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All lattice ordered groups dealt with in this paper are assumed to be abelian. For
a lattice ordered group G let Conv G be the system of all convergences on G in the
sense of [1] (such convergences on lattice ordered groups were studied also in [2],
[3], [5] and [6]; the basic definitions are recalled in Section 1 below). Next, let b(G)
be the set of all bounded sequences in G and

Conv, G = {a n b(G): a € Conv G} .

The systems Conv G and Conv, G are partially ordered by inclusion.

We denote by T'the class of all lattice ordered groups G such that Conv G possesses
a largest element.

In [5] it was proved that if G is an archimedean and completely distributive lattice
ordered group, then Ge T.

In the present paper the following results will be proved:

The existence of a largest element in Conv G depends merely on the lattice pro-
perties of G; i.e., if G; and G, are lattice ordered groups such that G, and G, are
isomorphic as lattices and if G, € T, then G, € T. (Let us remark that under the
above conditions G; and G, need not be isomorphic as lattice ordered groups.)

The partially ordered set Conv, G has a largest element if and only if Ge T.

The class T'is closed with respect to convex I-subgroups and with respect to joins
of convex I-subgroups. (Thus T is a radical class in the sense of [4].) T fails to be
a variety.

If H is a lattice ordered group, then the radical T(H) of H corresponding to the
radical class T'is a closed I-subgroup of H.

The notion of homogeneous convergence will be introduced and some results
concerning this notion will be established.

1. PRELIMINARIES

Throughout the paper, G denotes a lattice ordered group. Let N be the set of all
positive integers. The direct product [ [,en G, where G, = G for each n e N, will be
denoted by G". The elements of GN will be written as (g,),ey, OF simply (g,). Iff g€ G
and g, = g for each n € N, then we write (¢,) = const g.
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(g9s) is said to be a sequence in G. The notion of a subsequence has the usual
meaning. )

Let (G)* be the positive cone of G and let « be a convex subsemigroup of (G")*
such that the following conditions are valid:

(I) If (9,) € «, then each subsequence of (g,) belongs to a.

(I1) Let (g,) € (GM)*. If each subsequence of (g,) has a subsequence belonging
to a, then (g,) belongs to .

(III) Let g € G. Then const g belongs to « if and only if g = 0.

Under these assumptions o is said to be a convergence in G. The system of all
convergences in G will be denoted by Conv G; this system is partially ordered by
inclusion.

For (g9,) € G" and g € G we put g, —, g if and only if (|g — g,|) e a.

The pair (G, o) will be said to be a convergence lattice ordered group (or a con-
vergence l-group). If no misunderstanding can occur, then we sometimes write G
and g, — g instead of (G, a) or g, —, g, respectively.

1.1. Proposition. (Cf. [3].) The partially ordered set Conv G is a A-semilattice.
Each interval of Conv G is a complete Brouwerian lattice.

1.2. Proposition. (Cf. [3].) The following conditions are equivalent:
(i) Conv G has a greatest element.

(ii) Conv G is a lattice.

(iif) Conv G is a complete lattice.

2. REGULAR SEQUENCES

A nonempty subset S of (GN)* will be said to be regular if there exists « € Conv G
such that S < a. A sequence (g,) in G* is called regular if the one-element set {(g,)}
is regular.

Let 4 = (G")*. We denote by 54 the system of all subsequences of sequences
belonging to A. The convex closure (in(G")*) of the set A U {const 0} will be denoted
by [A]. Next, let {A) be the subsemigroup of (G")* generated by the set A. The
symbol A* will denote the set of all sequences in G* each subsequence of which has
a subsequence belonging to A4.

2.1. Proposition. (Cf. [2].) Let 0 + A = (G")*. Then the following conditions
are equivalent:

(a) A is regular.

(b) If g€ G, const g e [(64)], then g = 0.

2.2. Proposition. (Cf. [2].) Let A be a regular subset of (GN)*. Then

(i) [€64>]* e Conv G.

(ii) If xe Conv G, A < o, then [(SAD]* < a.

