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1. PRELIMINARIES

Mal’cev conditions for varieties having directly decomposable tolerances and
directly ‘decomposable reflexive compatible relations were given independently
in [9] and [4]. Varieties having directly decomposable tolerance classes and directly
decomposable relation classes were studied in [3]. The aim of this paper is to show
that:

(i) the direct decomposability of tolerances (reflexive compatible relations)
coincides with the direct decomposability of tolerance classes (relation classes,
respectively) in varieties of algebras;

(if) Mal’cev conditions from [9], [4] can be replaced by simpler ones;

(iii) all the above mentioned properties of tolerances and reflexive compatible
relations in a variety ¥ can be considered only on the square Fy(2) x Fy(2) of the
V-free algebra Fy(2) over two free generators.

To make this paper selfcontained we recall some definitions:

Definition 1. Let A, B be algebras of the same type. The kernels IT,, ITp of the
canonical projections pr,: A X B — A, prg: A X B — B, respectively, are called
factor congruences on A x B. A binary relation R on 4 x B is called a subfactor
relation whenever R < IT, or R < II.

Definition 2. Let R be a reflexive binary relation on a set A and let a € A. Then
the subset [a] R = {x € 4; (x, a) € R} is called a relation class of R.In particular
[a] Tis called a tolerance class provided T'is a tolerance on A.

Definition 3. Let 4, B be algebras of the same type. The product 4 x B has
directly decomposable relations (relation classes) if every relation R (relation
class C) on A x B is a product of its projections {pr, prs» R and {prg, prgd R
(pr4C and pryC, respectively).

A variety of algebras V has some of the properties listed above whenever for every
A, BeV, A x B has the respective property.

In what follows, by a relation on an algebra 4 we mean a compatible relation on A,
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i.e. a subalgebra of A x A. It is well known and frequently used that for any subset
M = A x A the least tolerance T(M) and the least reflexive relation R(M) on A4
containing M exist. The functional descriptions of T(M) and R(M) are adopted
from [1].

The symbol ¢ stands for the finite sequence ¢, ..., ¢,

2. DIRECTLY DECOMPOSABLE TOLERANCES

Theorem 1. For a variety V the following conditions are equivalent:
(1) ¥ has directly decomposable subfactor tolerances;
(2) there exist binary terms cy, ..., ¢,, dy,...,d, and a (2 + n)-ary term r such
that the identities
x

r(x, y,¢”(x, ),
y =r(x,x,d>(x, ),
y = r(y, x,¢(x,y))

hold in V.

Proof. (1) = (2): Consider the principal tolerance T(<x, x>, (¥, x)) on the square
Fy(2) x Fy(2) of the V-free algebra Fy(2) over free generators x and y. Since
Lx,x), {y,x))eT({x,x), {y,x)) the hypothesis yields <{<x,y>, <y,yd>e
€ T(<x, x>, {y, x)). Using the functional description of T({x, x>, (¥, x)), see [1],
the identites (2) readily follow.

(2) = (1): Let T be a subfactor tolerance on 4 x BeV, say T < IT,. Assuming
the identities (2) we find

I

x = r(x,x,d”(x,x')),
1y, z,¢7(,2)),
x' = r(x, x,d”(x,x')),
z =r(z,y,¢7(y,2),

ie. {Kx, ¥, <x,z)) e T implies (Kx', y)>, {x’,z)>e T for any x,x' € A, y,z€B.
The proof is complete.

|

Remark 1. The Mal’cev condition for varieties having directly decomposable
subfactor congruences was given by J. Hagemann [8].

Lemma 1. Let A, B be algebras of the same type. For any tolerance class
[Kz4, zz>] T on A x B the following conditions are equivalent:
(1) [<z1, z2>] Tis directly decomposable;
(2) (i) <x, > €[z, 22)] Timplies {x, 2,5, {z1, y> € [{21, 22)] T;
(ii) {x,230,{21, YD € [<21, 22>] Timply {x,y) € [<7-1, Zz)] T.
Proof. (1) = (2) is trivial.
(2) = (1): Let <a,b), <a’, b'ye[{zy,2z,)] T. Then a, 2,5, <z, b') € [{zy, 2,0] T,
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by (2)(i). So <a, b’y €[{zy, z,)] T, by (2) (ii). The last argument establishes the
direct decomposability of the tolerance class [{z,, z,)] T.

