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In the paper [3], K. L. N. Swamy introduced the notion of the autometrized
algebra which is a generalization, for example, of I-groups and Brouwerian algebras.
Ideals in autometrized algebras are studied by K. L. N. Swamy and N. P. Rao in
[4], where the polars of ideals are also introduced. Prime ideals in autometrized
algebras are studied by the author in [2]. In this paper properties of polars in connec-
tions with ideals and prime ideals are discussed.

A system A = (A, +, <, %) is called an autometrized algebra if

(1) (4, +) is a commutative semigroup with zero element 0;

(2) (4, £) is an ordered set and

Va,b,ceA; a<b=>a+c<b+c;
(3) *: A x A > Ais a mapping such that
Va,beAd; a*xb=20 and axb=0<a=5»b,
Va,beA; axb=bxa,
Va,b,ceA; axc=(axb)+ (b*c).
If (4, <) is a lattice and
Va,b,ceAd; a+(bve)=(a+b)v(a+ec),
a+(bacy=(a+b)Aa(a+c),
then A is called a lattice algebra (an l-algebra).

If

VYVaeA; a=<ax0,
Va,b,c,deAd; (a+c)*x(b+d)<(axb)+ (cxd),
Va,b,c,ded; (axc)*(bxd) < (axb)+ (cxd),
Va,beAd; a<b=3x20; a+x=0b,

then we say that A is a normal algebra.

If
Vaed; a=z0=ax0=a,

then A is called a semiregular algebra.
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An ordered semigroup A with zero element O is said to be an inierpolation semi-

group if
Va,b,ceA; [0<a,bc,a<b+c=
=>(30=b,;£b,0=Z¢;S¢c;a=by +¢)].

For instance, every commutative I-group and every Brouwerian algebra is an
interpolation semigroup. (For I-groups see e.g. [1, p. 21], for Brouwerian algebras
it follows from the distributivity.)

If A = (4, +, <, *) is an autometrized algebra, § & I = A, then I is said to be
an ideal in A if

Va,bel; a+ bel,
Vael, xeAd; x*x0ZLa*x0=>xel.

Let us suppose that 4 = (A, +, <, *) is an autometrized I-algebra, a, be A.
We say that a and b are orthogonal (notation a L b) whenever
) (a*0) A (bx0)=0.
If B < A, then
B ={xed; x L b forall be B}

is called the polar of the set B.
We say that C = 4 is a polar in A if there exists B < A such that C = B*. The
set of all polars in an algebra A will be denoted by 2(A).

Theorem 1. Any polar in a normal interpolation autometrized l-algebra A is an
ideal in A.

Proof. Let B < A4, x, y € B, b e B. Since A is normal, we have
[(x+)*0] A (bx0) < [(x*0) + (y*x0)] A (b+0).
But A is also an interpolation algebra, hence we obtain
0<[(x+y)*0] A (b*0) S [(x*0) A (b*0)] + [(y*0) A (b*0)] =0,
therefore x + y € B*.

IfxeB*Y,acA,a+0 < x 0, then evidently a € B*.

For an autometrized algebra A the set of all its ideals will be denoted by #(4).
If A4 is normal, then J(A) ordered by set inclusion is a complete algebraic lattice in
which the infimum of any system of ideals is formed by the intersection of that
system ([4, Theorem 1]). If B = A, then we denote the smallest ideal in A containing
B by I(B). For a € A we shall write I(a) instead of I({a}).

We have

IB)={xeAd; x*0 =< (by*0)+ ... + (b,*0), by,...,b,e B},
I(a) = {xe4; x+0 < m(a * 0), for some positive integer m} .

Theorem 2. If A is a semiregular normal interpolation autometrized l-algebra,
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B < A, then
B* = {xe 4; I(x) nI(B) = {0}} .
Proof. a) Let x e BY, zeI(x) nI(B). Then there exist an integer m = 0 and
elements by, ..., b, € B such that
z%0 < m(x*0),
z%0 = (b *0) + ... + (b, *0).
Since A4 is an interpolation algebra, it follows that
0=z*0=m(x*0) A [(by*0)+ ... + (b,*0)] <
< [m(x*0) A (by x0)] + ... + [m(x % 0) A (b, *0)] <
Sm[(x*0) A (by*x0)] + ... + m[(x*0) A (b,*0)]=0+...+0=0,
hence z * 0 = 0, and this means that z = 0. Therefore I(x) n I(B) = {0}.
b) Let us suppose that x € 4 is such that I(x) nI(B) = {0}. Let be B. Let us
denote ¢ = (x * 0) A (b *0). Then the semiregularity of the algebra A implies
cx0=c=xx0,
hence ¢ € I(x). Similarly
cx0=c=Zb=*0,
and thus c € I(B).
But then ¢ = 0 by the assumption, therefore x € B*.

Corollary. Any polar in a semiregular normal interpolation autometrized
l-algebra A is the polar of an ideal in A.