If 4 is regular, then the convergence [(84)]* is said to be generated by A.
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2.3. Lemma. Let a,,a, € G*. Then a; + a; < 2a; v 2a,.
Proof. Denote u = a; A d, X =d; — 4, y = a, — u. Then x A y =0, hence
X vV y = x + y. Therefore
ayva,=@+x)v+y)=u+(xvy=u+tx+y,
u+t(a,va)=2u+x+y=a;+a,
u+(a,va)=w+a)v (u+ay)<2a v 2a,.
Thus a; + a, < 2a, Vv 2a,.
2.4, Lemma. Let da;,4d5,...,a,€ G, k=2, Then a; +a, + ... + a; <
< ma; v ma, v ... v ma,, where m = 2571,

Proof. This follows by induction from 2.3.
Let us remark that if x; (i € I) are elements of G such that A x; = 0 and if m is
a positive integer, then Ay mx; = 0.

2.5. Lemma. Let (g,) € (GV)*. Then the following conditions are equivalent:

(i) (g) is regular.

(i) If (hY), (B2),...,(R}) are subsequences of (g,), h, = hy v h} v ... v hE
(n=1,2,...), then Auen b = 0.

Proof. Let (i) be valid. Assume that (ii) fails to hold. Hence there is 0 < g€ G
such that g < h, for each n € N. There exists o« € Conv G with (g,) € «. Then (h,) € «
and thus const g € «, which is a contradiction.

Conversely, assume that (ii) holds. Suppose that (g,) fails to be regular. Put 4 =
= {(g,)}- Thus in view of 2.1 there is 0 < g € G such that g € [(64)]. Hence there
are subsequences (h,), (h3), ..., (h%) of (g,) and positive integers my, ..., m, such that

g < mht + myh? + ...+ mh*
is valid for each n e N. Put m = max {ml, My, ..., mk}. Then
g<mhy +hl +...+h) for n=1,2....
Hence we cannot have Aoy (hy + h2 + ... + h¥) = 0. Thus there is 0 < g'€ G
g S hi+h2+ ... 4+H for n=1,2,...
According to 2.4 we obtain
g £ mhy v mhiv..vmh for n=12,..

where m = 271, Because of mh! v mh? v ... v mh% = m(hy v b v ... v k¥,
we obtain that
g = mh, for n=1,2,3,....

Hence we cannot have A,y 1, = 0, which is a contradiction.

2.6. Corollary. The system of all regular sequences of G is uniquely determined
by the neutral element of G and by the partial order on G.
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Let us remark that if (4; +, £) and (4; + 4, <) are lattice ordered groups having
the same neutral elements, then the groups (4; +) and (4; +,) need not be iso-
morphic.

2.7. Lemma. Let (g,), (h,)€(G")*. Then (g, + h,) is regular if and only if
(9n v h,) is regular.

Proof. Let (g, + h,) be regular. Hence (g, + h,) € « for some a € Conv G. Since
gn vV h, < g, + h,, we obtain (g, v h,)ea. Conversely, let (g, v h,) beregular;
thus (g, v h,) € B for some B e Conv G. Then 2(g, v h,)e B and in view of 2.3,
(9n + hy)€B.

The following assertion is obvious.

2.8. Lemma. Let o € Conv G. Then the following conditions are equivalent:
(i) o is a largest element of Conv G.
(ii) Let (g,) e (G")*. Then (g,) € o if and only if (g,) is regular.

3. THE LARGEST ELEMENT OF Conv G

We denote by R(G) the set of all regular sequences of G.

3.1. Lemma. The following conditions are equivalent:
(i) Conv G has no largest element.

(ii) The set R(G) fails to be regular.

Proof. This is an immediate consequence of 2.8.

3.2. Corollary. The following conditions are equivalent:

(i) Conv G has no largest element.

(i) There is a positive integer k = 2 and there are regular sequences (h}), (h2), ...
,(hf) and 0 < g’ € G such that g’ < h! + h2 + ... + h* holds for each ne N.

