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INTRODUCTION

The spectrum of a linear operator T can be divided into subsets in many different
ways, depending on the purpose of the inquiry. For the study of spectral subspaces
(the precise definition of this and other terms used rather freely in this introduction
may be found in the main body of the paper), i.e. the set of points A for which the
operator T — A is not a surjection has proved quite useful (cf. e.g. ref. [8], [9]).

This paper studies the basics of this concept and relates it to local spectra and to
algebraic subspaces (surjectivity spaces) Er(F); moreover, the relationship between
this class of subspaces and the class of analytic spectral subspaces X(F) is in-
vestigated.

The urge to study connections between the E; and the Xy spaces derives from
automatic continuity: the E; spaces are defined in algebraic terms and are thus
partiéularly well suited to situations where continuity of certain linear maps is not
assumed. On the other hand, as the X spaces are analytically defined, their structure
is much more readily accessible to analysis. If the two classes can be shown to co-
incide for a given T, then stronger conclusions are at hand. This is illustrated quite
well in for instance [5, 6, 7].

Here we study the concepts mentioned in their own right. To begin with, the
surjectivity spectrum o(T) of T is introduced. If T is bounded on a normed linear
space X then o (T) is a non-empty subset of the spectrum o(T). If X is complete
then o(T) is the union of all the local spectra o7(x) (as x ranges over X).

A decomposability of T expressed in terms of surjectivity spectra is formally
weaker than the usual decomposability, but we show immediately that in fact the
two concepts coincide.

We then introduce the surjectivity spectra, here most conveniently defined in

1) Much of this work was done while the authors participated in the Semester on automatic
continuity and Banach algebras, spring 1987 at the University of Leeds. The support of the
UK Science and Engineering Research Council is gratefully acknowledged.
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terms of surjectivity spectra. These spaces are identified for a class of operators
which includes the generalized spectral operators. The formula is

Ef(A) = Npew a(T — A" X, forany A<= C.

An analytic spectral subspace X5(A) is always a subspace of the corresponding
Ef(A), but for well-decomposable operators the two classes are intimately related,
as shown in Proposition 4. This result is best possible, in a manner specified.

The last part of the paper is concerned with the consequences of closedness of
ET(F), for a closed set F. For instance, if F contains the set where the single valued
extension property fails, then Ef(F) is spectral maximal. Closedness of E(F) alone
is sufficient for coincidence with X4(F).

For a linear operator T on a complex vector space X we define the surjectivity
spectrum

ofT; X):={AeC|(T - 2) X + X}.

If the context is clear we usually write just o(T). The surjectivity spectrum has
been called other things by other authors, e.g. approximate defect spectrum in [3],
but terminology does not appear to be standard, and as this is clearly a purely
algebraic notion, we shall stay with the term surjectivity spectrum. Nevertheless, in
this paper we shall concentrate on the bounded linear operators. In this setting it is
easy to relate the surjectivity spectrum to the spectrum o{T).

Lemma 1. If T is a bounded linear operator on a normed linear space X then
o(T) = o(T). If X is a Banach space then oT) is a compact set containing the
topological boundary of o(T); in particular, o(T) is non-empty and o(T) < o(T)"
(where ~ denotes polynomially convex hull).

Proof. The first claim is trivial. The second is a standard application of the open
mapping theorem, cf. e.g. [4]. The third claim is standard topology, once we know
that o(T) contains the boundary of o(T).

Thus, if o(T) and o(T) are different then o(T) is obtained from o(T) by filling in
one or more of the bounded components of the complement of o (7). But more can
be said: recall that if T is a bounded linear operator on a Banach space X and if
x € X then the local resolvent set or(x) is

or(x) := {4 e C: there exists a neighbourhood N, and a holomorphic function
fiN; - X so that (T — p) f(u) = x for all peN,}

and the local spectrum of x is o7(x) := C \ g¢(x). We have the following
Lemma 2. If T is a bounded linear operator on the Banach space then
O's(T ) = Usex Ur(x) >
and {x| oy(x) = o(T)} is of the second category in X.

