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1. INTRODUCTION

Consider the linear delay differential equation of the form
(1) () + (1) Y pix(oit) =0, t=Za>0,
i=1

where p; > 0,0 <o0; = 1,i =1,..., m, are constants.

It is well-known that if x(f) is a nonoscillatory solution of (1) then according to
a result of Kiguradze (see [3, Lemma l]) there exist an even integer [, 0 < 1 < n,
and t; = a such that

(2 x(t)xP(t) >0 on [t;,0) for i=0,1,...,1,
(3 (=) 'x())x®P() >0 on [t;,0) for i=LI1+1,..,n.

Denote by N, the set of all solutions of (1) which satisfy (2) and (3). Then the set N
of all nonoscillatory solutions of (1) has the following decomposition:

N=NyuUN,uU...UN,_, ifnisodd,
N=NyuN,uU...UN, if nis even .

In the present paper we characterize the situation in which N, = 0, that is, all
bounded solutions of Eq. (1) are oscillatory. Next, we shall establish necessary and
sufficient conditions under which N, = @ for the equations of the advanced type

4) @1 =t7"Y pix(ef) =0, t2a>0
i=1

where p; > 0,0; = 1,i = 1,..., m, are constants. Kiguradze’s decomposition of the
set of all nonoscillatory solutions is the same as above if n is even, and becomes
N=N;UN3;uU...UN, ifnisodd.

It is known that if the deviations of the arguments are absent in (1) (or in (4)) then
the subclasses Ny and N, are always nonempty. However, this is not true in general
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when ¢; < 1 or o; > 1 for some i, 1 < i < m (see, for example, [5] and the refer-
ences cited therein). '

Recently, Ladas, Sficas and Stavroulakis [8] have studied the similar problem
for the retarded differential equation of the form

) X0() + (-1 Y pial 1) =0, 12 a,

where p; >0, 7, 20, i = 1,..., m, are constants, and proved that every bounded
solution of (5) is oscillatory if and only if the corresponding characteristic equation

(6) A+ (_1)n+1 Zpie-lﬂ =0
i=1
has no real roots in (— o0, 0].

Surprisingly, however, in literature there are not many results on the oscillation
of delay differential equations of the form (1) which would be sharp enough to provide
a characterization of the oscillation of all bounded solutions. To the best of the
author’s knowledge, Nadarei§vili [10] in the case n = 1 and Canturia [1] in the
case n > ‘1 are the only references which are related to the subject of this paper.
For the case n = 1 see also the recent paper [2].

In what follows, the oscillatory character of the solution x(t) of (1) defined on an
interval [t,, ), t, = a, is considered in the usual sense, that is, x(t) is said to be
oscillatory if it has arbitrarily large zeros in [, 00) and it s said to be nonoscillatory
otherwise.

As is customary, we shall say that a continuous real-valued function u(t) defined
on an interval [¢,, o0) eventually has some property if there is a T 2 t, such that u(r)
has this property on [T, o).

2. MAIN RESULTS

The problem of the characterization of bounded oscillations of Eq. (1) can be
examined in a variety of ways. In this paper we use the method which has been
developed by Ladas, Sficas and Stavroulakis in [7] and [8]. For an alternative
approach we refer to Canturia [1].

We begin with a simple lemma which will be needed in the proof of our main
theorem.

Lemma. Let x(t) be a bounded nonoscillatory solution of the retarded differential
inequality

W) sgn x(ot) {(—1)"x"(t) — pt " x(st)} 20, t2a>0,
where p > 0,0 < ¢ < 1, defined on the interval [aa, oo). Then ’

X)) 2 4" |x(o1)]
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for all large t, where A = (pIn(1/0))2 if n = 1 and

A=plife H( PG I T

(n +1)'

Proof. Without loss of generality, we may assume that x(¢) is positive and
decreasing on [T, ), T 2 a. Then the inequality (7) becomes

) (1" x™(1) — pt™"x(at) 20, t 20 'T.

Let s = ¢ !T be given. Integrating both sides of (9) from s to ¢~ */"**s and using
the decreasing character of x(f) on [T, co) we obtain that

(__1)11 x(n—l)(o.—lln+ls) - (_l)n x(n~l)(s) — px(onln+1s) s‘sa(—l/n+l) t7"dt g 0.
If n =1, then

(10) x(s) =

pintjo x(a'?%s), s2 o 'T.

