergence theorem in ^ ( Г ) . ) Let (x(. %л.) є 
e ^i(r) for each (xi) e XXt and each (A^ є X a ( ^ ) . Then the assertions of the 
theorem hold if sup ||Д„||г£ < + °o. 

i,n 

Corollary 3. (Special case ofLBCT in <5?і(Г), se Theorem 3 in [18].) Let each ofXh 

i — 1. .. . , d, be afinite dimensional Banach space, and let each 0>b i — 1, ..., d, be 
a a-ring. Then the assertions ofthe theorem hold г/sup ||Д„||гг < + 0 0 -

i,n 

Evidently, our assertion (1) of the Lebesgue dominated convergence theorem 
in і^і(Ґ) is stronger than the result of Corollary 2.9 in [ l ] , obtained for scalar 
bimeasures, see the paragraph after Corollary 3 of Theorem 6. It is an interesting 
novelty that the proof of LDCT in &x(r) requires the Fubini theorem in ^ і ( Г ) , 
whose proof requires the weaker (iterated limit) version of LDCT. 
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