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INTRODUCTION

In the case of integration with respect to an operator valued measure m: 2 —
— L(X, Y) countably additive in the strong operator topology, Z-measurable
functions f: T — X with continuous Ls-pseudonorm #i(f, *): (%) — [, + o0] form
a complete pseudonormed linear space #,(m), which shares many important
properties of the classical Z, () spaces, see Parts I1— VIL In particular, the Lebesgue
Dominated Convergence Theorem (LDCT) holds in #,(m), see Theorem I1.17.

Concerning integration with respect to a d-polymeasure I': X2; - LV(X; Y)
separately countably additive in the strong operator topology, in Theorem IX.7 we
extended the LDCT to the class #,(I') of integrable d-tuples of functions (f;) =
= (f1,-.-»/4) whose multiple L;-gauge [;-gauge I[(f:),(*)]: Xa(2;) - [0, + ]
is separately cpntinuous, see Definition 2 below. If ¢y ¢ Y, then fe & 1(m) if and
only if f is #-measurable and m(f, T) < +co. For d > 1 the analog is not true
for the class #,(I') Nonetheless, it is true for the greater class #,(I) introduced
by Definition 3. Namely, in Theorem 5 we prove the ,,if”” part, and, postponing
the case of dimensions d > 2 to the forthcoming Part XIII, in Theorem 8 we prove
the implication (f;) e Z,(I') = I'[(f.), (T)] < + oo for d = 2.

That £ (I') is the ,,right” class is confirmed by Theorem 6 (Fubini theorem in
#,(I')) and Theorem 10 (LDCT in Z(I')). As a byproduct we explain why a third
of the definition of strict MT integrability in [1] is enough, see the paragraph after
Corollary 3 of Theorem 6.

We shall use freely the notation and concepts of the previous parts, treated as
chapters, particularly the abbreviated notation from Part VIII.

THE CLASSES 2,(I') AND #,(I")

Throughout this paper, if not specified otherwise, we assume that I': X2, —
— [¥(X; Y)is a given operator valued d-polymeasure separately countably additive
in the strong operator topology with locally o-finite semivariation I" on Xa(g’i), see
the beginning of Part IX = [13].

8



Let us first introduce a useful notion.

Definition 1. For each i =1,...,d let f,,f; 2 T; > X;, n = 1,2,... be #;mea-
surable functions. We say that the sequence of d-tuples (f;,), n = 1, 2, ... converges
I-almost everywhere, shortly I'-a.e., to the d-tuple (f;) if there are sets N; e o(2,)
i=1,...,d such that (N, T,,...,T)) = ... = [(T, ..., Ty_;, N;) = 0, and
fint:) = ft;) for each t,e T, — N;, i =1, ....d.

Obviously, in our previous theorems we may replace convergence everywhere of
d-tuples of measurable or integrable functions by convergence I'-a.e.

The title of this section indicates that there are two worthwhile generalizations
of the space %,(m). Having in mind the notions from Parts I and II let us recall
that a function g: T — X belongs to & (m) if g is #-measurable and its L;-pseudo-
norm g, *): 6(%#) - [0, + o] is continuous (equivalently, exhaustive). By Corol-
lary of Theorem IL.5 then (g, T) < + oo. (Here is an elementary proof of this fact:
Put G = {te T, ¢(t) + 0}, take G, e 2, k = 1,2, ... such that G, / G and M(G,) <
< +oo for each k = 1,2,.... Define G; = G, n {teT, |g(t)| £ k}, k =1,2,....
Then G — G \ 0, hence there is a k; such that m(g, G — G;,) < 1. But then
(g, T) = m(g, G) < m(g, G;,) + 1 < k; m(Gy,) + 1 < +00.) This suggests the
following, as we shall see, ,,strong” generalization of fl(m).

Definition 2. Let g;: T; — X;, i = 1, ..., d. We say that the d-tuple (g;) belongs
to #,(I') if g, is 2 -measurable for each i = 1, ..., d, and the L-gauge I'[(g,), (*)]:
Xa(2;) = [0, + 0] is separately continuous (equivalently, separately exhaustive).
By Theorem VIIL6 then I'[(g;), (T})] < + 0.

The last fact may be again proved in an elementary way. The following lemma is
also immediate.

Lemma 1. Let (g;) € £(I'). Then:

O If (fir 920 90) €2 (I), then (fi + g1, 92, ... 94) €L (). The analogs
hold for the coordinates i = 2, ...,d.

2)If fuT;—>X;, i=1,...,d, are P-measurable and |fi(ti)| < [gi(t,-)| for
I'-almost every (t;) € XT;, then (f;) € 2 ().

3)If o Ty > K, i=1,...,d, are bounded scalar valued & -measurable func-
tions, then ((pigi)eai?l(l“). Particularly (a,-gi)e.S?l(F) for any scalars a;, i =
=1,...,d.

4) If U: Y- Z is a bounded linear operator, then (g;) € Z,(UT).

It is easy to see that Theorem IX.7, with the convergence I'-almost everywhere,
is a generalization to 5?1(1" ) of the Lebesgue Dominated Convergence Theorem
in #,(m), i.e., of Theorem IL17. By this theorem Z,(I') = #,(I'). The next theorem
is a generalization of Theorems I1.16 and V.1, i.e., of the Vitali Convergence Theorem
in &,(m).

