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STRUCTURE SPACES OF LATTICE ORDERED GROUPS
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Structure spaces of (non-ordered) rings were studied in the book [2]. In the
present paper we introduce structure spaces of lattice ordered groups (I-groups).
If G is an l-group, then the structure space of G is the set %,(G) of all its proper prime
subgroups with a topology induced by a topological closure operator on exp %,(G).
For any l-ideal I of G we study homeomorphisms between some subspaces of %,(G)
and the structure spaces of the I-groups G/I and I. Furthermore, analogous homeo-
morphisms for the spaces of closed prime subgroups are also found. It is proved
that the space of closed prime subgroups of any I-group is homeomorphic to the
corresponding space of some completely distributive I-group.

In the second part we solve analogous problems for spaces of prime ideals of
l-groups. It is shown that for any representable I-group G there exists a completely
distributive representable I-group with the homeomorphic space of prime ideals.

The paper uses notions and results from the books [1] and [3] (in the additive
form).

1. Let G = (G, +, <, A, V) be a lattice ordered group (an I-group), A a convex
I-subgroup of G. For any x, ye G, we put x + A < y + A if and only if there exists
a € A such that x £ y + a. Then the relation “<’ is an order of the set G/ 1A of all
left classes modulo A4 and (G/,4, <) is a lattice. A convex I-subgroup A4 is called
a prime subgroup if G[,A is a linearly ordered set. If G % 0 is an I-group, then we
denote the set of all proper (i.e. different from G) prime subgroups of G by € ,(G).

Let x = €,(G). Then we will denote

2% = (\(P; Pex),
X ={Qe%,G); 2x = Q}.
Theorem 1.1. If G % 0 is an I-group, then ~: exp %,(G) — exp %,(G), where ~
x > X, is a topological closure operator on exp ,(G).
Proof. 1. 2¢ = \(P; Pe ¢) = G, hence ¢ = {P; Pe%,(G), G = P} = ¢.
2. If Pex, then 9x < P, thus x < X.

3. If PeX, then 29X = (\(Q; Q€X) < P. But for any Q €X we have 9x < Q,
therefore 9x < P, and so P € X. This means X = X.
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4. Let X,y € 4,(G). We have XUY S XxUy. Let PexUy, i.e. (XUy) S P.
If ae P, then
aeg(xvuy)eac)(Q; Qexuy)«waec(R;ReX)
and
ae\(S; Sey)<aecPxn 9y,

hence @(X v y) = 2x N Py. Moreover, 2x and Py are convex l-subgroups of G,
P € %,(G), hence we have (by [1, Théoréme 2.4.1]) 9x = P or 9y < P. Therefore
PeXor Pey, hence xUuy S XUY.

Definition. The set %,(G) with the topology induced by the closure operator
on exp %,(G) such that X = {P € €,(G); 9x = P} for each x = %,(G), is called the
structure space of an I-group G.

Note. It is clear that € ,(G) is a T,-space but, in general, it is not a T;-space.

Theorem 1.2. Let I be an l-ideal of an l-group G, x; = {P € 4,(G); I < P}. Then
the mapping f:x; — €,(G[I) such that f(P) = P|I for any PeX,, is a homeo-
morphism of the space X; onto the structure space of the l-group G|I.

Proof. Let I be an l-ideal of G, x; = {P € ¥,(G); I < P}, P e x;. Then the ordered
sets (G[I)/(P[I) and G[,P are isomorphic. Moreover, G/[,P is, by the assumption,
linearly ordered, hence P|I is a prime subgroup of G[I and P[I % G/I, therefore
P[I e %,(G[I).

Conversely, let Re %,(G[I). Let us denote P = {xe G; x + I e R}. It is clear
that P is a convex [-subgroup of G, I = P # G, and that R = P/I. Moreover, the
ordered set G/,P is isomorphic to the ordered sct (G[I)[,R, thus G/,P is linearly
ordered, i.e. Pex;. Therefore f:x; — %,(G[I) such that f(P) = P[I is a bijective
mapping which evidently respects any set intersections.

Let y < x,. Then we have f(§) = {f(P); P 2 N(Q; Q €y). Since f respects inter-
sections, we obtain

f(P)2/(NQ; Qey) = N(f(Q; Qey),

hence
J@) = {/(P); f(P) 2 N(f(Q); QeY).
Moreover,
2f(y) = N(R; Ref(y)) = N(F(Q); Cexr. f(Q)ef(y),
thus

1) = {/(S)e €,(GD); 2f(y) = f(S)} -

Thus f(§) = f(y), therefore f is a homeomorphism of the space x; (with the topology
induced by the space ¥ p(G)) onto the structure space of the I-group G/I.