Proof. If A ¢ Usex 02(x), then A € og(x) for every x € X, hence T — 1 is surjective.
Thus A ¢ o(T). The converse is, like parts of Lemma 1, a consequence of the open
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mapping theorem: if A ¢ o(T) then T — 1 is an open mapping of X onto X, so there
is a constant C € R, so that for every x € X there exists y € X with (T — 2)y = x
and |y| < C|x|. Given x,€ X, we may choose (x,) so that (T — A)x,+; = X,
and ||x,+] < C|x,]|,n =0,1,2,....Onthe opendisc {|A — u| < C™*} the formula

f(ﬂ) = Z:J:o xn+1(.u - '1)"

defines a holomorphic function for which

(T—wfw) =T - mfw + (- wfly =

= Do Xt — A = Yoy x(p = A = %o,
for any p with |4 — 2| < C™'. This shows that A € g(x,) and since x, is arbitrary
this part of the proof is done.

To show that the set {x € X| o7(x) = o,(T)} is of the second category in X we

shall follow the same argument as in [9]. Let .# be a countable dense set in o(T).
Since (T — A) X + X for Ae 4 it follows that (T — 1) X is of the first category

in X and so is the set Useu(T — 4) X. If x ¢ U (T — 2) X then A < oy(x) and,
consequently, (T) = M~ S oy(x).

Example. Consider the left shift L on ¢! := ¢'(N). This operator has spectrum
equal to the unit disc, but surjectivity spectrum equal to the unit circle: if A is a com-
plex number with |1| < 1 and we consider the equation (L — ) (,) = (x,), where
(x,) € ¢ is given, then y,+; = Ay, + x, mcans that

Vor1 =AYy + Yoo MPx,-, for n=1,2,....
Since (A?) e ¢! a standard argument involving convolution shows that the second
term on the right hand side of the last equation is the general term of an element
in #*. Hence L — A is onto £* for each 4, || < 1.
What happens here is actually typical of the way in which the holes are filled in

when we pass from o(T) to o{T). To see this, we need to introduce the analytic
residuum S(T):

S(T) := {AeC| for every neighborhood N, there is a neighborhood N = N,
and a non-zero holomorphic function f: N — X satisfying (T — p) f(p) = 0}

Note that in contrast with [9] we define S(T) to be open. Clearly, S(T) = Sy (for
the definition of this latter set, see [9]) and S(T)~ = Sy.

Essentially the same open mapping argument as before then yields the following
Lemma 3. If T is a bounded linear operator on a Banach space X then
o(T) = S(T)u o(T).
In particular, o (T) contains the topological boundary of S(T).
Proof. If A€ S(T) then every neighborhood of A contains eigenvalues of T this

vields the inclusion 2. For the inclusion <, suppose A ¢ S(T). Refer to the proof
of Lemma 2 and the notation used there. Take x, = 0. Sinice 1 ¢ S(T), f = 0 in
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a neighbourhood of 4, hence x; = 0. Thus T — A is 1-1 and, since A ¢ o(T), also
onto, so is invertible; thus A € ¢(T). The last claim is obvious, since S(T)~ < o(T)

If S(T) = 0 then T is said to have the single valued extension property (SVEP)
Thus we this obvious corollary

Corollary. If T has SVEP then o(T) = o(T).

This corollary allows us to give a formally weaker condition for decomposability
of the operator T by replacing the spectrum by the surjectivity spectrum. One part
of the argument is conveniently singled out as a general lemma.

Lemma 4. Suppose Z < X is a closed T-invariant subspace of the Banach space X.
Then o (T | Z)" < o(T)".

Proof. If 6 denotes topological boundary then by Lemma 1 o(T)" = o(T)" =
=(60(T))". Moreover, since 6o(T | Z)(for any T-invariant Z) is a subset of the ap-
proximate point spectrum we get

o{T| Z)" = (6o(T| Z))* < o(T)" = o(T)".

Proposition. If a bounded linear operator T on a Banach space X satisfies the
following: for every open cover G, G, of C there are closed T-invariant subspaces
Y, and Y, such that

X=Y +Y,
and
o(T|Y)<S G, i=12,
then T is decomposable.