Theorem 1. For each i =1,...,d let f,f; ,:T;— X; be P -measurable, let

i
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(fim) € Z((I) for each n =1,2,..., and let (f;,) - (f;) T-almost everywhere.
Then the following conditions are equivalent:
a) (f;) e Z(I) and L[(f:,), (4.)] = F[(f). (4))] for each (4;) € Xo(2));
b) the Ly-gauges [[(f:,), (*)]: Xo(2,) - [0, + 0], n = 1,2,... are separately
uniformly continuous (equivalently, separately uniformly exhaustive on X%,), and
) F[(fin): (4)] = T[(f:). (A))] uniformly with respect to (A;) e Xo(2);
and if they hold, then

liin Jean (fin) AT = Jiay (fi) AL

uniformly with respect to (A4;) € Xa(2,).

Proof. Clearly a) = b) by separate monotonocity and separate continuity of the
Ly-gauge I'[(f:), (*)]: Xo(2,) = [0, +0). The equivalence in b) is a consequence
of the Fatou property of the L,-gauge, see Theorem VIII.4 and also Theorem 11
in [22]. -
b)=c). Foreach i =1,...,d put F; = U {t,.e T;, fi(t;) % O}, where f; o = f;.

n=0

By local o-finiteness of the semjvariation I" on Xa(2;), see the beginning of Part IX,
there is a sequence of d-tuples of sets (F; ;)€ XP;, k = 1,2, ... such that F;, » F;
foreachi = 1,...,d,and ['(F; ;) < + oo foreachk = 1,2, ....

Owing to the Fatou property of the multiple L,-gauge, see Theorem VIIL4, we

have
f[(fi)’ (A,-)] = f[(l.fil)> (4)] = lim”inf f[('fi,nl)’ (45)]

for each (4;) € Xo(2;). Hence (f;)e Z4(I') by b). Thus I'[(f;,), (T))] < +oo for
each n = 0, 1,2, ..., where (f;,) = (f)).

For A, ed(?y) put u(4y) = sup F[(fimfom s fam) (A1, Toy..s TY)], ne
€{0,1,...}. Similarly we define p;: o(2;) > [0, + 0] for i =2,...,d. b) implies
that each p;, i = 1, ..., d, is a subadditive semimeasure in the sense of Definition 1
in [22]. Since the Egoroff-Lusin theorem, see Section 1.4 in Part I, still holds if u
is a semimeasure, for each i = 1,...,d there are sets N;eo(#;) and F;,e 2,
k=1,2,... such that u{N;) =0, F;, ~ F, — N, and on each F},, k = 1,2, ...
the sequence f; ,, » = 1,2, ... converges uniformly to the function f;.

Finaly, put Fi, = FiynF;,n{t;eT, lfi(ti)| <k}, i=1,...,d, and k=
=1,2,.... Without loss of generality we may suppose that |f;,(t;)| < 2k for each
tieFf,i=1,..dandk=1,2,....

Let ¢ > 0. Since Ff,k 7 F; — N, for each i = 1,...,d, by b) there is a positive
integer k, such that

f[(f,)( J I’F _N _F.Ih:’ jtis )]<8/
foreachj = 1,...,d. Hence

f[(f,) (Fi)] = P[(f). (T)] PI(f). (Fi— N)]
S T (Fie)] + ¢f2.
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Since the uniformly bounded sequence f;, - Xr},,» ? = 1,2,... converges uni-
formly to the function f;. s, for each i =1,...,d, and since I(F}.,) < + oo,
there is a positive integer n, such that

IPL(Fi)s (FEIT = PLOR). (FE]

for n = ny. Hence b) = c).

< g2

Trivially ¢) = a).

The last assertion of the theorem is a consequence of Theorem X.11. The theorem
is proved.

The following theorem is a generalization of Theorem ILS.

Theorem 2. Let (g;) € Z,(I'). Then there are countably additive measures
Aio(?) - [0,1], i =1,...,d, such that T[(g:), (... Tj—q, *» Tjuq, -.)]: o(2;) >
— [0. +00) is (6 — &) (equivalently (0 — 0)) absolutely A;-continuous for each
j=1....d.

Proof. Let #{(g;)} = {(f:) € XS(2, X)), |fi| < |gi| for each i =1,...,d} and
let .#{(g:)} = {@, O p(4) = o () AT, (fi) € F{(g))}}. Since @, (4) =
< I[(f:), (4] = I'[(94), (4,)] for each (f;) e #{(g:)} and each (4;) e Xa(2,), the
family .#{(g;)} of vector d-polymeasures on Xa(2;) is separately uniformly countably
additive. Now the assertion of the theorem immediately follows from the well known
result of Bartle, Dunford and Schwartz, see Theorem 1.2.4 in [3] (F[(g:), (T3)] <
< + ). The theorem is proved.

The next corollary is a generalization of the second part of the #-Theorem from
Part I. Its validitiy is obvious.

Corollary. Let the semivariation [': X2, — [0, + ] be separately continuous.
Then for each (A4;) € X2, there are countably additive measures 4; 4,: 4; N 2; —
- [0,1], j = 1,...,d, such that ['(..., 4;_y, *, A;4,,..): A;0 2; > [0, +0) is
(6 — &) absolutely 4; 4,-continuous for each j = 1,...,d. The analog holds if
each 2,,i = 1, ..., d is replaced by ¢(#;), and in both cases the semivariation " has
locally control d-polymeasure on Xa(%;).

We are now ready to prove the following generalization of Theorem V.4:

Theorem 3. Let (g;) € Z,(I'). Then for each & > 0 there is a positive integer N,
such that whenever ie{l,...,d}, f; ;; T;> X;, j=1,...,N, are ?-measurable

N
and Y |fi;| £ lgi|. then T[(...,gi=1.fi; Giv1s---) (T)] <& for at least one
j=1

je{l... N}.

