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EXISTENCE AND UNIQUENESS OF SOLUTIONS OF FOUR-POINT
BOUNDARY VALUE PROBLEMS FOR 2ND ORDER
DIFFERENTIAL EQUATIONS

IRENA RACHONKOVA, Olomouc

(Received December 22, 1987)

The three-point boundary value problems for differential equations of the second
order were studied in [1], [2], [9] and [11]. The problem of existence of solutions
of the equation

. u’ = f(t,u)
satisfying the conditions
u(0) = u(a) = u(2a), ae(—o0, +)
is solved in [1], [2]. Theorems on existence and uniqueness of solutions of the

problem
u" = f(t,u,u'),
u(a) =C1, u(b) = u(to) + c, 4, b? tO » Ci, Cze(_w’ +OO) 5
a <ty < b, are proved in [11] and, for the linear differential equation, in [9].

1. Our paper deals with the problem of existence and uniqueness of solutions of
the equation

(1.1) u” = f(t,u,u')
defined on an interval [a, b] and satisfying the conditions
(1.2) u(c) — u(a) = A, u(b) — u(d) =B,

where 4, Be(— o0, +0), —0 < a < ¢ <d < b < +oo. Sufficient conditions for
the existence of solutions of the problem (1.1), (1.2) were found in [12]. Other
existence theorems for this problem are proved here. Moreover, the problem of
uniqueness is solved.
We shall use the following notation:
R =(-ow,+w), R, =[0,+w), D=[a,b]xR*, D,=[ab]xR}.
_ max{c —a, b—¢} for d—a>b-c
" max{d-a,b—d} for d—asb-c,

go(t)y =at®> + Bt +y,
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where
%= (BI(b = d) — Affc — a) (b — ¢ + d — a)",
= (A(b + d))(c — a) — Blc + a)|(b —d))(b—c+d—a)"', yeR,
ro = max {|go(f)]:a £ t £ b}, ry = max {|go(t)]: a St < b}.

AC'(a, b) is the set of all real functions which are absolutely continuous together
with their first derivatives on [a, b].

Car, (D) is the set of all real functions satisfying the local Carathéodory conditions
on D, i.e. f e Cary, (D) iff

f(+,x,y): [a, b] = R is measurable for every (x, y) € R?,
f(t,+, *): R®* > R is continuous for almost every t € [a, b],

sup{lf( x, y)|: |x| + |y] £ e} € L(a, b) for any ¢ €(0, + o).

Definition. A function u € AC*(a, b) which fulfils (1.1) for almost every t € [a, b]
will be called a solution of the equation (1.1). Each solution of (1.1) which satisfies
the conditions (1.2) will be called a solution of the problem (1.1), (1.2).

In the whole paper we suppose that f € Cary,(D) and Ae {—1, 1}.

Theorem 1. Let there exist r € (0, +o0) such that one the set D the inequalities

(1.3) Mf(t,x,y) — 20)sgnx = 0 for |x|>r

and

(1.4) £t % )] < ha(®) 5] + Ba(8) [y] + oot [x[ + [¥])
hold, where hy, h, € I*(a, b) are non-negative functions satisfying
(1.5) (b — a)'/* ((fa (1) 1)/ 2(b — a)[m + ([2 h3(r) d1)'/%) < 1

and we Cary,([a,b] x R,) is a non-negative function, non-decreasing with
respect to its second variable and satisfying the condition

b
(1.6) lim 1JA o(t,0)dt =0.

e+ Q Jg

Then the problem (1.1), (1.2) is solvable.

Theorem 2. Let a;, a, € (0, + o) satisfy

(1.7) ay(2/m)* (b — a) + ay(2[n) T < 1

and let there exist hy, h, € L(a, b) such that

(1.8) 0<Ahy(t)ySay, |h(t) S ay for a<t<b
and on the set D the inequality

(19) /(. %,9) = 1(0) x = ha(t) 3] S @(t. || + [y))

is fulfilled, where w is the function from Theorem 1.
Then the problem (1.1), (1.2) is solvable.
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Note. The inequality 0 < A hy(t) cannot be replaced by the inequality 0 <
< A hy(2) because the problem u” = 1, u(0) = u(1/2) = u(1) has no solution.

Theorem 3. Let there exist a non-negative function h € L(a, b) such that on the
_set D the inequality

(1.10)  f(t, x4, y1) — f(t, X2, y2) + h(t) |[ys — y2| > 0, where x; > x,,
is satisfied.
Then the problem (1.1), (1.2) does not have more than one solution.