Proof. By the Corollary just stated it suffices to show that T has SVEP. Take an
open cover G;, i = 1,2, of C with G, polynomially convex (this means that for every
every compact set K = G, with polynomially convex hull K* we have K" < G,).
Suppose « € Gy \ G, and x € X are given such that (T — &) x = 0; we claim that
x € Yy. Write x = y; + y, with y; € ¥;, i = 1,2. By Lemma 1, o(T | ¥,) < G,, hence
(T — a) | Y, is invertible. Consider the T-invariant subspace ¥; N Y,. By Lemma 4,
o(T| ¥, nY) < Gy, hence (T — a) | ¥, N Y, is invertible as well. But (7 — o) x = 0
implies that (T — a)y, = —(T — «) y,, hence (T — ) y,€¥; nY, and y, =
=(T - a)| Yy nY,)"" (T — ) y, € ¥;. This shows that x e ¥.

Suppose now that x{ ) is a non-zero holomorphic function defined on an open
connected set G = C with values in X and suppose (T — «) x{«) = O for all x e G.
A standard analytic continuation argument shows that if x(«), for infinitely many
different o € G, belong to a given closed linear T-invariant subspace Z then x(G) < Z.
Let C be covered by two open halfplanes H; and H, chosen so that G n H; and
G n H, are both non-empty. Two applications of the above shows that G < H; n H,
Since the strip H; n H, is arbitrary, this shows that x( ) = 0.

We now come to the concept that will dominate the rest of this paper, namely
that of the surjectivity spaces E¢{(F). These spaces go back to [4] where their signifi-
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cance in automatic continuity was first exploited. This work has been pursued in
[6,5, 1, 8]. In terms of surjectivity spectra the following definition. is natural.

Definition. Let T be a linear operator on a complex vector space X. Let lat (T)
denote the collection of T-invariant subspaces of X. Let A = C. Then

Ef(A) := span {Yelat(T) | o(T]Y) < 4} .

It is straightforward to check that E4(A) is the largest T-invariant subspace of X
for which the surjectivity spectrum of T is a subset of A. Equivalently, Ef(4) is the
largest T-invariant subspace of X on which all restrictions T — A, A ¢ A, are sur-
jective. This latter characterization is the usual definition.

Evidently, each x, € Er(4) and each 1 ¢ A allow the choice of a chain (x,) of
preimages in Ex(A): for each n = 0 there is x4, € E(4) such thatx, = (T — 1) X, ;.
It is easy to see that the converse also holds.

Proposition. Let x, € X and A = C be given. Suppose that for each a ¢ A there
exists a chain (x,(a)) such that x,() = (T — o) x,44(¢), n = 0,1,2,... (here of
course xo(et) = X, for each a ¢ A). Then x, € Eg(A).

Proof. Fix @ ¢ 4 and let x,, : = x,(«) be a chain of preimages, as above. Let M :=
i = spany ,so(T*x,). Clearly M is T-invariant and M < (T — «) M. Thus, by [8],
xo€ M < Ef(C\{a}). But then xo € Nyes Er(C\{0}) = E(4).

This ~observation allows the introduction of a purely algebraic notion of local
spectrum: Say that e C is in the algebraic resolvent of x, (with respect to T)if
there is a chain (x,) such that x, = (T — 1) x,4y, n = 0,1,2,.... Note that Ae
€ o7(x) if and only if there is such a chain for which |x,||'/" is bounded. Take the
algebraic local spectrum of x, as the complement of the set just introduced. It is
obvious that the algebraic local spectrum of x, may be characterized as the smallest
set A = C for which x, € Eg(A4).

In some instances simple characterizations of Eg-spaces are available. Here is
a sufficient condition that Ep-spaces are ‘‘large”, i.e. countable intersections of
ranges of the operator 7.

Lemma. Let T be a bounded linear operator on a Banach space X for which
ker T" = ker T"*! for some ne N. Then

Ef(C\{0}) = N2, T'X .
Proof. Letting ¥ := %; T*X we shall show that
Ef{CN{0}) € Y € Er.(C\{0}) = Ef(C\{0}).