3.3. Lemma. Assume that the condition (ii) from 3.2 is valid. Let k be the least
positive integer having the above mentioned property. Then k = 2.

Proof. By way of contradiction, assume that k > 2. Let (hy), (h}), ..., (k%) and ¢’
be as in the condition (ii) of 3.2. Then the set A = {(h,), (h7), ..., (hk™")} is regular.
Put h, = h' + h? + ... + h*~! for each neN. Hence there exists ¢ e Conv G
with A < « and thus (h,) € o.. This yields that (h,) is regular. In view of the assumption,
the set {(h,), (h%)} is regular as well. Then (h, + h%)is regular, which is a contradiction
to (ii) of 3.2.

From 3.2, 3.3 and 2.7 we obtain:

3.4. Proposition. The following conditions are equivalent:

(i) Conv G has a largest element.

(i) If (h)) and (h}) are regular, then (h) + h?) is regular.
(iii) If (h;) and (h}) are regular, then (h, v h}) is regular. -
Let T be as above.
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3.5. Theorem. Let G, and G, be lattice ordered groups. Assume that G, and G,
are isomorphic as lattices and that G, € T. Then G, € T.

Proof. There exists an isomorphism ¢ of the lattice G, onto the lattice G, such
that ¢(0) = 0. Let (g,) € (GY)*. In view of 2.5 we have

(94) € R(G1) = (¢(9n)) € R(Go) -

Now, from 3.4 (namely, from the equivalence (i) <> (iii)) we infer that G, € T.
The following example shows that under the assumptions as in 3.5, the lattice
ordered groups G; and G, need not be isomorphic.

3.6. Example. Let G, and Z be the additive groups of all rational numbers and
all integers, respectively, with the natural linear order. Let G, be the lexicographic
product Z - G,. Then G, and G, are isomorphic as lattices, but they are not iso-
morphic as lattice ordered groups.

4. BOUNDED SEQUENCES

We denote by b(G) the system of all bounded sequences of G. For « e Conv G
we put b(x) = an b(G). Let Conv, G = {b(«): « € Conv G}. The system Conv, G
is partially ordered by inclusion.

The following assertion is obvious.

4.1. Lemma. Conv, G < Conv G, and whenever a € Conv G, € Conv, G, a < f,
then o€ Conv, G.

From 4.1 and 1.1 we obtain

4.2. Corollary. The partially ordered set Conv, G is a A-semilattice. Each
interval of Conv, G is a Brouwerian lattice.

Also, the definition of b(e) immediately yields

4.3. Lemma. If o, is the largest element of Conv G, then b(a,) is the largest
element of Conv, G.

4.4. Lemma. Let 0 < ve G, (x,) € (G)*. Put {(x,)} = A. Assume that x, € [0, v]
for each ne N and that (y,) € [<6A)]. Then there is a positive integer m such that
yn € [0, mv] for each ne N.

Proof. There is a positive integer m and there are (h,), ..., (h}') € 84 such that

0Ly, <h!+h2+..+h} foreach neN.
Then y, € [0, mv] for each ne N.
4.5. Lemma. Let (x,), v and A be as in 4.4. Next, let (z,) € [(6A)]*. Then there

are positive integers my and ny such that for each n = ny, we have z,€ [0, mov].
Proof. By way of contradiction, assume that the assertion of the lemmma does not
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hold. Then there is a subsequence (t,) of (z,) such that for each n € N the relation
t, ¢ [0, nv]

is valid. Let m be a positive integer. Then no subsequence (g,,) of (¢,) has the property

that g, € [0, mv] for each ne N. Hence, according to 4.4, no subsequence of (t,)
belongs to [(6A4)]. In this way we arrived at a contradiction.

4.6. Lemma. Assume that Conv G has no largest element. Then there exist

bounded regular sequences (z,) and (z7) in G* and an element he G with h > 0

such that h = z} v z?2 is valid for each neN.

Proof. In view of 3.4, there exist regular sequences (h,) and (h3) in G* such
that (h,) fails to be regular, where h, = h} v h2 for each ne N.