Proof. If B* is a polar in 4, then Theorem 2 implies B* = I(B)*.
An ideal I in an autometrized algebra A is called a prime ideal in A if
VJ,KeS(A4); JnK=I=J=1 or K=1I.
In addition, if A is a semiregular normal autometrized l-algebra, I a prime ideal
in A, then
Va,beA; O0=a Ab=ael or bel.

([2, Theorem 4].)

We denote the set of all prime ideals in A by £ ,(4).

Theorem 3. If A is an autometrized algebra, I € #(A), a€ A, a ¢1, then there
exists a prime ideal in A containing I and not containing a.

Proof. Let ae 4, I € #(A4), a ¢1. Let us denote
Z={JeSA); 1<, a¢l}.

Let us consider an arbitrary linearly ordered system (J,; «€I') of elements in Z
and let
K=U/J,.

acl
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If a, beK, then there exist ay, «, € I' such that ae J,,, be J,, and, for example,
Joy 2 J,,. Hence a,be J,,and so a + be J,, < K.

It is obvious thatif xe 4, ae K, x*0 < a %0, then x e K.

Thus K is an ideal in A and a ¢ K, therefore K € Z. This means that Z is an in-
ductive set, therefore Z contains a maximal element.

Let us consider any maximal element Lin Z. Let M,N e 4 (A), MAnN =L, and
let M o LLN > L. Thenae M,ae N, henceae M n N = L, a contradiction.
Therefore Le £ ,(A4).

Theorem 4. For any element a + 0 in an autometrized algebra A there exists
a prime ideal in A not containing the element a.
Proof. Since {0} € #(4), the assertion is an immediate consequence of Theorem 3.

Theorem 5. If A is a semiregular autometrized l-algebra, B < A, then B' is
equal to the intersection of all prime ideals in A not containing B.

Proof. Let C be the intersection of all prime ideals in A not containing B.

Let xeB*, Ie S, (A), B<I, beB\I. Then (x*0) A (b*0) =0 and con-
sequently b x 0 ¢ 1. (If bx0¢el, then also b €1, because in the case of a semiregular
algebra we have b0 = (b= 0) % 0.) Since I € £ ,(A), it follows x*0el, and so
also x el. Therefore B* < C.

Conversely, let x ¢ B, i.e., let there exist b e B such that (x x 0) A (b*0) > 0.
Let us consider I € #,(A4) such that (x*0) A (b*0)¢I. Then x*0¢I, bx0¢l.
The semiregularity of A yields x ¢ I, b ¢1. Thus x ¢1I, B & I, hence x ¢ C. But this
means C < B*.

Corollary. Any polar in a semiregular normal autometrized l-algebra A is an
ideal in A.

Now let A be a semiregular normal autometrized l-algebra. Then #(4) is a com-
plete algebraic Brouwerian lattice and for I € #(4) we have that I L1 is the pseudo-
complement of I in #(A). Further, the mapping that to any I € S(A) assigns I** is
a closure operator on #(4). ([4, Theorem 6, Lemma 7, Theorem 7].)

Theorem 6. a) If B, = A, a €T, then
NB; = (U B)*.

ael’ ael
b) If B,e #(A), ael, then
N B; = (V B)*,

ael ael

for the supremum in J(A).
Proof. a) Let x € (} By. Then x L b for each be U B,, hence N By = (U B,)".

ael’ ael ael ael
Conversely, if y e (U B,)*, then y L b for all be | B,, hence x € | B;, and so
(U Ba).l. c n Bi. ael ael ael’

ael ael

b) The assertion now follows immediately from Corollary of Theorem 2.
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Corollary. a) If B < A, then
B< B, B'=BL,
b) B < A is a polar in A if and only if B = B**,
Now by [4, Theorem 7] we obtain that 2(4) ordered by set inclusion is a Boolean

algebra. If Be #(A), then its complement is evidently formed by its polar B*. In
addition, by Theorem 6 2(4) is a Moore system, hence 2(4) is a complete lattice.

Theorem 7. If B,, a.€ I', are any polars in A, then in the complete lattice P(A)
we have

AB,=NB,, VB, =(NB)".

ael ael ael ael’
Proof. The first equality follows from Theorem 6.
Further, for any C e 2(A) we have C 2 U B, if and only if C* = (U B,)* and

ael ael

this is satisfied by Theorem 6 if and only if C 2 ( () B)*. Hence the second equality
follows. acl

Theorem 8. The mapping that to any I € J(A) assigns I'**

homomorphism of F(A) onto P(A).

Proof. The assertion follows immediately from [4, Theorem 7] and from Corollary
of Theorem 6.

Let us denote a* = {a}* for a € A.

is a surjective lattice

Theorem 9. If A is an interpolation semiregular normal autometrized l-algebra,
a,be A, then
att n bt = ((a*0) A (b=0)*,

att v ptt = ((a x0) v (b *0))“ .
Proof. If 4 is an interpolation algebra, then by [2, Proposition 2] we have
I(a) 0 I(b) = I((a = 0) A (b*0)),
1(a) V 50 I(b) = I((a » 0) v (b * 0)).

Therefore the assertion is a consequence of Theorem 8.
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