Proof. Let ¢ > 0. Using theorem 2 and its Corollary, similarly as in the proof of
Theorem V.4 we obtain positive integers N;,, i = 1, ..., d with the corresponding
properties. Clearly N, = max {N;,, i€{1,...,d}} has the required property. The
theorem is proved.
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Let us again have the setting of Parts I and II. If Y does not contain a subspace
isomorphic to the space ¢y, shortly if ¢, ¢ Y, then by Theorem IL.5 each #-measurable
function g: T— X with finite L,-pseudonorm (g, T) < + oo belongs to £ ,(m).
Since, due to the nice example of Hans Weber, see Part VIII, there are Hilbert
space valued bimeasures defined on the Cartesian product of two o-rings which are
not uniform bimeasures, the analog of Theorem IL5 for £ () for d > 1 does not
holds. The idea how to define the ,,right” 31(1") came from the following simple
characterization of elements of #;(m). This theorem may be proved similarly as
Theorem 1 in [15].

Theorem 4. Let g: T — X. Then g € & (m) if and only if g is #-measurable and
each P-measurable function f: T — X with Ifl = |g‘ is integrable.

Definition 3. Let g;: T; - X;, i = 1,...,d. We say that (g;) belongs to % ()
if g; is 2 -measurable for each i = 1, ...,d, and for any 2 ;-measurable functions
fiTy—> X, i=1,..,d, the inequalities [f;| < |g;| for each i =1,...,d imply

that (f;) is an integrable d-tuple, i.e., (f;) € #(I).
Obviously Z(I') = £ (I'). Further, we immediately obtain

Lemma 2. The assertions of Lemma 1 still hold if g’l(F) is replaced by & (I).
For a 2 ;-measurable function g;: T; > X;, ie{l,...,d} and k = 1,2, ... put

Pyr = {tie Ty gi(t)| Z 1/k} 0 2,
andlet Z2,, = U Z,,,. Then 2, is evidently a é-ring and g, is Z, -measurable. We
k=1
shall use this notation as well as the following fact.

Theorem 5. Let c¢o & Y, let g;: T; > X; be P-measurable, i = 1,...,d, and let
I'l(9:). (Ty)] < +c0. Then (g;) e Z,(I').

Proof. Forevery i = 1,..., d take a sequence g, , € S(Z,, X;)such that g; ,(;) —
- gi(t;) and |g;,(t;)| 7 |gi(t;)| for each t;e T, Cleatly g,,€ S(2,,, X,) for each
n=12...Lt ' =TI: X2, - [YX;Y).

For any given n,...,n,e{1,2,...} and 4,;e0(2,,), i = 2,...,d, the mapping
(A1 x1) = Jeay (X1 - Xaps Gomps -+ > Gamg) AT, Ay € P,,, Xy € X4, defines a measure
My (g Aa) (12 e Py = L(X;, Y) countably additive in the strong operator
topology, whose semivariation on a set 4, € 2, , is bounded by k. I'[(g;, (T;)]
for all ny,...,n, = 1,2,..., and all (4, ..., 4,) € 6(?,,) X ... x o(2,,). By sym-
metry in coordinates the analogs hold for the coordinates i = 2,..., d.

Since obviously 1y ) (91, T1) < [(g9:),(T)] < +0, and ¢, & Y by as-
sumption, ¢, € &,(m, (,, ;) by Theorem IL5. Thus according to Definition 1.2 the
function g, is integrable with respect to the measure my (. .y, and {4, g, dmy ., ) =
=1im [, 9., dmy ()€ Y exists for each A, € 6(2,,), hence also for each A4, e

ny— o

€ a(2,). Since this is true for every n,,...,ng = 1,2,... and every A4;ed(?,),
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i=2,..,d, and since clearly [4, g, dmy y,y = Jiay(9:0,) AT, we immediately
obtain that (gy, g2,y ---» Gan,) €F4(I') and
§ea0 (91> G2umps > Gang) AT = 1im [, (gi0,) AT
for each n,,...,n, = 1,2, ... and each (4;) € Xo(2)).
Similarly (91, X2 - Xuys Gyms -+ > Jamg) € F1(I) and

I(A,—) (gu X2« X430 93,035 -+ > gd,nd) dr =
= hm _[(A,') (gl,np X2 . XAZ’ g3,"3’ L] gd,nd) dr

for each x, e X, and each 4, € 6(2,,), for any given nj, ..., n, and Ay, 4s, ..., Ay
This equality implies that for any given nj, ..., ngand A4, Aj, ..., A; the mapping
(A29 x2) - _‘.(A,-) (gls Xz - XAza g3,ﬂ37 LT gd,nd) drl’ AZ € '@qz’ X3 € XZ’ deﬁnes a measure
My (3.9 Py, = L(X,, Y) countably additive in the strong operator topology,
whose semivariation on a set A, €2, , is bounded by k. [[(g,),(T})] < + 0.
Continuing as above we obtain that (gy, g5, g3y ---» Jang) € F2(I'), and
j(A.-) (gu 9259335 -+ o> gd,nd) dI' = lim lim I(Ai) (gi,ni) ar
nay—o ny— o
for each ns,...,n; = 1,2, ... and each (4;) € Xa(2)).
Continuing in this manner we finally obtain that (g;) € #4I), and
fean (95)dI =lim ... Tim f(4,) (9:,,) AT

ng—>o© ni—ow
for each (4;) € Xo(2;).

Let us note that by symmetry in coordinates the analogs are valid for any permuta-
tion of {1, ..., d}. Note finally that in Theorem 10 below we show that #,(I') =
< J(I') in general. The theorem is proved.