Proposition 1.3. If G is an I-group, I an l-ideal of G and Q a prime subgroup of I,
then

0:1={zeG; |z| A |x|€ Q, forall xeI}
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is a prime subgroup of G and
0=(Q:)nI.
Proof. Let z,,z,€ Q : I, xel. Then
0 = |z = zo| A x| = (24| + 23] + [z4]) A x| =
< (2] A []) + (2] A ) + (|2a] A [¥) e @,
hence Q : I is a subgroup of G. It is evident that Q : I is a convex /-subgroup of G.
Leta,be G\(Q :I), a A b=0. Since a, b ¢ Q :1, there exist x,, X, € I such that

anlx|¢Q, bAlx|¢Q. Clearly 0 <a A |x]el, 0 <b A |x|€l. Since Q is
a prime subgroup of I, we have (by [1, Théoréme 2.4.1], [3, Teorema II1.3.1])

(@ A lxd) A (b A|x]) >0.
However, the assumption implies
0=anb(anl|x])r(dAlx)>0,

a contradiction. Therefore Q : I is a prime subgroup of G.

Let ce Q, xel. Then 0 < || A |x| < |c| € @, hence |c| A |x|€ Q. Thus ce Q: 1,
and so 0 = (Q:I)n1.

Conversely, let de(Q :I)n 1. But then de Q :1, d el, hence necessarily |d| =
= |d| A |d| € Q. Since P is a convex I-subgroup, d € Q, therefore (Q :I)nI < Q.

Theorem 1.4. Let I be an l-ideal of an l-group G, x(I) = {Pe%,(G); I & P}.
Then the mapping g:x(I) - 6,(I) such that g(P) = Pn1I for any Pex(l), is
a homeomorphism of the space x(I) onto the structure space of the l-group I.

Proof. Let Pex(I), P, = PnI. Then P + I is a convex l-subgroup of G and
the ordered sets I/,P and (P + I)/,P are isomorphic. Since P is a prime subgroup
of G, it is a prime subgroup of P + I, too, and hence P, is a prime subgroup of I.
Moreover, P + I # P, thus P, € B ,(I).

Let P, Qex(I) be such that g(P) = g(Q). Then PnI < Q, hence P = Q or
I = Q. By the assumption, I &£ Q, thus P = Q. Similarly Q < P, therefore g is an
injection.

Hence, by Theorem 1.3, we get that g is a bijective mapping of x(I) onto %,(I).

Let us show that g is a homeomorphism. Let y < x(I). Let us put y, = {g(R);
Rey}. Let Peynx(I). Then P 2 Py, hence Pn1 2 Zynl = (RnI; Rey).
This means that for the closure ¥, of the set y, in %,(I) we have g(P) = PnI€¥,.

Conversely, let Pex(I) be such that g(P)e¥,. Then PnI = PynI, thus
2yn1 < P.Since I £ P, we have 9y < P, and this means that P €.

If A is a subset of an I-group G, then A is called closed if it satisfies the following
condition: '

If a,e A, a € I', and if there exists b = V(a,; oE F) in G, then b € A.

Let G + 0 be an l-group. Let us denote the set of all proper closed prime sub-
groups of G by %,(G). If y < %,/(G), then Dy is a closed convex I-subgroup of G
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and (by [1, Proposition 6.1.10], [3, Lemma IX.2.4]) § S %,/(G). Hence, if we
consider %,(G) as a subspace of the structure space €,(G), then the closure of y
in €,/(G) is the same as in € ,(G).

Theorem 1.5. Let I be a closed l-ideal of an l-group G, x; = {P e %,G); I < P},
X = Xy N €,(G), and let f, be the restriction of the mapping f:x — €, G|I)
from Theorem 1.2 on the set x.;. Then f. is a homeomorphism of the space X,
onto €,(G/I).

Proof. a) Let Pex,;. Then P[I € €,(G/I). Let us suppose that z,€ P, a € I', and
that V(z, + I; ae I') exists. Since I is a closed l-ideal of G, the natural homo-
morphism y: G — G|I preserves all joins (by [1, Proposition 6.1.5], [3, Lemma
IX.2.1]), hence

V(z, +1; aeT) = V(Y(z,); aeT) =
=Y(Vze; a€l) =V(z5 €l) +1I.

Since P is closed, we now get that V(z,; ae I') € P, and so V(z,; a€ I') + I e P[I.
Similarly we obtain that P/I is closed with respect to any meets. Therefore P[I is
a closed prime subgroup of G/I, i.. P[I € €,(G[I).

b) Let Pe €,(G), P/ € %,{(G/I). Let us consider us € P, B € 4, and suppose that
V(ug; B € 4) exists. Then

W(V(ug; Be 4)) = V((ug); Be 4) = V(uy + I; Be 4).

Since P[I is closed, we get that W(V(ug; B e 4))e P[I, hence V(uy; fe 4)e P.
Similarly for any meets. But this means that P € %,.(G), therefore P € x,;.