The inclusion on the left is obvious from the definitions of Ef{C \ {0}) and of Y. The
inclusion on the right is a consequence of this observation: with Z := ET.(C \ {0}

Zo2TZ2T22..2T"Z=2

so that Z < E-(C\{0}), by maximality.
To show that ¥ < Er«(C \ {0}), observe first that ¥ = ;% (I™)* X and second that
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ker (T")* = ker T". Thus there is no loss of generality in assuming that n = 1, so
that ker T = ker T?. Since TY < Y, we have to show that ¥ < TY. Let x = T"y, € ¥,
n=1,2,... and note that 0 = T*(T" 2y, — I""'y,,,) for n = 2,3, .... Hence
T" %y, = T" " 'y,, eker T? = ker T so that T" 'y, =Ty, ., n=2,3,.... Let
the constant value of this latter sequence be y. Evidently y e Yand Ty = T (T 'y, =
= T"y, = x. This completes the proof.

Corollary. Let T be a generalized scalar operator. Then
Ef(A) = Npen,zga(T— 2" X forany A< C
In particular this holds if T is a normal operator on a Hilbert space.

Proof. It is sufficient to show that ker " = ker T"*! for some neN. If T is
generalized scalar then there exists an n such that Eg({A}) < ker (T — )" (cf. e.g.
[10] and [6]). On the other hand, ker (T — Ay < Ef({A}) for all k = 0. Thus
ker (T — A)* = ker (T — A)" for k = n.

In describing the surjectivity spaces, and in light of Lemma 2, it is also relevant
to introduce here the Xg(A)-spaces:

Definition. For a bounded linear operator T on a Banach space X and for 4 = C
Xr(4) := {x e X| oy(x) = 4}
It is immediate from the definition that X;(4) is a linear subspace of X; also,

Xy(A) € lat(T) for any subset A = C. The proofs are identical to the classical ones
[2, Proposition 1.1.2]. Moreover, as pointed out in [5, 8],

Xy(d) < Ef(4),
because o (T; Xg(4)) < A4, for any 4 = C. Additionally, if A; < 4,, then Xz(4,) =
S Xg(4,) and Ef(4,) S Ef(4,). Note also that it is an immediate consequence of
Lemma 2 that X7(4) = Xg(4 n o(T)) for any subset 4 < C.

The precise relationship between Xz(4) and E(A) for a given 4 < C remains
unknown, but we can offer the following partial answer. A bounded linear operator T
on a Banach space X is said to be well-decomposable [1] if for every open cover
U, V of C there is a linear operator R on X, closed T-invariant subspaces Y, Z of X
such that o(T|Y) S U, o(T|Z) < V, RX< Y, (I - R) X < Z, and an integer n
for which C(T)" R = 0, where C(T) R := TR — RT. We have the following

Proposition 4. Let T be well-decomposable and let F < C be closed. Then

Ex(F) = Nu=r (Xx(U) + Ex(9))
where U ranges over all neighbourhoods of F.

Proof. Since Xg(U) + Ef(0) € E(U) and since Ny=y Ex(U) = Ef(F) [5], the
inclusion 2 is immediate. For the converse, let U be an open neighborhood of F
and choose R as in the definition of well-decomposability, corresponding to the
open cover U, C\ F. Then REf(F) = RX < Y and since Y is closed and o(T | ¥) € U
we get REZ(F) < X7(U). On the other hand, by [7, Corollary 1.2] REf(F) € Ex(F),
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hence (I — R) E¢(F) S Ef(F) and since (I — R) E¢(F) S Z < E{(C\ F) we get that
(I — R) Ef(F) € Ef(F) 0 Ef(C\F) = Ef(0), hence Ef(F) = RE((F) +
+ (I — R) E¢(F) = Xf(U) + Ey(0). This proves the other inclusion.

This cannot be improved to Ef(F) = X¢(F) + Ef(0), even for the smaller class
of super-decomposable operators. These are defined as the subclass of the well-
decomposable operators for which n in the definition can be taken to be 1. We have
the following concrete example.

Proposition 5. There is a super-decomposable operator T on a Hilbert space H
for which E{({0}) + X7({0}) + Ef{0).

Proof. On a Hilbert space H, let T, be a quasi-nilpotent operator with dense
Er,(0), e.g. Ty can be a weighted left shift on £3(N), weighted so that o(T,) = {0};
in this case it easy to see that T, maps the subspace of finitely supported elements
of #2 onto itself, hence E,(9) is indeed dense. Take a sequence {a,} of strictly positive
numbers converging to zero and let

T:= @2 (T + o)

on the Hilbert space H := @2, Hy. Then the spectrum o(T ) is a convergent sequence
and hence [6, p. 40] T is super-decomposable.