Suppose now that each X;, i = 1,...,d. is finite dimensional. Then according
to Corollary of Theorem X.5 we have S(I') = #(I'). Further I'[(g;), (T})] < + o
for each (g;) € #(I') by Theorems VIIL2 and VIIL3. Hence we have obtained the
following

Corollary. Let each X;, i = 1,2, ... be finite dimensional and let ¢, & Y. Then
HI) = 7,(I') = L4(I).
One of our most important results is the following

Theorem 6. (The Fubini Theorem in & (I').) Let (g9;) € £ ('), let d > 1 and let d,
be a positive integer such that 1 < d, < d. Then:

0) (9 € SdI:

1) (915 o> Ga> Xay+1 - Xdgyars -+ Xa - Xaz) €F(I) for each x;€X; and A;e 2,,
i=dy +1,...,d.

2) Let (Ay, ..., As)€0(2y) x ... x o(P,;) be given. For each x;eX; and
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AjeP,,i=d; +1,...,d put

Fdl,ul,...,Aa,)(Adlﬂ» s A,,) (x41+1, s xa) =
= (5(,4,,...,,4.,;) (gia <o Gdys ) dF) (Ad1+1’ ce Ad) (xd1+1’ ey xd) =
= j(A‘) (91, ceos Gays Xai 41 Adgypys oees Xd - XA,,) dar.

Then Ty, () Pyypy X oo X Py = L70(X, 1 X Y), Tay . is separately
countably additive in the strong operator topology, and its semivariation I'y, .,
is finite valued on P, . % ... x P, for each k =1,2,.... Hence [, is
locally o-finite on Py, . X ... X P, and also on O’(.@MH) X ... x o(2,,).

3) (Gayt1s -+ 9a) € L1(Lac) for each (+) = (Ay, ..., Ay) € 6(Py) x ... x o(Py,),
Foy 5[ (@ays 15 - 90)s (A 515 -0 A)] £ P[(9)), (4,)], and
Scharssrmta (arrs -+ 90) dTa, ¢y = feay (95) dT
for each (A;) € Xo(2)), and
4) Siharrrrmnt Gais1s - 90) Wty (915> Gaps ) AL = [eay (9:) AT =
= tr,mtay G155 90) A sy (s Gav1s oo 90) AT)
for each (A;) € x 6(2;), where the d, polymeasure

5(...,,1,,,“ ..... Ad) (---,ga1+1, ...,gd)df: g’g, X . ...XP
— L(dl)(Xl, caey Xdl; Y)

—
ga,

is defined similarly as the (d — d,)-polymeasure in 2), and has similar properties
as the latter.

Proof. We now prove the theorem under the additional assumption that
I'[(g:),(T;)] < + 0. In Theorem 8 below we prove that for d = 2, (g;) € £,(I') =
= I[(g:), (T;)] < + 0. 1n the forthcoming Part XIII, Theorem 12 we will prove this
implication for an arbitrary dimension d.

Having this additional assumption we first show that the proof of Theorem 5
remains valid in this new situation. To this end we must show that g; € £,(m; (., ()
in the notation of this proof. According to Theorem 4 we must prove that f;: Ty =X
is integrable with respect to the measure mj, ., provided f; is 2, measurable
and |f1l < lg,l. Let f; be such a function.

Since (f1s Ga.m» -+ Gam) €F(I') by the definition of Z(I'), the set function
Vos Vo(A1) = §arin (1> G2mps -+ s Gang AL, Ay €0(24), is a countably additive
vector measure by the separate countable additivity of the indefinite integral with
respect to I', see Theorems IX.3 and IX.4.

Let f1,: Ty > Xy, n = 1,2,... be a sequence of &, measurable functions such
that f; , —» f; and lfl’,,| d |f1|. Since the semivariation #iy ., is o-finite on 2,
each fy ,, n = 1,2, ... is integrable with respect to my ),c)-

For A, € o(2,,) put v(4y) = [4, f1admy () =
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= Scarsany (f1s G2 s Gan)dln =1,2,..., and let

a1 ‘_)n(Al)
W) _n;o 2" 1 + 7,(Ty)

Then u: o(2,,) — [0, 2] is a subadditive submeasure in the sense of Definition 1
in [21] (7,(4,) = sup {lvn(Bl)l, B,eda(?,), By © A}, ie. ¥, is the supremation
of v,, see Definition VIIL2).

Put F = {t,eT,, fi(t;) + 0} ea(2,,). According to Egoroff-Lusin theorem,
see Section 1.4 in [5], which remains valid for the subadditive submeasure p, there
is a set N € 6(2,,) with g(N) = 0 and a sequence of sets Fy € Z,,, k = 1,2, ... such
that F, # F — N, and on each F,, k = 1,2, ... the sequence f1,, n=1,2,...
converges uniformly to the function f,. Since the semivariation 1 (.y,(.,(F) is o-finite,
without loss of generality we may and will suppose that i1y (,)(Fi) <+ o0 for
each k =1,2,.... But then, clearly, the functions f;.xmon k=1,2,... are
integrable with respect to the measure m; .., and

Safr - ameon dmy ¢ o = 1im [, f1 . dpeon dMy oy =

n— oo

= llm -j(Al ----- Aa) (fl,n . XFkUN’ gz,np cees gd,nd) ar =

= .f(Ax,...,Aa) (fl « XFON> 92 55 + -+ gd,n,g) dar = VO(AI N (Fk Y N))

for each A, € 6(2,,) and each k = 1,2,.... Since f, . Xrony — f1, and since the
indefinite integrals [f; . xp.on dmyey ) = vo(* N(Fy UN)), k=1,2,... are uni-
formly countably additive by the countable additivity of the vector measure vg:
o(2,,) » Y, fy is integrable with respect to the measure my (., and {4, fy dmy (5 ) =
= vo(4,) for each A; € o(2,) by Theorem 1.16. Hence g; € £4(m (),.), which
we wanted to show.