2. Lemmas. Lemma 1 ([6], Theorem 256, p. 219). If fe AC(ty, t,), f' € I(t,, t;)
and f(t;) = 0, where —o0 < t; <t, < +00, tg€[ty,1,], then
Ja i) de = (21, — t)fm)* [ /(1) dr .

Lemma 2. Let ay, a, € (0, + o) satisfy (1.7) and let hy, h, € L(a, b) satisfy (1.8).
Then_ the problem

(2.1) v" = hy(t)v + hy(t) 0,
(2.2) 4 v(c) —v(a) =0, ov(b)—v(d)=0
has only the trivial solution.

Proof. Let v be a solution of the problem (2.1), (2.2). The equation (2.1) can be
written in the form

(2.3)  exp([s ha(s) ds) (exp (— [ hy(s) ds) v'(1)) — hl(i) v(f)=0 for a<t<b.
By (2.2) there exist t, € (a, ¢), t, € (d, b) such that
v'(ty) = v'(t;) = 0.

Consequently, the function ¢(f) = exp (— [, hy(s) ds) v'(r) has two zeros on (a, b).
Let o(t) + 0 for a < t < b. Then (1.8) and (2.3) imply that ¢ is strictly monotonous
on [a, b] and we get a contradiction. Therefore there exists t, € (a, b) such that
(to) = 0. By Lemma 1 we have

(0™(0) )2 < (2efr) (8 072(0) i)' 2

(Jav*() 40" = (2fm)* «(b — a) (fav"*(1) d)"2
" and by virtue of (2.1), the inequality

(5 v"2(t) dt)’* < (aqy(2/m)* o(b — a) + a, 2t[m) ([ v"2(t) di)*/
is true. Since (1.7), we get (f5 v"2(f) dt)'/? = 0 and thus ([} v*(t) d)*/* = 0.

and

Lemma 3. Let g € Caro(D), hy, hy € L(a, b) and let the problem (2.1), (2.2) have
only the trivial solution. If there exists g* € L(a, b) such that

lg(t, %, y)| £ g*(t) on D,
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then the problem
v" = hy(t)v + hy(t) v + g(t,v,v), (22)
is solvable
Proof. See [8], Theorem 2.4, p. 25.

Lemma 4. Let ay, a,, by, b, € L(a, b) and for any h,, h, € L(a, b) satisfying
(24) aft) S h(t) S b(t) for a<t<b, i=12,

let the problem (2.1), (2.2) have only the trivial solution.
Then there exists y € (0, +o0) such that for any hy, h, € L(a, b) satisfying (2.4)
the inequality

(2.5 \a_q(t,_s) +|G(t,s)| v, ast, s<b

ot

is fulfilled, where G is Green’s function of the problem (2.1), (2.2).
Proof. See [8], Lemma 2.2, p. 12.

3. Lemmas for a priori estimates. Lemma 5. Let r € (0, + o), let hy, h; € I*(a, b)
be non-negative functions satisfying (1.5) and we Cary[a, b] x R;) a non-
negative function, non-decreasing with respect to its second variable and satisfying
(1.6). Then there exists r* e (r, + ) such that for any function ve AC'(a, b) the
conditions

(3.1) v(a) = v(c), o(d) = v(b),

(3.2 Av"(t)sgno(t) >0 for |v(t)) >r, te[a,b],

(63 WO S b6 W]+ 1O 0] + ol + 7). astsb
imply the estimate

(3.4) lo(e)] + lv'(t)l <r¥ for a<tsbh.

Proof. The condition (3.1) implies the existence of ¢y, t, € (a, b) such that v'(t,) =
= v'(t,) = 0. If ()| > r on (a, b), then by (3.2), v’ has to be strictly monotonous
on (a, b) and we get a contradiction. Therefore there exists t, € (a, b) such that
o(to) = co, Where |co| < 7. Put y(t) = v(t) — ¢, for a £t < b. By virtue of (3.3),
O] = hy(2) ()] + hao() |y ()] + @(t, o] + |v']) + Bs(f) r for a <t < b. In-
tegrating the last inequality from ¢ to t; and applying the Holder inequality, we get

|y ()] = (J2 ki) ds)*> (2 y2(s) ds)'7* + (G 3(s) ds)'* (o y'*(s) ds)*'* +
+ 5 (s, [o] + [v']) + hy(s)r)ds, a<t=<h.
Put ¢, =max {|y'(t)|: a < t < b}. Then |y(t)] < (b — a) @ and we get
00 = ([& hi(s) ds)!* (2 y*(s) ds)'/* + (f2 h3(s) ds)*"* (fa y'*(s) ds)** +
+ [2(os, 7 + 0o(1 + b — a)) + hy(s) ) ds.
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By Lemma 1, we obtain

(I y*(s) ds)'72 < (2(b — a)fm) ([& y'*(s) ds)*’?