Hence according to 2.5 there exist subsequences (x,), (x2), ..., (x£) of (h,) and an
element 0 < h € G such that

O0<h=xlvaxlv..vxt foreach neN.
Thus
h=((hAx)Vv(hAaxt)v..v(haxt)y foreach neN.

For each je{1,2,...,k} and each n € N there is n(j) € N such that
Xp = hagpy v hagy -
Denote y,’ = h);), 2/ = h} ;. Hence we have
h=(hayp)v..vaypyvihay)v..v(hay¥=
=[hAa'v.ovy]vha@tv..vyHl.

The sequences (y,7) (j = 1,2, ..., k) are subsequences of (I, ), hence they are regular.
Similarly, the sequences (y3’) (j = 1,2,..., k) are regular. Thus both (y;' v ...
v ) and (y2' v ... v y2¥) are regular. Denote

z=ha(ytv..vyH, zZ2=ha'v..vyH.
Then (z,) and (z2) are regular and bounded; we have h = z, v z} for eachne N.

As a corollary we obtain

4.7. Lemma. Assume that Conv G has no largest element. Then Conv, G has
no largest element.

Summarizing, we have

4.8. Theorem. Conv G has a largest element if and only if Conv, G has a largest
element.

5. CONVEX /-SUBGROUPS AND THEIR JOINS

Let H be a convex [-subgroup of G.
For each « € Conv G we denote by @x(a) the set & n (HV)*.
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Next, for each f € Conv H let Y/¢(B) be the set of all (z,) e (G™)* such that there
is a positive integer m such that (Zm+n)neN €.

By the conditions (I), (II) and (III) of Section 1 we immediately obtain

5.1. Lemma. (i) Let « € Conv G. Then ¢y(«) € Conv H and Yo(¢n(®)) < o
(ii) Let e Conv H. Then Yg(B) € Conv G and ¢u(Ys(B)) = B-
If o, a, € Conv G and B, B, € Conv H, then we clearly have

o = o, = fPH(Oh) = (PH(%) s

B =B l//(;(ﬁl) = l/’G(ﬂz) .

Thus we get

5.2. Lemma. If «, is the largest element of Conv G, then @y(a;) is the largest
element of Conv H.

5.3. Corollary. The class T is closed with respect to convex I-subgroups.

Let H, (i eI) be convex I-subgroups of G and let H = V. H; be their join. It is
well-known that for each 0 < h € H there is a finite subset I; of I and there are
elements 0 < hje H; (i€l,) such that h = Y h; (i el,). Hence according to 2.4
there are 0 < h; € H; (i € I,) such that h = Vh; (ieI,).

5.4. Lemma. Assume that all H; (i €I) belong to T. Then H belongs to T as well.

Proof. By way of contradiction, assume that Conv H has no largest element.
Then in view of 4.6 there exist regular sequences (z,) and (zf) in H and an element
0 < he H such that h = z} v z2 is valid for each ne N.

There are elements i(1),i(2),...,i(k) of I and 0 < t; € Hy),...,0 < t, € Hy,
such that

h=1t Vi,V..VI.
Thus we have

(*) ty=t; Ah=1t, A(zy vz;)=(t; nz}) v (t; A z]) foreach neN.
The sequences (t; A zy)and (f; A z3)are regular in H; . In view of the assumption,

Conv H;, has a largest element and hence by 3.4 the sequence ((t, A z,) V (t, A z2)
is regular in H,,,, which contradicts ().

Summarizing, from 5.2 and 5.4 we obtain

5.5. Theorem. T is a radical class of lattice ordered groups.

As usual, we denote by T(G) the radical of G corresponding to the radical class T.
Hence T(G) is the largest convex I-subgroup of G belonging to T.

5.6. Theorem. T(G) is a closed I-subgroup of G.

Proof. It suffices to verify that if h; (i I) are elements of T(G) such that 0 < h;
for each i €I and the relation Ve h; = h holds in G, then h € T(G).
By way of contradiction, assume that (under the above notation) the element h
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does not belong to T(G). Let H be the convex [-subgroup of G generated by h; thus
H = Upey [—nh, nh]. '
Hence in view of 5.5, H does not belong to T. Thus according to 4.6 there are regular

sequences (x,) and (x7) in H and an element 0 < x in H such that

x=x}vx? foreach neN.