Thus the rest of the proof of Theorem 5 remains valid under the given assumptions
of this proof. Hence (g;) € #4(I') and

(%) fuap(g)dl = lim ... lim {4, (g;,,)dl

fp(d)y=©  mp(1)T®
(for each (4;) € Xo(2;) and each permutation p of {1,..., d}.

Now 0) immediately follows from ().

1) is clear from the definitions of 2,, and of &,(I’).

2) follows from (x) by the uniform boundedness principle and by the Vitali-
Hahn-Saks—Nikod}'/m-(VHSN)—Theorem for polymeasures, see the beginning of
Part VIIL.

3) and 4) are direct consequences of (x) and of the corresponding definitions. The
theorem is proved. '

We immediately have the following

Corollary 1. Let (gi) € Z(I'). Then the integrals on the right hand side below
exist, the polymeasures obtained are separately countably additive in the strong

15



operator topologies and have o-finite semivariations, and
S0 () AT = [, 90 d(faaz s, (9a-1s ) A(- d(feasy (920 ) -
A(fear (915 ---)dD)) )

for each (4;) € Xo(2,,). The analogs hold for all permutations of {1, ..., d} and all

decompositions of d as a sum of positive integers.
The next corollary requires the following

Remark. Let m: 2, —» L(X, Y) be countably additive in the strong operator
topology, let g: T— X be 2,-measurable, and let its L,-pseudonorm mi(g, *):
o(2y) = [0, + o] be continuous. Then Mg, T) < + oo by Corollary of Theorem
IL5 (now the simple proof at the beginning of this section does not work since the
semivariation # may take the value + oo on some sets of 2, see Section 1.1 in Part
I). Hence 2,, P < P for each k = 1,2,... by the Tschebyscheff inequality,
see Corollary of Theorem IL1. Thus 2, = o(2), hence g is Z-measurable. This
implies that g € £(m). In this way the requirement of o-finiteness of the semivaria-
tion 71 is not needed for the definition of #,(m). We use this fact in the following

Corollary 2. Let g;: T; - X; be #;-measurable, i = 1,...,d. Then the following
two conditions are equivalent:

a) (9;) e Z4(I'), and

b) the following d conditions hold:

1) 91 € L(otnrty (s X2« Xtss s Xa - Xag) AT) for each (A,, ..., Ag)e Py, x ...

. X P, and each (X,,...,x;)€X, X ... x Xy in the sense of the preceding
Remark. This implies:

A) For each (4,, ..., A)) € Py, x ... x Py, and each (x,,...,x)€ X, X ... X X,
the measure (. 4, . a0 ("> X2 - Xaps --» Xa - Xaa) A2 Py, = L(X,, Y), countably ad-
ditive in the strong operator topology, has o-finite semivariation on 2,, g, is
integrable with respect to this measure, (g1, X3 - Xy -+-» Xa - Xa,) € F(I'), and

§ac 91 (e tarnwy (55 X2« Lags -o o0 Xa - Xa,) dT) =
= j(m) (91, Xo o Xdgs oo Xd -+ XA,,) dar

for each A, € o(2,);

B) for each A,edo(?,) we have [, (91, ...)d Py, x ... X P, —
- L*"Y(X,,...,Xs; Y), and it is separately countably additive in the strong
operator topology. ‘

2) g2 € 310(/11,.,43,...,44) (91: *5 X3 - Xago oo Xa -+ XA,,) dr for each
(A5, A, ..., Ag) € 0(P,) X Py, X ... x P,, and each (x3,...,x5)€ X3 x ... x X,
in the sense of the preceding Remark. This implies:

d) da € 31(,[(14,,...,4,,_,,.) (91, s Ga-1, ) dF) for each (Al’ ceey Ad—l) €
€a(P,,) x ... x o(2,,_,) in the sense of the preceding Remark. This implies

gd-1
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A) For each (Al, e A,,_I)E o‘(.g/"gl) X ... X a(g)ya-l) the measure
Scarsstazsy @15 - Gamys *) AT Py, — L(Xy, Y), countably additive in the strong
operator topology, has o-finite semivariation on P,,, g, is integrable with respect
to this measure, (g;) € #(I'), and

§a 9a9(Jeasstacinn (915 oo amr, *) AL) = [ (4, (9:) AT
for each A, € o(2,,).
If a) holds, then the analogs of b) hold for all permutations p of {1, ..., d}.
If X = K is the space of scalars, and m: 2 — L(K, Y) = Yis a countably additive
vector measure, then J(m) = £,(m), see Part II. Hence we easily obtain

Corollary 3. Let each X;, i =1,...,d be a finite dimensional Banach space.
Then in b) of the preceding Corollary 2 we may replace the requirements g; €
eZy(...), i =1,...,d by the requirements g;e #(...), i = 1, ..., d.