Given t = ¢~%2T we apply (10) to s = ¢'/*t and so s =  and get
X(o%1) 2 [(pIn (1/o))[2] x(e).
x(t) 2 [(pIn (1/0)/2] x(o*/*1) ,
respectively. Combining these inequalities we obtain the desired relation (8) in the
case n = 1.
If n > 1, then repeating the above procedure of integration of (9) from s to

o(-1"+Dg and taking into account that (—1)'xP(¢™"*15) >0, i =0,1,...,n,
we find

(11) x(s) = pIn(1/o)

H(l — o h)/(n+1)) x(a(1/n+1)s)

(n + 1)'
Given t = ¢~ @+ D/0+ DT we apply (11) successively to s = 1, s = ¢/"* Vg, .5 =
= g+ ¢t and conclude that

*(1) 2 [p In (1/0)( ol H(l — 0" k>/<n+1>)] *(o1)

which is the relation (8) in the case n > 1.

Theorem 1. All bounded solutions of Eq. (1) are oscillatory (i.e., Ng = @) if and
only if .
(12) —afa+1)...(@+n—-1)+ Y po;*>0
i=1
for all « > 0.
Proof. (The “only if” part.) Assume to the contrary that (12) does not hold.
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Then there exists an a > 0 such that
—ao(fxo + 1)...(ao +n - 1) =+ ZPiai—"" = 0
i=1

and so Eq. (1) has a nonoscillatory solution x(t) = ™%,
 (The “if”” part.) Let (12) hold and assume that there exists an eventually positive
solution x(t) of Eq. (1).
When all 6;, i = 1, ..., m, are equal to 1, then (12) obviously does not hold. Thus,
we may assurae without any loss of generality that ¢, = min {oy, ..., 0,} < 1.
Define the set

A(x) = {o > 0: (=11 " x™(f) + o x{f) < O eventually} .
From (1) we have
(=" " xD(t) + ppx(t) < (=11 1" x™(t) + pp x(0mt) £ 0

eventually, so that p, € A(x). Consequently, the set A(x) is non-empty.
Taking into account that x(t) is decreasing and using Lemma, we find

0= (=1y*'"x"(t) + ¥ p;x(ot) £
i=1
S (=10 x™() + Y pix(ogt) <
i=1
é— (_1)n+1 t" x(n)(t) + B:ln+1 Z D; x(t)
i=1
eventually, where B,, = 2/(p,In(1/s,)) if n = 1 and

n—1 -1
B, = [p,,, In (1/a,,) n a - PRI 1))]

(n + 1)1i=1

if n > 1. This proves that
m
B! Z Pi
i=1

is an upper bound of A(x). Notice that this upper bound does not depend on x(t).
Let « € A(x) be given. Set oy = «, and for each j = 1,2, ... let a; be the (unique)
solution of
aja; + 1) (g +n—1)=oa;_4.
Clearly, for every positive @;_; such a solution «; always exists since the continuous
function g(B) = B(B + 1)...(B + n — 1), B = 0, satisfies g(0) = 0 and lim g(B) =
B=

= o0. Moreover, due to the increasing character of g(B) for g = 0, this solution is
unique.
Define x,(t) = x(f) and

n—1

xi(t) = Z(;(—l)‘ Poiog(o) £ x$24(r), j=1,2,...
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where Po(¢;) = 1 and Py(o;) = [J(e; +n— k), i=1,2, .., p — 1.

k=1
Due to Euler’s nature of Eq. (1), every function ' x(2) j — 1 .. n—1 is
also a solution of the same equation and, moreover, it belongs to N, provided that
x(1) belongs to Ny. Consequently, each x,(f), j = 1,2,..., as a linear combination
of solutions from N, is itself an eventually positive solution from N, of Eq. (1).
The definition of x,(t) implies that
(13) (=0 e x$(1) + oy x(t) = t x4 4(1) + o4y Xiea(t), j=0,1,....
Denote m
Fo)= —afe+1)...(a +n = 1)+ Y po;=.
i=1
Since
&~ o0