There exists a positive integer n such that x < nh. Now we can take nh instead of h,
and thus without loss of generality we can assume that x < h. Hence we have

h=xAh =ViEI(x A hi)'
Thus there is i €I such that x A h; > 0; let such an element i be fixed.

From the regularity of (x}) and (x7) in H we infer that the sequences (x, A h;)
and (x2 A h;) are regular in T(G); because T(G) e T, we infer that the sequence
((xa A hy) v (x2 A h;))is regular in T(G). But

(o Ah)v(xEAb)=@, v Ahi=xAh >0

for each n € N, which is a contradiction.

5.7. Example. Let I be the set of all reals x with x € [0, 1]. For each i eI let G,
be the additive group of all reals with the natural linear order. Put G = [[;; G;.
Then G is completely distributive and archimedean, hence (cf. [5]) G e T. There
exists an l-subgroup H of G such that G does not belong to T (cf. [1]). Thus T fails
to be closed with respect to I-subgroups. Hence T fails to be a variety.

6. HOMOGENEOUS CONVERGENCES

A convergence a € Conv G will be called homogeneous if, whenever ¢ is an auto-
morphism of the lattice ordered group G, then

(xn)ea=(o(x,) €.

Next, o will be called strongly homogeneous if, whenever H and H' are convex
l-subgroups of G and ¢ is an isomorphism of H onto H’, then

(xp)ean (HY)* = (o(x,) ea.
The system of all homogeneous convergences or strongly homogeneous con-
vergences on G will be denoted by Conv, G or Convy, G, respectively.
The following example shows that Conv, G need not coincide with Conv G.

6.1. Example. Let R be the additive group of all reals with the natural linear order.
Let « be the o-convergence on R. Then « € Conv R (in fact, a € Conv, R). Let G
be the direct product R x R. We define § € (G¥)* as follows. Let (z ) = (x4, yn)) be
a sequence in G*. We put (z,) €  if and only if

(i) x, -0, and
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(ii) there is ny € N such that y, = 0 for each n > n,. Then pe Conv G, and f
fails to be homogeneous.

Clearly Convy, G < Conv, G. The following example shows that Convy, need not
coincide with Conv, G.

6.2. Example. Put G = (R - R) x R, where o denotes the operation of the lexico-
graphic product. Thus the elements of G have the form (x, ¥, z), the operation +
being performed componentwise and (x,y,z) = 0 if (x,y) 20 and z = 0. (The
relation (x, y) = 0 means that either x > 0, 0or x = Oand y = 0.) Let t, = (x,, Y, Zp)
be a sequence in G*. We define « = (G")* by putting (t,) € o if and only if

(a) (z.) o-converges to 0 in R, and

(b) there is ny e N such that x, = y, = 0 for each n > n,. Then « € Conv, G
and a does not belong to Convy, G.

Let us consider a nonempty set {a;} (i €I) of strongly homogeneous congruences
on G. The following lemma is obvious.

6.3. Lemma. A; a; is a strongly homogeneous convergence on G.

6.4. Lemma. Assume that \/;; «; = a holds in Conv G. Then o € Convg, G.

Proof. Let H and H’ be convex [-subgroups of G and let ¢ be an isomorphism
of H onto H'. Let (h,) e a n (HY)*,

According to Lemma 2.3, [3] we have @ = {U«;>*. Hence we have to verify that
(@(hy)) € <Ua>*. Let (o(h,,)) be a subsequence of (¢(h,)). Then (h,,) is a subsequence
of (h,), hence there exists a subsequence (h,) of (h,,) such that (h,) e {Ua;y. Thus
there are i(1), i(2), ..., i(k) eI and (hy) € oy, ..., (h) € tiy With

h,=h} + ...+ hf foreach teN.
Then (he), -, (hf) € (HY)* and so (@(h})) € ), -, (9(HY)) € ;4. Since
o(hy) = o(h!) + ... + o(hf),

we obtain that (¢(h,)) € {Ua;>, whence (¢(h,)) € Ua;>*, completing the proof.
For a4, o, € Conv G we denote, as usual,