For the particularcase d = 2, X; = X, = Y = C — the field of complex numbers,
and a separately countably additive bimeasure f: 2, x 2, — C in Definition 2.6
in [1], see also [2], the concept of the strict S-integrability of a pair (g4, g,) of 2;-
measurable functions g;: T; = C, i = 1,2 was introduced by the following three
requirements. in our notation:

(i) g1 € #(B(+, 4,)) for each A,e?,,, and g, € F([4,. (91, *)dB) for each
A ea(2,,).
(ii) g, € #(B(A,. *)) for each A4, €2
A, ea(2,,), and
(i) J4, 92 d(far,y (915 *) dB) = [, 91 d(fca) (+ 92) dﬁ) for each (4, 4,)e
ea(.@ ) X a(.? )
By Corollary 3 above (i) <> (95, 92) € £4(B) <> (ii), and they imply (iii). Note further
that according to Theorem 5 and Theorem 8 below, (g4, g2) € Z,(B) if and only
if B[(91, 92), (T1, To)] < +o0.
We shall need the following useful theorem, which by virtue of Theorem 5 is
a generalization of Theorem VIILS.

and gy € #([..an(*,92)dB for each

g

Theorem 7. Let (g;)e Z,(I), let A;,eo(P;), n=1,2,...,i=1,...,d, and let
Aip— 0 for each i = 1,...,d. Then I'[(g;), (4:,)] = 0 as n - oo.
Proof. Since 4;, — 0 if and only if lim sup 4;, ~ @, we may and will suppose

that 4;, \ 0 for each i = 1,...,d. Suppose I'[(g;), (4:,)] > a > 0 for each n =
=1,2,.... Put n, = 1. By the Fatou property of the multiple L,-gauge I'[(*), (*)],
see Theorem VIIL.4, there is an n; > n, such that

P[(g:), (i — Ain)] > a.
By the definition of I'[(+),(+)], see Definition VIIL3, there are u;, € S(Z;, X;)
with lui,,| = 19| - Xtsme—tgme i = 1, ..., d, such that

U(T; (ui,l) drl >a.
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Repeating the above consideration we obtain a subsequence {nk} < {n}, and for
each k= 2,3,... we obtain functions u; keS(g’,,X) i=1,...,d, such that
uis] < g4l xAi es—drm for each i =1,...,d, and

U(T«) (i) dl’| > a.
Put u; = Zu, wi=1,...,d. Then |u;| < |g;| for each i =1,...,d, hence (u;) &

e A(I). Smce Uik = Ui Xdymey—Asm fOT €aCh i =1,...,d and each k = 1,2,...,
andsince 4;,,_, — A;,, — ®adk > oo foreachi = 1,..., d, according to Theorems
VIIL.1, IX.3 and IX.4 we obtain that

a < {Jery (is) AT = |§aim = imo (113) dr| -0
as k — o0, a contradiction. The theorem is proved.
In the forthcoming Part XIII we will prove the analog of the next result for ar-
bitrary d.

Theorem 8. Let d = 2 and let (fy, f,) € £ (). Then L[(f1,f2), (Ti, To)] < + 0.
Proof. For i = 1,2 put F; = {t,e T}, f(t;) # 0} € 6(#;). By the assumed local
o-finiteness of the semivariation I' on F; n o(2,) x F, 0 6(2,) there are F;, € 2,
r=1,2,..., i =1,2 such that F;, » F; as r — o for both i = 1,2, and
P(F;, F,,) < +oo for each r = 1,2,.... Put
Fi,={tieF;, Ifi(ti)] SrinF,
for r =1,2,... and i = 1, 2. Obviously
P[(f1,£2), (T1, To)] = L[(f1. f2), (F1, F2)]
_S.. F[(flafZ)’ (Fl,n F2,r)] + f[(fl’fz), (Fl - Fl,r’ Fl,r)] +
+ F(fbfz)’ (Fl,r’ F2 - F2,r)] + f[(fl»fZ)’ (Fl - Fl,r’ FZ - F2,r)]
for each r = 1,2, .... Clearly I'[(f1,f2), (Fy F2,)] < 7* . [(Fy,, F,,) < + oo for
each r =1,2,.... Since F; — F;, \ 0 as r - oo for both i = 1,2, according to
Theorem 7 there is an r such that F[(fy, f2), (Fy — Fy,, Fa — Fy )] < F[(f1, f2)s
(Fy — Fy 4y Fy — Fy )] <1 for each r = r;. Hence to prove the theorem it
suffices to show that there is an ro = ry such that F[(fy, f2), (Fy — Fy e F2.00)] +
+ I[(f1, f2), (F14os F2 — F3,,)] < +00. Suppose the contrary. Then either
I'[(f1,f2), (Fy — Fy . F2,)] = +o0 for an infinite subsequence ry, k =1,2,...
withry; = 1y, ot L[(f; . f2), (Fymo F2 — Fa,,)] = + oo for an infinite subsequence ry,
k=1,2,... with r; = rg.

By symmetry in coordinates it is enough to suppose that F[(fy, f2), (Ei 4 F2 —
— E, ;)] = + o for each k = 1,2, ..., where E;;, = F;, and r, 21y, i = 1,2,
k=1,2,.... Put k, = 1. By the definition of the multiple L,-gauge, see Definition
VIIL3, there is a pair (uj,q,u5,)€S(?,X,) x S(2,,X,) such that |u1 1[ <

|f1| XEi, = T1s |uz 1| = |le XF,-E,,, and

lI(FlyFZ—EZ,ku) (uf 1, u54) dfl > 34r,.

lIA
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Put

, 1
ul,l = ul’l '—_"2r .
1

0 =
Let 2, = UE,;,n 2, and 2, = U E, ; n 2,. For E; € #} and x, € X, put
i

k=1 =1
mul,x(EZ) X2 = I(El,l,Ez) (ul,b X3 . XEZ) dr.

Clearly m,, ,: ?; = I(X,,Y), and it is countably additive in the strong operator
topology. Further, since u; ; is a 2] — simple function, and since the semivariation r
is finite on 2| x 2, the semivariation 1, , is finite on 2. Similarly as we showed
that g, € #,(my ) in the proof of Theorem 6 we conclude that f, € Z;(m,, ,).
Put

a, = ml‘l,l(fl’ T,) < +o.