Lemma 2. Let A, B be algebras of the same type. The following conditions are
equivalent:

(1) A x B has directly decomposable tolerances;

(2) A x B has directly decomposable subfactor tolerances and directly de-
composable tolerance classes.

Proof. Only the implication (2) = (1) is nontrivial: Let T be a tolerance on 4 x B
and let {{a, b),<c,d)>, La',b'>,{c',d'>) e T. Since {{a,b),<c,d)), {c,d),
{c, d)) e T, the direct decomposability of tolerance classes yields <{a, d), {c,d)) €
€ T. Then also {{a,d'>,{c,d'>) e T by the direct decomposability of subfactor
tolerances. Analogously from {{c¢’,d'>, {c’,d'))>, {La',b'),{c',d')> e T we find
K, b, {c,d'Yye T and, further, {{c, b'),<c,d'>>e T. Altogether <{({a,d"),
{c,d')), e, b"),<c,d">) e T which implies {{a, b'), {c, d")> € T. This proves the
direct decomposability of T, see [2; Thm 1, p. 227].

Theorem 2. For a variety V the following conditions are equivalent:
(1) Vhas directly decomposable tolerances;
(2) V has directly decomposable tolerance classes;
(3) there exist ternary terms py, ..., Py 41, ---» 4, and a (4 + n)-ary term s such
that the identities
x = s(x,y,z,2,p°(x, 5, 2))
y=s(x,5,22¢(x,,2),
z =5(z,2z,x,y,p”(x, y, 2)),
z=15(z,2,x,y,4(x, y, 2))
hold inV;

(4) there exist binary terms fi, ..., fy+2,91> - Gns2s Bys .., by, Ky, ... k, and
(4 + n)-ary terms sy, s, such that the identities

S\, X, g \X, Y
sl(y7 x’f—’(x: .V)) (21)
si(x, v, 97(x, )

SZ(xa y’ Y, ya h—’(x, y))

s2(x, %, y, x, k7(x, y)) (%)
SZ(y’ X, Y, y9h—'(x> y)) z
= 5,(x, x, x, y, k”(x, y))

® e ® R
L [ A I

X e ow
Il

hold in V.
Proof. (1) = (2) is trivial.
(2) = (3) was already shown in [3; Thm 4, p. 400].
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(3) = (4): Setting z = y in the identities (3) we find that

x =5(x9,50p7(xY),
=5(x, 5,594 (x5, 5),
y=5(,y,%.p7(x),
y=5(0,5.%4 (7).
Interchange the variables x and y in the second and the fourth identities. Then

x =s(x,,99.p7(x7),
x =s(y, x, x,x,¢4°(y, x, x)),
y =5y, 5% .07 (x,5,9),
x = s(x,x, y,x,47(, x, X)) .
Defining
sy(a, b, w™) = s(a, Wyu 1, by Wy, W,y oy W) 5
(% 9) =pi(*. 9, ), .. Px, ¥, 9), y, ¥, and
9 (x,y) = ¢:(y, x, x), ..., gy, x, x), x, x
we get the identities (Z,).
Setting z = y in the first and the third identities (3) and z = x in the remaining
ones we obtain
x = 5(x, 9,9, 5,07(x, 7, ) »
y =s(x,y,%,x,47(x, y, %)),
y=5(y,5%y.p7(x,5.),
x = s(x,x,x,y,47(x, y,x)) .
Now the identities (X,) follow for
sy(a, b, c,d,w”) = s(a,c,b,d,w”),
h(x,y) =p~(x,y,»), and
E(x,y) =q7(x, »,x).
(4) = (1): The identities (Z,) ensure the direct decomposability of subfactor toler-
ances. Defining
Ha, b, w™) = 55(a, b, Wi 1, Woi 2 Wiy oociW,)
¢ (x,y) = hy(x, ), ... b(x,y),y,y, and
d>(x,y) = ky(x, ), ... k(x, ¥), y, x
we get the identities from Theorem 1 (2).
Further, the identities (Z,) yield
x = 8;(x, 20, (%, 2¢))
Zy = 31()’, zz,g"(Zz, J’)) >
zy = 84(z4, X, f7(%, 21)) .