Fl@) >0 for «>0, F(0)=) p,>0 and lim F(a) = o0,
i=1

we may conclude that
¢ = min F(a)

az0
exists and has a positive value.
We shall show that «;e A(x;) implies (a; + p) € A(xj44), j =0,1,..., and,
consequently, a € A(x) implies (o + ju) € A(x;), j = 1,2,... which contradicts the

above conclusion that
m
B:ln+ ! Z D;
i=1

is a common upper bound for all A(x;,,),j =0,1,2,....
In fact, since x; (¢) is the solution of Eq. (1) we have

(=0t x@2a(0) + (o + p) %p0a(t) = = il’i Xjea(oit) + (% + 1) Xj14(2) .
Define u(t) = t*** x;,,(t). Then -
w(t) = 7 e X (0 + tjas Xj44(1)] =
— (1 () + (0] < O
eventually, so that u(r) is an eventually decreasing function.

Thus
(=1 e x§24(0) + (2 + 1) x44(1) =

= = Y piloi) ™ u(out) + (o + ) o u(t) <
i=1
< tTu1 u(t) [-— Zpio.—aun + o, + ,u] =
i=1

m
=t u(t)[— Y pio ™5 + (g + 1) (e T T D+uls
=1

Se9ttut)[-p+u] =0
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eventually, which proves that (o; + p) belongs to A(x;.,) and the proof is complete.
Due to its transcendental nature, (12) is not easily tractable. Therefore, we proceed
further and derive some explicit sufficient conditions for oscillation of bounded
solutions of Eq. (1) expressed in terms of p; and o; only.
For this purpose, denote
M=1{1,2..m}, J={jeM:o;*1},
Jy=1{jeJ:k—1<n|(In(1]s)) < k}
for k=1,2,...,n — 1 and

= {jeJ:n/(In(1/s;)) > n — 1}.

Moreover, denote by K the set of all k, 1 < k < n, such that J, =+ 0.

Theorem 2. Assume that
Ck k — 1 - n
(14) 3 SEZ 5 b (1ot oo > 1.
. kek n(n — 1)'
Then all bounded solutions of Eq. (1) are oscillatory.

Proof. We shall show that (14) implies that the condition (12) of Theorem 1 is
satisfied.

Let us consider the function

Gla)= —1 + [afa + 1)...(¢ + n — 1)]“]211)1.0;“, a>0.
Clearly,
Gz -1+ Ypfele+1)...(@+n—1)0j]"" =

keK jeJx
=-1+2 ZPJII[(H i— 1)o7,
keK jeJx i=1

Let keK be fixed and denote G(a) = (a + i — 1) 07", jeJ,, i =1,...,n
Then we have

min G:j(“) e_lf.l_(___w O.S_i—l)/n
>0 n
if i £k and
min G, (o) = 1/(i — 1)
az0
if i > k. Thus,
G(a) = —1 i(k_ 1!) In (1 k ghle=1)/2n o @
@z-1+3 Xp— (In (1/s;))" o5 >
kek je - n* (n— 1Y)
for all « > 0, which implies that

afo +1).ea(@ +n—1)G(e) >0 forall a>0
so that the condition (12) of Theorem 1 is satisfied.
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Remark 1. In the case J = J, the condition (14) reduces to
i p;jln(1/o;) > n!fe
and in the case J = J,, it reducels—ti)
>, (n (17 o~ > (nfe)
I

Remark 2. An inspection of the proof of Theorem 2 shows that the functions
Gifw),i=1,...,n,j=1,...,m, a> 0, can be estimated also as follows:

Gufe) = ™ty 4 (i = 1)1 o7 2 S0 019D gy gy
n
This leads to the condition
il " (k—1)e -1
19 Epmer [l (1 S m ) > el
(cf. Canturia [1]). It is not difficult to see that (14) is weaker than (15).
Theorem 3. Let k, 1 < k < n, be the largest integer such that

mn] 3 In (1fa) > k - 1

and let

(16) ml—k(jljl p,-)”"' (J]j1 o.j)k(k-l)/Zmn (ji]n (/o)) > n“(n — 1)

e — 1)1
Then all bounded solutions of Eq. (1) are oscillatory.