Since | gy, ra— 2y (1,15 U2,1) dr| > 23 and E,, / F,as k - oo, by the separate
countable additivity of I’ in the strong operator topology there is a k; > ko = 1
such that

IS B2 o= Ea oy (81,15 ¥2,1) dFI >23.
Put

Uy = “’2,1 « XE2 ja—E2 k0 *
Let

Ly o(Ex) X1 = [,k (¥1 - Xg,» 42,1) AT

for Ey; € 2 and x; € X;. Then [,, : ?} - L(X,,Y), it is countably additive in the
strong operator topology, and has finite semivariation 7‘,2’1 on 2. Now similarly
as above we obtain that f; € £(1,, ,). Put

b, = 7u2,1(f1’ Tl) < +00.

By assumption F[(fy,fs), (Eyps F2 — Ezu,)] = +0. For n=2,3,... we
proceed successively in the following way: given (u ,_y, u;,-) € S(2], X,) X
x S(24,X,), a,—y and b,_,, we have I'[(f1,f2): (Ev ..o F2 — Eap,_,)] = + 0
by assumption. Hence there are (u} ,, u} ,) € S(?}, X;) X S(25,X,) and k, > k,_,
such that I“;,n = |f1i c XEi jon- v |“'2,n = ‘f2| XEs sop—E2 jon, 300

|I(Fl’pz) (u;’n, u;’n) df'] > 2” . rkn-l . 3 . (1 + a,,__l) (]. + bl) Ceen

o (L4 b,y).
Put

Uy, =2"", r,;f‘ A+ b)) (L E b)) U,
and

Upp = U, XEz2 jn—E2 kn—1 *
Clearly

[upa ] 27" (L + b)) o (1 + by_y)t
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Similarly as above,

a, = m()'iul,j)(fb TZ) < 400 and bn = 7u1,,,(f1a Tl) < +@.
Ji=

1
0
Obviously Y |u',(t;)| < |f,(ti)| < 4o for each t;e T,, for both i =1,2. Put
© n=1
u; =Y u;,, i =1,2. Then obviously u;: T; —» X; is #-measurable and |uil < If,.l
n=1

for both i = 1, 2. Hence (uy, u,) € #(I') by the definition of £,(I). Let y(4;, 4,) =
= fas 4 (g, u5) AT, (A4, Ay) € 6(2)) x o(P,) Then y:o(P)) x o(P5) > Y is
a separately countably additive vector bimeasure, see Theorem IX.4. Put 4, , =
=Eyu, — Ezp,_,n=1,2,.... Then 4,,, n =1,2,... are pairwise disjoint sets
from o(25), hence y(Fy, A, ) > 0 as n — 0. Let n, be such that [p(Fy, 4, ,,)| < 1.
Then

3(1 + ay-q) < Ij(FlsAZmu) (4105 %2,m5) dl"] =

no—1

0
= |§eri,dzme (1 = Z+1u1,f - _Zl'“l,j’ s ) AT <
=

J=no

[ee)
<l+ H(Fx,Az,nno)( Y Ut U ) dF| +
j=no+1
no—1

0

+ [ferits ( Zl Uy, Uz m) AT| <
=

<1+ 2—"obn0(1 + b"o)—l + o1,

a contradiction. The theorem is proved.
The analog of the next theorem for QI(F) is evidently valid.

Theorem 9. Let (fi)e £ ('), for each i = 1,...,d, let Z; = P, be a S-subring
and suppose f; is P-measurable. Denote by I' the restriction I'" = I': X?; -
— L(X;; Y), and suppose that the semivariation I is locally o-finite on Xo(2}).
Then (f;)e Z4(I"), and

(1) Seary (F) AT = Jeap (f7) 4T
for each (4;) € Xa(2;). (I is also locally o-finite on Xa(2}).)

Proof. Put F; = {t;e T;, fi(t;) + 0} e o(2}), i = 1, ..., d. By the assumed local
o-finiteness of the semivariation I' on Xo(2}) there are Fj,e?, r=1,2,...,
i =1,...,d such that F{, ~ Fias r — oo for each i = 1,...,d, and ['(F],) < + o0
for each r = 1,2,.... Define F;, = {t,e T, |fi(t)] S r}nFi, i=1,....,d and
r=1,2,.... Then (F;,) € Xo(2;), [(F;,) < +o0 and I[(f}), (F;,)] < ' I(F;,) <
< +4oo foreach r = 1,2,...,and F;, » Fiforeachi=1,...,d.

Let uj: T; - X; be #;-measurable, i = 1, ... d, and let lu’il = f,fl for each i. To
prove the theorem we have to show that (u}) € #(I'") and that (1) holds. Since (f}) €
e &Z,(I'), we have (uj) e #(I'). Hence y: X(F;n o(2,)) - Y, y(A4;) = [(a, (u3)dI,
is a separately countably additive vector d-polymeasure. Now, to show that (u}) €
e #(I'"), according to Corollary 2 of Theorem IX 4 it suffices to prove that (u} . x, /) €
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e A(I'") for each r = 1,2, ..., and that for a given r, (4, F},) =

= f(asy (ui. xp+,,) AT for each (A7) € (F; 0 o(2;)), hence for each (4})e X(F;, n 2)).
For each i =1,...,d take a sequence u;,e S(?},X;), n=1,2,... such that

uj,—>u; and |uj,| ~ |[u}]. Let re{1,2,...} be fixed. Since I[(u}),(F;,)] <

< rI(F;,) < + o and (u}. xp,,) € Z4(I), by the proof of Theorem 6 we obtain

that

lim ... lim [, (Wi, - 2pr,,) A0 =

ng— o ny—oo

. . , , ,
= lim ... 1im fog (U Xy Wany - XEva s oo Wang - Xprg,) AT = ...

ng— o  ny—w

oo = Jeap (Wi xpe, ) AT = 9(4; 0 FL,)

for each (4;)e X(F;, n 2,), particularly for each (4;)e X(F;,n 2}). But in the
last case we may replace dI'" by dI”, hence (u;. gz, ,) € #I"), and the analog of (1)
holds, which we wanted to show. Hence (u}) € #(I"") and the analog of (1) holds for
(u}). Taking (u}) = (f7) we obtain (1). The theorem is proved.