Let Y:= @2, Eg,(0). We claim that ¥ < E4({0}). Let « € C be non-zero and let
x = @72 x;€Y; choose y; € Er,(0) so that {Ty — a; — ) y; = x; fori =1,2,....
Since a; — 0 we can find ny € N so that (T, + «; — «)~ " is defined for i > n,. Note
also that there is a constant C € R, so that |(T, + «; — «)”*| < C for all i = n,.
Since y; = (To + a; — @) ™' x; for i = ny we get 3 s, |12 < C* Yisn, | x| and
hence y := @2, y;€Y and (T — ) y = x. This shows that ¥ < (T — )Y for
every o = 0. Since the inclusion (7 — ) ¥ < Y is trivial we have shown that ¥ <
< Ex({0}).

On the other hand we next show that ¥ is not contained in Ef(0). For « > 0 it is
obvious that |(T, + )”*|| 2 a™* and since Epy(0) is dense in H, we can find
X, € E¢(0) for which ||x,]| < 1and (T + «)™* x,| = (2«)*. Pick a square summable
subsequence {a,} and define y,:= x,/|(Ty + o;)"* x;| for ie{n} and y; =0
for all other values of i. Then

Zlyil? =2 xlP(To + )™ x> £ X dop, < 0.
This shows that y := @2 y; € Y. However, y is not in the range of T, because if
y =Tz for some z = @, z; then y; = (T, + ;) z; so that for ie{n} z;, =
= (To + o;)~! y;. By definition of y;, ||z;]| = 1 for i e {m},s0 Y |z;* = co.
If eeR, and Pe((-Bxi) != @|4<ex1 then P, is a spectral projection and by
[2, Proposition 1.3.10 and Corollary 1.3.4] X4({0}) < P.H for each ¢ € R.,. Hence
Xr({0}) € Neso PH = {0} .

Since Er(0) = Xr({0}) + Ef(0) and since ¥ < E({0}), but Y is not a subset of

736



E(0) it follows that Er({0}) + X7({0}) + Ex(0).

Remark. Suppose T possesses the following property which might be termed
strong algebraic decomposability: for every closed set F < C and every open cover

U,VofC Ef(F) = [Ex(F) 0 Xy(U)] + [Ex(F) 0 X4(V)] .

(Note that the proof of Proposition 4 shows that every well-decomposable operator
has this property). Then
Ef{F) = Nu=r (X2(U) + E(0))
where U ranges over all neighborhoods of F. The proof of this is simple: by as-
sumption, if U 2 F is an open neighborhood then
Ef(F) = (Ex(F) n X(U)) + (Ef(F) n Xz(C~\F)) =
S X(U) + (Ex(F) 0 Ef(C\F)) = Xg(U) + Ef(0).

As a corollary we obtain that if T is,strongly algebraically decomposable and if
Er(0) = {0} then Ey(F) = X4(F) for all closed sets F = C.

Without some kind of decomposability it is not sufficient to assume that Ef{(0) =
= {0} in order to conclude that Ef{(F) = X4(F). But it remains an open question
whether for a (strongly) decomposable operator T with E-{0) = {0} we have E4(F) =
= X¢(F).

If, however, E¢(F) is known to be closed then we shall show equality in general
(proposition 10 below). If Ef(0) = {0}, this also means that Eq(F) is spectral maximal
[5, Proposition 3.3] Recall that a closed linear subspace ¥ < X is called spectral
maximal if Y is T-invariant and if for any other T-invariant subspace Z < X, if
oT|Z)< o(T|Y) then Z< Y.

It is easy to see that if T has SVEP and if F = C is closed then Eg(F) is spectral
maximal if and only if Eq(F) is closed: obviously, if T has SVEP then S(T| Z) = ®
for any closed T-invariant subspace Z, so if Ef(F) is closed and if Z is a closed
T-invariant subspace with o(T | Z) S o(T | Ef(F)) then o(T; Z) < o(T; E¢(F)) SF,
hence Z < ET(F ). This observation will be generalized below, in Corollary 8.