Proof. Let G(«) be defined as in the proof of Theorem 2. The inequality for the
aritmetic and geometric means yields that

Gla) 2 -1+ [e(x + 1)...(x¢ + n — 1)] m([] pjo;*)'m =
i=t
= 14 (L) [T+ i = ) (o
Denote Hya) = (¢ + i — 1)7* ([ 6;)"*™, i = 1,..., n. Then we have
j=t

min H(«) = (e/mn) (] ;)™ Y In 1/o;
a>0 ji=1 ji=1

if i £k and
min Hya) = 1/(i — 1)
az0

if i > k. Thus,
G(@) 2 —1 + m(I] p)"" (T[] o) * "™ (L In 1o )"
Jj= j= i=

for every « > 0 and the proof is complete.

ek — 1)!
(mn) (o = 1)

>0
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Remark 3. The conditions (14) and (16) are independent. We illustrate this fact

by the following simple examples.
For the equation

(17) (i) + ix(e”t) + sy =0, t2aso0,
. t

the condition (16) is satisfied but (14) does not hold.
On the other hand, for the equation

(18) x'(t) + 1 x(e~ 1) + 1 x(e"%) =0, t=2a>0,
8et 2et

(14) holds but (16) is not satisfied.
By similar arguments we can establish parallel results about the advanced equation

(19) x™(t) - t'"‘flpi x(oit) =0, t=2a>0,
whére p;>0,0;,21,i=1,..., m, are constants.

Theorem 1'. N, = 0 for Eq. (19) if and only if
(20) a(a—l)...(a—n+1)—fpia°,-'<0
for all o;>n——1. i

Theorem 2'. Assume that
e"” Hl(” k)! n—k+1 (k=1)(n=1)/n+(n—k+1)(n+k—2)/2n
(21) Z T j;k pflna)" ™ o >1,
where J;, = {jeJ:n—k <n|/(lno;)) S n—k + 1} for k=2,...,n and J{ = {jeJ:
n/(lno;) > n — 1}.
Then N, = 0 for Eq. (19).
Theorem 3'. Let k, 1 £ k < n, be the least integer such that
mn[Y Ino; >n—k
j=1
and let
'(22) mk—n(ﬁpj)llm(ﬁo.j)(k—i)(n—1)/mn+(n+k-2)(n-k+1)/2mn(i In aj)n—-k+1 > n" :+:(n 1)'
j=1 j=1 ji=1 e"” + (n k)!
Then N, = 0 for Eq. (19).
Finally, we note that all results presented in this paper remain valid if we replace
Egs. (1) and (19) by the retarded differential inequality

23) sen (1) {(~ 1 ¥ = 177 %, pyx(a) 2 0
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where p; > 0,0 < o; < 1 are constants, and the advanced inequality

(24) sgn x(t) {x™(t) - t'"igpi x(o;t)} 20,

where p; > 0,0; 21, i = 1,..., m, are constants, respectively.

We shall provide a brief outline of the proof of Theorem 1 for the inequality (23).

The necessity part is obvious. In order to prove the sufficiency part, let us assume
that the inequality (23) has an eventually positive solution x(t). Then, according
to the comparison result of Philos [11, Corollary 1], the corresponding differential
equation (1) has an eventually positive solution u(t), which is a contradiction with
the assertion of Theorem 1 applied to (1).

Similarly we can prove that the sufficiency part of Theorem 1 (and, consequently,
Theorems 2 and 3) remains true also for the nonlinear delay differential inequality

(23) sgn x(t) {(=1)" x(t) = f(t, x(g:(1)); --» x(gm(t))} 2 O,

where the following conditions are satisfied: there exist constants p; > 0,0 < o; < 1,
i=1,...,m,and T = a > 0 such that

@) f(tug, oo ty)sgnu, = t_”_zlpil“il
for t2T, wu; >0, i=1,...,m, limgf) = o
t— 00

and gf) <ot for t2T, i=1,...,m.

The parallel results about the nonlinear advanced differential inequality

(26) sgn x(1) {x(t) = f(t, x(91(1)); -, (gn(1)))} 2 O

_can be also proved without much difficulty if we assume that there exist constants
pi>0,0,=21,i=1,...,m,and T = a > 0 such that

(ii) f(t,ug, .. u,)sgnuy 267" piluy
i=1
for t=T, uwu; >0, i=1,...,m, and g{t) = ot
for t=T, i=1,....,m.

The details of this extension are left to the reader.
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