Let us note that if I'(...)(x;): X2; > Y has a locally control d-polymeasure for
each (x;) € XX;, then the assertion of the preceding theorem is a consequence of
Theorem X.13.

We are now ready to prove

Theorem 10. (Lebesgue dominated convergence theorem in Zy(I').) Let fi, fi,:
T; > X;, n=1,2,... be ?;-measurable for each i =1, ...,d, let the sequence of
d-tuples (f,-,,,), n =1,2,... converge I'-almost everywhere to the d-tuple (f;), and let
there exist a d-tuple (9;)e £4(I') such that |f;,| < |gi|, i =1,...,d, I'-almost
everywhere for each n = 1,2, .... Then (f}), (fi,)e £4(I'),n =1,2,.... and

(1) im  fey (fin) AT = fa, (fi) 4T

for each (4;) € Xa(2,).

If in each of the d coordinates either the convergence f;,(1;) = fi(;) is uniform
with respect to t,e T;, or the multiple Li-gauge I'[(g:), (..., Ti=1, *, Tixys ---)]
o(2;) = [0, + ) is continuous in that coordinate, then the limit in (1) is uniform
with respect to (4;) € Xo(2,).

Proof. Without loss of generality we may suppose that the second and third
assumptions of the theorem hold everywhere. But then (f;), (fi.) € Z4(T), n =
= 1,2,..., by the definition of £ (I').

Next, the last assertion of the theorem follows easily from the proof of Theorem
1X.7 in [13].

Put G; = {t;e T, g(t;) = 0} eo(2,), i = 1,...,d. By the assumed local o-
finiteness of the semivariation I on Xo(2;), see the beginning of Part IX, there
are (G;,) € X2, n = 1,2, ... such that G;,, » G;as n > oo foreach i = 1,...,d,
and I'(4;,) < +o foreachn = 1,2, ....

Let (4;) € Xo(2;). From the definition of #-measurable functions, see Section 1.2
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in Part I, we immediately see that for each i = 1, ..., d there is a countably generated
o-ring 24, such that {G, )=, = P4y © 2, and the functions gy, Xap i
n=1,2,... are 2;,,-measurable (hence also the functions f;, - x4, and fi. X4,
n=12,.. are & i,(A‘)—measurable). Further, take separable closed subspaces

0
X< X, i=1,....d, such that g(T;) U U f;,(T;) = X} for each i. Obviously, in
n=1

our consideration we may replace X; by X for each i = 1, ..., d. Denote by I' 4,
the restriction I'¢4y = I': X(G; 0 2; 4,) = LY(X}; Y). Evidently the semivariation
F4o(G)) < I(G,) is o-finite. Hence, according to Theorem 9, (g,), (f:), (/.)€
€ Zy(I'y), n=1.2,..., and on both sides of (1) we may replace dI' by dI'(4,).

Owing to Corollary of Theorem VIIL.11 and Theorems VIIL.17 and VIIL.19 the
semivariation f(,,‘.): X(G;n 2;an) — [0, +o0] has a control d-polymeasure, say
Ay X X A X(Gin 2y 4) = [0, 1].

Now it is easy to check that an analog of the proof of Theorem 3 in [ 18] yields (1).
Namely, instead of (2) in that proof, by Lemma 2 and Theorem 7 there is an integer k,
such that

|faimNi=Gren Fime = Fi) Al ap| =
<28 Ty [(9:),(4i = Ni = Gip,)] < ¢4,
where G

ko = Gix {ti€ Ty, |g(t;)| £ ko}, and G, 4, is as in that proof. By Fubini’s
theorem (Theorem 6) and the inductive assumption we obtain the analog of (3)
from the original proof. The rest follows similarly as in [18]. Thus the theorem is
proved.

Since for each 2 ,-measurable g;, i = 1, ..., d, there is a sequence of 2;-simple
functions g;,, n = 1,2, ... such that g;,(t;) > g,(;) and |g,»,,,(ti)| /‘]gi(t,.)l for each
t; e T;, we immediately obtain

Corollary 1. Z(I') = #,(T).
The next corollaries are also immediate.

Corollary 2. (Lebesgue bounded convergence theorem in Z,(I).) Let (x;. x4,) €
e Z(I) for each (x;)e XX, and each (A4;) € Xo(2;). Then the assertions of the
theorem hold if sup “fi’,,”Ti < +o0.
in

Corollary 3. (Special case of LBCT in .Z(I'), se Theorem 3 in [18].) Let each of X,
i =1....,d, be a finite dimensional Banach space, and let each ?;,i = 1,...,d, be
a o-ring. Then the assertions of the theorem hold if sup ||f; .| r: < +o0.

Evidently, our assertion (1) of the Lebesgue dominated convergence theorem
in #,(I') is stronger than the result of Corollary 2.9 in [1], obtained for scalar
bimeasures, see the paragraph after Corollary 3 of Theorem 6. It is an interesting
novelty that the proof of LDCT in %,(I) requires the Fubini theorem in &,(T),
whose proof requires the weaker (iterated limit) version of LDCT.
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