[og, 23] = {e e Conv G: oy < a0 < a0} ;
next, for B, B, € Convy, G we put
[By. B2)sw = {Be Conv,, G: By < B < B} .
Then Lemma 6.3, Lemma 6.4 and 1.1 yield

6.5. Proposition. Conv,, G is a A-semilattice. Let By, B, € Conv,, G, B, < B..

Then [Py, B2)s is a closed sublattice of the lattice [Py, B,]. Hence [B1, B2an is
a complete Brouwerian lattice.
Let d be the least element of Conv G. Clearly d € Convg, G.

6.6. Proposition. The following conditions are equivalent:
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(i) Convy, G is upper-directed.
(ii) Convy, G is a lattice.
(iif) Convy, G possesses a largest element.
(iv) Convy, G is a complete lattice.
The proof is analogous to that concerning Conv G (cf. [3]); it will be omitted.
The following assertion is an immediate consequence of 2.1.

6.7. Lemma. Let H be a convex l-subgroup of G and let X < (H")*. Then the
following conditions are equivalent:

(i) X is regular with respect to G.

(ii) X is regular with respect to H.

6.8. Proposition. Assume that Conv G has a largest element . Then f € Convy, G.

Proof. Let H, H' and ¢ be as in the proof of 6.4. Let (h,) € (H)* such that (h,) € B.
Hence the sequence (h,) is regular with respect to G. In view of 6.7, (h,) is regular
with respect to H. Thus (¢(h,)) is regular with respect to H'. By applying 6.7 again
we infer that (¢(h,)) is regular with respect to G. Hence (¢(h,)) € B, completing the
proof.

Consider the following conditions:

(a) Conv G has a largest element.
(b) Convy, G has a largest element.

In view of 6.8, (a) = (b). The question whether for each lattice ordered group G
the implication (b) = (a) holds remains open.
From 6.5 and 6.8 we obtain

6.9. Corollary. If Conv G has a largest element, then Convg, G is a closed sub-
lattice of the lattice Conv G.

6.10. Propositien. Assume that Conv G has a largest element . For each a €
€ Conv G let h(x) be the intersection of all «; € Convy, G such that o < a;. Then h
is a closure operation on the lattice Conv G.

Proof. Let « € Conv G. Let S be the set of all a; € Convy, G with o < «;. In view
of 6.8 we have f € S, hence S # 0. Thus a < h(«). According to 6.3, h(«) belongs to S
and thus h(«) is the least element of S. Hence h(h(«)) = h(a).

6.11. Remark. In all the assertions 6.3 —6.10, Convy, G can be replaced by Conv,, G.
The proofs are either the same or analogous to those given above.

7. AN EXAMPLE

In this section an example will be given which shows that the partially ordered
set Conv, G need not have a largest element. 5
Let Q be the set of all rational numbers and let a € R be a positive irrational
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number. For each n € N we denote

B, = {te Q:k'—1

2"
Let S be the system of all pairs (n, k) with n e N and ke {1, 2, ...,2"}. The system S
is lexicographically linearly ordered; i.e., we put (ny, ky) < (n2, k) if either ny, < n,,
or n; = n, and k,; < k,. Let P be the set of all positive primes with the natural
linear order. There exists a uniquely determined isomorphism f of S onto P. The
image of (n, k) under f will be denoted by f(n, k).

For P, < P let H(P,) be the subgroup of the additive group @ generated by the set

{ln: pe Py, neN}.
p

Let G be the set of all real functions x defined on the set Q3 = {t€ Q: 0 <t < a}
which satisfy the following conditions:

(i) for each t € Q, we have x(t) € H(P,), where P, = {f(n, k): t € B,};

(ii) there is ne N such that, whenever ke{1,2,...,2"} and t,,t, € By, then
x(ty) = x(t,).