Hence f, is a bijection of X, onto %,,(G/I). Moreover, the closures of the subsets
of x,; in €,/(G) and in %,(G) are the same, and also the closures of the subsets of
%,/G[I) in %,(G/I) and in %,(G[I) coincide. Thus f, is a homeomorphism.

The distributive radical D(G) of an I-group G is the intersection of all closed
prime subgroups of G.

Theorem 1.6. If G # 0 is an I-group, then its space %pc(G) is homeomorphic to
the space €,/(G’) for some completely distributive I-group G'.

Proof. By ([1, 6.2.2]) the distributive radical D(G) is a closed I-ideal of G which is
contained in all prime subgroups of G. Hence the set x, from Theorem 1.5 is equal
to €,/G), and thus f, is a homeomorphism of %,(G) onto %,(G/D(G)). But the

factor I-group G/D(G) is (by [3, Teorema IX.2.2]) completely distributive, and this
implies the assertion.

2. Let G # 0 be an I-group. Let us denote the set of all proper prime ideals (i.e.
normal prime subgroups) of G by Z,(G). If z = £ ,(G), we put

2,z = (\(P; Pez),
7={Qe%,G); 2,z < Q}.
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Theorem 2.1. If G = 0 is an I-group, then ~: exp & (G) — exp £ ,(G), where ~:
z > Z, is a topological closure operator on exp & (G). :
Proof. It is analogous to the proof of Theorem 1.1.

Definition. The set £ ,(G) with the topology induced by the closure operator on
" exp Z,(G) from Theorem 2.1 is called the space of prime ideals of anl-group G.

Theorem 2.2. Let I be an l-ideal of an l-group G, z; = {Pe £,G); I < P}.
Then the mapping f,:2; > £ ,(G|I) such that f,(P) = P[I for any Peuz, is
a homeomorphism of the space z; onto the space of prime ideals of the l-group G|I.

Proof. The assertion follows from Theorem 1.2.

Proposition 2.3. If G is an l-group, I an l-ideal of G and Q a prime ideal of I,
then
Q:1={zeG; |z| A |x|€Q forall xel}

is a prime ideal of G and
‘ 0=(Q:I)nI.
Proof.-By Theorem 1.3, it is sufficient to prove that if Q is a prime ideal of I, then
the prime subgroup Q : I is normal. Let ze Q : I, xel, a € G. Then
|—a+z+alalx]=|-a+z+aAa|-a+a+x|=
i =|-a+z+a| A|-a+u +ad,
where u, €l. Moreover,
|-a+z+a|A|-a+u,+a=(—a+]|z[+a)n
A(=a+u +a)=—a+(z] Au) +a,
and since |z| + |u,| € Q, we have —a + (|z] A |u,]) + a€ Q,ie. |—a + 2z +a| A
A lxle Q.
Therefore Q :1 is a prime ideal of G.

Theorem 2.4. Let I be an l-ideal of an l-group G, (I) = {Pe Z,(G); I & P}.
Then the mapping g,:2z(I) - £ (I) such that g,(P) = P11 for any Pez(l) is
a homeomorphism of the space z(I) onto the space of prime ideals of the l-group I.

Proof. By Theorem 1.4 and Proposition 2.3 it is evident that g, is a bijection
from z(I) onto &£ (I).

The fact that g, is a homeomorphism can be proved in a similar way as for the
mapping g in the proof of Theorem 1.4.

Let G # 0 be an I-group. Let us denote the set of all proper closed prime ideals
of G by Z,(G). If v £,(G), then 9,V is a closed l-ideal of G and ¥ = Z,(G).
Thus the closure of v in the subspace & pc(G) coincides with its closure in the space
Z(G).

Theorem 2.5. Let I be a closed I-ideal of an l-group G, z; = {Pe £ (G);I = P},
zg = 2,1 Z,(G), and let f;, be the restriction of the mapping fy: 2 » & ,(G[I)
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Jrom Theorem 2.2 on the set z.;. Then f,. is a homeomorphism of the space z
onto the space & ,(G|I).

Proof. The assertion follows immediately from Theorems 1.5 and 2.2.

Theorem 2.6. If G # 0 is a representable I-group, then its space of prime ideals
£ ,d(G) is homeomorphic to the space of prime ideals & ,(G') for some completely
distributive representable l-group G'.

Proof. If G is a representable I-group, then each of its minimal prime subgroups
is normal. ([4, Satz 7.4], [1, Théoréme 4.2.5]). Moreover, the closure of any l-ideal
of G is an l-ideal of G, too. Hence the distributive radical D(G) is in this case equal
to the intersection of the closures of all minimal prime ideals of G, and therefore f;,
is a homeomorphism of Z,(G) onto £ ,(G|/D(G)).
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