Zy = sl(ZZ: Vs g—’(229 .V)) H
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which means that {x, z,) € [{zy, z,)] T whenever {x, y) € [{z,, 22)] T. Similarly
y =510, 22.7(y, 22)) ,
zy = 854(x, 24, 97 (24, X))
Z; = 51(22, y,f_'(}’: Zz)) >
zy = 84(zy, X, 97(24, X))
follow from the identities (X, ). This establishes that {zy, y) € [(zy, z,)] T whenever
{x,y>e [(Zb Zz>] T.

Finally, we use again the identities (Z,). One easily checks that
x = 85,(x, 24, 24, 23, h"()lc, z4)),
y sz(zz, Z2: Y, 225 k_’(zz, J’)) >
2y = 85(21, X, 23, 24, B7(X, 24)) ,
Z; = 52(22» 23,23, ), k_'(zz, .V)) B

which proves that {x, y>€[{z,,z,)] T is a consequence of <{x,z,),{z;,y)€e
€[{zy,z,)] T. Lemma 1 and Lemma 2 complete the proof.

Il

Coroilary 1. For a variety V the following conditions are equivalent:

(1) V has directly decomposable tolerances;
(2) Fy(2) x Fy(2) has directly decomposable tolerances.

3. DIRECTLY DECOMPOSABLE REFLEXIVE RELATIONS

In this section we generalize the above results to reflexive relations. Since the
proofs of Theorems 3, 4 are very similar to those of Theorems 1, 2 we omit the details.

Theorem 3. For a variety V the following conditions are equivalent:

(1) ¥ has directly decomposable subfactor reflexive relations;
(2) there exist binary terms ¢y, ..., ¢,, dy, ..., d, and a (1 + n)-ary term u such
that the identities

x = u(x, c”(x,)),
y = u(x,d”(x,)),

y = u(y, e(x, )
hold in V

Proof. Apply [1] and the proof of Theorem 1.

Theorem 4. For a variety V the following conditions are equivalent:

(1) ¥ has directly decomposable reflexive relations;
(2) V has directly decomposable relation classes;
(3) there exist ternary terms py, ..., Py, 41, ---, 4, and a (2 + n)-ary term v such
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that the identities

= o(x, y, p"(x, 5, 2)) »
=v(x, y, 4" (x, ,2)),
=z, z,p"(x, 5, 2))
vz, z, 47 (x, ¥, 2))

NN < X
|

hold in V;

(4) there exist binary terms fi, ..., fos1, 91> - Gns1s By, .., by Ky, .. K, and
(2 + n)-ary terms vy, v, such that the identities

= v,(x, f7(x, 5)) »

= ”1()’, .‘I—’(x, )’)) ’

0 (3, f7(x, )

= ”1(3‘, y"(x, )’)) ,
v,(x, y, B”(x, ),
”2(?‘, Y k"(x, ,V)) s
(v, v, B7(x, 5))
vy(x, x, k7(x, y))

¥ e " X B < Y R
Il

hold in'V.
Proof. (1) = (2) is trivial.
The implication (2) = (3) was already proved in [3; Thm 5, pp. 400—401].
The rest of the proof follows the same lines as in the proof of Theorem 2.

Corollary 2. For a variety V the following conditions are equivalent:
(1) V has directly decomposable reflexive relations;
(2) Fy(2) x Fy(2) has directly decomposable reflexive relations.

Example 1. The variety L of all lattices satisfies all the above identities. This
follows directly from the fact that Fy(2) = 2 x 2.

4. CONCLUSION

The Mal’cev condition for varieties having directly decomposable congruences
was given by G. A. Fraser and A. Horn in [6]. Using the method exhibited in Section
2 of this paper one easily checks that also the direct decomposability of congruences
in varieties can be considered only on the square Fy(2) x Fy(2). The simplification
of the original Fraser-Horn identities is shown in [5].
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