(276097 oo - ',

and since

we have
0o = [(f2 i(s) ds)'2 2(b ~ a)*2[m + (f2 h3(s) ds)''2 (b — @)'*] 0o +
+ (s, r + go(1 + b — a)) + hy(s)r) ds.
In view of (1.5) and (1.6) there exists ¢* > 0 such that for any ¢ > ¢* the inequality
[ 1306) )" 206 — )2 + (L) 4917 (5 — )] ¢ +
+ (s, r + o1 + b —a)) + hy(s)r)ds < ¢
is satisfied. Consequently ¢y < ¢*. Putting
*=r+o¥b—a+1),
we get the estimate (3.4).

Lemma 6. Let a4, a, € (0, + o) satisfy (1.7), let hy, h, € L(a, b) satisfy (1.8) and
let weCar[a,b] x R,) be a non-negative function, non-decreasing with
respect to its second variable and satisfying (1.6). Then there exists r* € (r, + o)
such that for any function ve AC'(a, b) the conditions (3.1) and
(3:5) [v" = hy(t) v — hy(2) v'| £ (1, |0] + |v]), aStZDh
imply the estimate (3.4).

Proof. Put hy(f) = v"(t) — hy(t) v(t) — hy(t) v'(t) for a
the equation
(3.6) v" = hy(t) v + hy(t) v + ho(t).
Since hy, h, satisfy the conditions of Lemma 2, the problem (2.1), (2.2) has only

the trivial solution. Consequently, by Lemma 4, there exists y € (0, + o) such that
Green’s function G for the problem (2.1), (2.2) fulfils the estimate (2.5). Therefore

the solution
o(t) = [2G(t,s) ho(s) ds

of the problem (3.6), (2.2) satisfies the estimate

IA

t £ b and consider

()| + [v@)| < v fbols, o] + ['])ds for a<t<b.
Putting max {|uo(f)| + |v'(¢)|: a < t £ b} = o, We get
20 = 2 o(t, 0o) dt .
It follows from (1.6) that there exists #* > 0 such that
y fbw(t,0)dt <o forany o >r*.

Therefore gy < r* and Lemma 6 is proved.
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4. Proofs of Theorems.
Proof of Theorem 1. Let &, € (0, + o0) satisfy
4.1) (b= a)"2[(J2(hy(t) + &)* d1)*"*2(b — a)[n + (J5 h3(r) d1)'*] < 1

and let r* be the constant constructed by means of Lemma 5 for the functions
hy(f) + &, hy(t) and @(t,5) = o(t,s + ro + r1) + hy(t) 7o + hy(t) 74 + 2|¢| and
for the constant # = r + r,. Put

1 for 0 <s=<r*
x(r*,s) =42 — s[r* for r* <s<2r*
0 for s = 2r*,

g(t, x,y) = f(t, x + go(1), ¥ + go(1)) — 22,
gt x, y) = 2(r*, |x| + [¥]) 9(t, x, »)
and consider the equation
(4.2) v" = Aev + §(t,v,0"), €€(0,¢)].
Since ¢ satisfies the assumptions of Lemma 2, the problem
V' = Jdev, (2.2)

has only the trivial solution. Consequently, by Lemma 3, the problem (4.2), (2.2)
has a solution v.

Clearly v satisfies (3.1). Now, let v(f) > 7 for some ¢ € [a, b]. Then v() + go(f) > r
and

20"(1) = Ax(r*, |o] + |v']) (f (5, v + go(t), " + go(1)) — 20) + € v(r) > 0.
Analogously, if v(f) < —F, then v(t) + go(f) < —r and Av"(t) < 0. Consequently,
v satisfies (3.2) with the constant . Further,

")) < |f(t, 0 + go» v + go) — 20| + €]v] <
< () (] + o) + halt) (o] + 7,) +
+ 2l + aoo] + 00, ol + 7o + 0] + 7)) =
= (hy(1) + &) |v| + hy(t) |0 + ®(1, |v] + |v']) for a=t<b.
It follows from (4.1) that the functions hy + &, h, satisfy (1.5). Since  satisfies

(1.6), there exists ¢* > 0 such that for any ¢ > ¢* the conditions ry + r; + ¢ < 2¢
and

b
lim .21_ (@(t, 20) + ha(t) 7o + ha(t) 7y + 2Jaf) dt = 0

e~ +w 20

are fulfilled. Therefore & satisfies (1.6) and, by Lemma 5, the estimate (3.4) is valid.
Thus v is a solution of the equation

v = Aev + g(t, v, v')
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and u = v + ¢, is a solution of the equation
(4.3) u” = Je(u — go(t)) + f(t,u, u")

and satisfies the conditions (1.2).