Example. Without SVEP closedness of Ex(F) is no longer sufficient for spectral
maximality: consider the left shift L on X := ¢!, as in the previous Example. Let C
denote the unit circle; then E;(C) = X. Now let Z be any non-zero Banach space
andletY := X @ Z.Define T: Y - Y by T(x, z) := (Tx, 0) for all (x, z) € ¥. Evidently
o(T) = D, the unit disc. Moreover, Ef(C) = X ® {0}. But since o(T | Ef(C)) = D,
E4(C) cannot be spectral maximal.

We can pursue the connection between closedness of E(F)and spectral maximality
a bit further. We have the following improvement of [5, Proposition 3.5). First
a lemma.

Lemma 6. S(T) = {A € C: there is a neighborhood N, and a holomorphic function
J: N, — X without zeros for which (T — p) f(r) = 0 on N,}.
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Proof. Denote by .# the set on the right. Clearly # < S(T). To show the other
inclusion, take 1 € S(T) so that there is a connected neighborhood G of 4 and a non-
zero holomorphic function f: G — X such that (T — u) f(¢) = 0 on G. Since f is not
identically zero and G is connected we can find a minimal m for which f™(1) = 0.
Differentiation (n times) of the equation (T — p) (1) = 0 yields

fO) = 1)(n + 1) (T — p)f®*(y) for n=20 and peG.
The sequence
Xy 1= mlf(m + n — 1) ()
satisfies x, = (T — A)X,+; (n >0) and (T — A)x; = 0. Since lim sup |x,|'" =
= limsup |m!/(m + n — 1)1 fOF=DQ)|'" < o0, the series

g(u) 1= Yoy x,p — A1

converges for |u — A| < (lim sup ||x,["/")™" and

(T—wg(w) = (T= DLy xp — A7 = Yy x(u — A =
= Zroto=2 xn—l(:u - 1);1——1 - z;o=1 xn(l"’ - 'I)n =0.
Moreover, g(1) = x, = f™(4) + 0. Thus N, may be chosen so that g has no zeros
in N,.

Proposition. Let A = C be any subset and let o(T | E(A)):={AeC|T — 4 is
not a bijection on Ef(A)}. Then S(T) < o(T | E¢(4)).

Proof. We may suppose S(T) + 0. If A e S(T) then, by Lemma 6, there is an
open set G containing A and a holomorphic function f: G —» X\ {0} which satisfies
(T - 1) f(r) = 0 on G. Now define

o) := {;f 81)) = F)f( = 2 A %
Then f(u) = (T — p) g(n) for every peG; this shows. that G < or(f(4)), hence
a1(f(4)) 0 G = 0. Since (T — 1) f(4) = 0, f(A) € Ef(G) by absorbency [5, Proposi-
tion 2.2] and so f(4) € Xr(o7(f(%))) N Ex(G) = E1(0) < Eg(A). Thus T — 4 is not
1-1 on Ef(4), so that 1 € o(T | E¢(A)).

Lemma 7. Suppose Ef(F) is closed. Then
S(T) = o(T | Ef(F)) = Fu S(T).

Proof. This follows immediately from Lemma 3, since a(T | Ef(F)) < F and since,
by (the proof of) the above Proposition, S(T) = S(T | E¢(F)).

Corollary 8. If E¢(F) is closed and if S(T) < F then Ef(F) is spectral maximal.
Proof. Clear, since o—(T| ET(F)) c F.

Corollary 9. If Ex(F) is closed then F contains the topological boundary of S(T).
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Proof. If Eg(F) is closed then o(T | Ef(F)) is closed as well and by Lemma 7,
S(T)” < o(T| E(F)) = Fu S(T).
Since (S(T)) n S(T) = 0 it follows that 5(S(T) < F.

Proposition 10. Suppose F < C is closed and Fy(F) is closed. Then E¢(F) = Xy(F).

Proof. Let ¥ := Ef(F). By Lemma 2, 0(T|Y) = U,y ory(x). Obviously, for
x e, ory(x) € or(x) so or(x) < o(T| ¥) for every x € Ex(F). Since (T |Y) S F
the Proposition follows.

Note that the example before Lemma 6 then shows that closedness of X(F) is
not sufficient for spectral maximality, either, in the absence of SVEP.
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