Let G, be the lattice ordered group of all real functions defined on the set Q,
(the operations +, A and v being defined componentwise).

The following assertion is obvious.

a<t<2—kna} (k=1,2,...,2".

7.1. Lemma. G is an I-subgroup of G,.

7.2. Lemma. Let 0 < x€eG, toe Q,, x(tg) > 0. Then there are neN,
ke{1,2,...,2"} and x, € G such that

(i) 0 <x; = x;

(iip) if ty, 15 € By, then x(t;) = x(t,); if t € Qy \ By, then x4(t) = 0.

Proof. The assertion is a consequence of the condition (ii) above.

For Z = G we put

Z* ={yeG:|y| A |z| = 0 for each ze Z}.
For z € G let Sup z be the support of z. In view of the definition of G we have

7.3. Lemma. Let x and x, be asin7.2. Then Sup y < Sup x, whenever y € {x,}**.
Lemmas 7.2 and 7.3 yield

7.4. Lemma. Let ¢ be an automorphism of the lattice ordered group G. Let
0 < x € G. Then Sup x = Sup ¢(x).
Let us denote by X the system of all sequences (x,) in G* which satisfy the fol-
lowing condition:
if neN, ke{1,2,...,2"} and k is even, then x,(f) = O for each t € By.
Next, let Y be defined analogously with the distinction that “‘even” is replaced by
“odd”.
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7.5. Lemma. Let ¢ be as in 7.4.If (x,) € X, then (¢(x,)) € X.
Proof. This is a consequence of 7.4.
An analogous assertion holds for Y.

7.6. Lemma. The sets X and Y are regular.
The proof can be performed by a straight-forward application of 2.1.

As a corollary we obtain

7.7. Lemma. There exist a, f € Conv G such that o is generated by X and B
is generated by Y.

7.8. Lemma. If (x,)ea, (y,)e B and if ¢ is an automorphism of the lattice
ordered group G, then (¢(x,)) e o and (¢(y,) € B. Hence both o« and B are homo-
geneous.

Proof. This is a consequence of 7.5 and of the corresponding result for Y.

7.9. Lemma. The set {a, B} is not upper bounded in Conv G.

Proof. Let us denote by z the element of G such that z(t) = 1 for each te Q.
Next, we define a sequence (x,)in G* as follows. Let n e N, t € Q;. We put x,(f) = 1
if te B,,, where k is an even number, and x,(t) = 0 otherwise. Let y, = z — x,
for each neN. Then (x,)€X and (y,) € Y, hence (x,) e« and (y,) € a. Since
X, + ¥, = z > 0 for each n € N, in view of 2.1 the set {a, f} is not upper-bounded
in Conv G.

7.10. Proposition. The partially ordered set Conv, G has no greatest element.
Proof. This is a consequence of 7.8 and 7.9.

7.11. Remark. If G is a lattice ordered group such that Conv G possesses a greatest
element, then the results of Section 6 imply that for each a € Conv G there exists
a homogeneous convergence h(e) which has the following properties:

(i) o < h(a),

(ii) if peConv, G and a < B, then h(x) < B.

More generally (without assuming the existence of a greatest element in Conv G),
a homogeneous convergence h(a) satisfying (i) and (ii) will be said to be a homo-
geneous closure of o.

7.12. Example. By modifying the above example we shall construct an example
which shows that the homogeneous closure need not exist in general.

Let G be as above and let H be the set of all g € G having the property that g(t)
is an integer for each t € Q;. Then H is an I-subgroup of G. Let (x,) and (yn) be as
above. Then (x,) is a regular sequence in H, hence there is a; € Conv H such that
(x.) € ory. Assume that there exists f; € Conv, H with a; < ;. It is not difficult to
verify that there is an automorphism ¢ of the lattice ordered group H such that
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¢(x,) = y, for each n e N. Hence {(x,), (y,)} < B;. This is a contradiction, because
we have shown above that the set {(x,), (,)} fails to be regular in G, and the same
investigation shows that this set is not regular in H.
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