~ Consequently, for any ¢€ (0, &) there exists a solution u, of the problem (4.3),
(1.2) satisfying the estimate

lu + |us] S7v* + 71+ 7y for a<t=<b.

It follows that all functions of the set {u,: & € (0,¢,} are uniformly bounded together
with their derivatives and so also equi-continuous on [a, b]. Therefore, by the
Arzela-Ascoli lemma there exist a sequence (&)=, & — 0 for k — oo, and a sequence
(#,)5=1 uniformly convering together with (u,)i>; on [a, b], such that uy(f) =
= lim u,(¢) is a solution of the problem (1.1), (1.2).

k= +o
Proof of Theorem 2. Let r* be the constant constructed by means of Lemma 6
for the function

a(t,s) = a(t,s + ro + 1) + |hy(t)| ro + |h2(t)] 1y + 2| .

Put
1 for 0Zs=<r¥
x(r*,s) =42 — sfr* for r* <s<2r*
) 0 for s = 2r*,

9(t, %, y) = £(t, x + go(t), ¥ + 9o(t)) — 220 — hy(1) x — hy(1) y,
g(t, x, y) = 2™ || + |y]) 92, %, »)

and consider the equation

(4.4 v" = hy(t)v + hy(t)v' + §(t,v,0).

By Lemma 2, the problem (2.1), (2.2) has only the trivial solution. Consequently,
by Lemma 3, the problem (4.4), (4.2) has a solution v. Now (1.9) implies

[v" — hy(t) v — hy(t) V| S |F(t, 0 + o, 0" + g0) — hy(t) 0 — By(t) v — 24 <
< (60 + go. 0" + g5) — hy(t) (v + go(£)) — ha(t) (v" + g0)| +
+ [hy()] 7o + |ha(B)] 71 + 2|a] S @(t, [0 + go| + [0 + go|) + |hu(1)] 7o +
+ |h(t)| 7y + 2laf S @(t, [o] + |v']) for a<t<b.
In the same way as in the proof of Theorem 1 we can show that & satisfies (1.6).
Consequently, by Lemma 6, the estimate (3.4) is valid and v is a solution of the
equation
v" = hy(t) v + hy(t)v' + g(t,0,v).

Therefore u = v + g, is a solution of the problem (1.1), (1.2).

Proof of Theorem 3. Let us assume that the problem (1.1); (1.2) has two solu-
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tions 4, u,. Put v = u; — u, on [a, b]. Then

(4.5) v(c) — v(a) =0, v(b) —ov(d) <0

and thus there exist ¢, €(a, ¢), 1, € (d, b) such that v'(t,) = v'(t;) = 0.
First, let us suppose that

o(to) + 0 for some toe(ty,1,).

Without loss of generality we may consider that v(to) > 0. Then there exist t,, t* €
€[, t,] such that

(4.6) o(t) >0 for te(ty,t*) and v'(t,) 20, v(*)<0.
From (1.10) we get

o"(t) + h(t)v'(f) > 0 for t, <t <t*, where h(t)= h(t)sgnv'(f),
and thus the inequality

(4.7) (exp (J5 A(s)ds) v'(t)y >0 for t, <t<t*
is satisfied. Integrating (4.7) from t, to t*, we obtain, by (4.6), that
(4.8) 0 = exp ([i" h(s) ds) v'(1*) — exp (i h(s) ds) v'(t4)) > 0.

The contradiction (4.8) implies v(t) = 0 for t; < t < t,.
From this, according to (4.5), we get

(4.9 v(a) = v(c) = v(d) = v(b) = 0.
Now, let us suppose that
u(to) > 0 for some to€(a,t;) [to€(ts, b)] .

On the basis of (4.9) we can find ¢y, t* € [a, t,] [€ [t,, b]] such that the conditions
(4.6) are fulfilled. Therefore we obtain the contradiction (4.8) in the same way as
in the first part of this proof. Thus v(t) = Ofora < t < b.
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