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The radical class under consideration in the present note is the class & zec (for
the definitions, cf. below). In [2] the question was proposed whether there exists
a torsion class T of lattice ordered groups such that

S frec = TC,

where C is the completion closure operation. It will be shown that the answer to
this question is “No”.

1. PRELIMINARIES

We recall the following basic notions we shall need in the sequel.

A torsion class (cf. Martinez [5], and Darnel [2]) is a nonempty collection of
lattice ordered groups closed with respect to convex I-subgroups, joins of convex
I-subgroups, and homomorphic images.

Let 9 be the class of all lattice ordered groups and let T be a torsion class. For
every G € 4 we denote by T(G) the join of all convex I-subgroups of G that belong
to T. Then T(G) € T and T(G) is an l-ideal of G.

For each convex I-subgroup H of G we denote by Hg the order closure of H
in G; i.e., Hg is the intersection of all closed I-subgroups H; of G with H < H,.
Next, for each torsion class T we put

(%) T¢ = {T(G)g: Ge %} .
An element 0 < x € G is said to be special if it has exactly one value.

For the definition of lex-subgroup of a lattice ordered group cf. [1], 2.27.
Let x € G; we denote by [x] the convex I-subgroup of G generated by x.

1.1. Lemma. (Cf. [1], Theorem 2.14.) Let Ge 4, 0 < x € G. Then the following
conditions are equivalent:

(i) x is special.

(i) [x] is a proper lexico extension.

A lattice ordered group G is said to be special valued if every positive element
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of G is a join of special elements (cf. [2]); let & fec be the class of all special valued
lattice ordered groups.

A nonempty subclass of 4 is said to be a radical class (cf. [4]) if it is closed with
respect to convex l-subgroups, joins of convex I-subgroups and isomorphic images.

Let £ be the collection of all radical classes of lattice ordered groups. The collection
Z is partially ordered by inclusion. Then # is a complete lattice [4]. For Te #
let TC be as in (x). If G € &, then T(G) is defined similarly as in the case when T is
a torsion class. Again, T(G) e T and T(G) is an l-ideal of G.

1.2. Lemma. (Cf. [2].) & frec € .

1.3. Lemma. (Cf. [2].) The mapping T — T€ is a closure operator on A.
In particular, T € # and T < T for each Te 4.
The following assertion is obvious.

1.4. Lemma. There exists a (unique up to isomorphism) root P such that

(i) P has a greatest element py;
(ii) each bounded chain in P is finite;
(iii) if p € P, then the system L(p) of all elements covered by p has the power N,.

2. AN EXAMPLE

Let P be as in Section 1. For each pe P let G, = Z (the additive group of all
integers with the natural linear order). Let G be the lexicographic product
r peP Gp

(cf. [3]). Then @ is a lattice ordered group (cf., e.g., [1], Chap. IV). If fe G, then
we denote by f(p) the p-th component of f.
Let p e P be fixed. Denote

A(p) = {f€G: f(q) = 0 whenever g £ p},
B(p) = {feG: f(q) = 0 whenever g < p}.

Then we evidently have

2.1. Lemma. A(p) is a proper lex extension of the lattice ordered group B(p)-
For each x € A(p)\ B(p) with x > 0 the relation

[x] = A(p)

is valid.
Then in view of 2.1 and 1.1 we obtain

2.2. Lemma. Let pe P and 0 < x € A(p)\ B(p). Then x is special.
Let 0 < y € G. Let P(y) be the system of all p e P such that

(i) ¥(p) + 0,
(i) if pe P(y), 4€ P, q > p, then y(q) = 0.
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We must have P(y) # 0. For each p e P(y) there exists a uniquely determined
element x(® e G such that x*)(q) = y(q) whenever g = p, and x(g) = 0 otherwise.

2.3. Lemma. Let 0 < ye G. Then 0 < x® € A(p)\B(p), and y = V pepyy x*.
If p, q are distinct elements of P(y), then x A y@ = 0.

The proof is immediate.

In view of 2.1, 2.2 and 2.3 we infer:

2.4. Corollary. Let y and x® be as in 2.3. Then each x'P is special, hence
Ge P pec.
Again, let p be a fixed element of P. Let D(p) be the set of all elements x € B(p)
such that the set
{re L(p): x(p) + 0}
is finite. Then D(p) is a convex I-subgroup of B(p). Because G is abelian, D(p) is an
l-ideal of G and clearly D(p) = B(p). Put
B'(p) = B(p)[D(p) -
B'(p) is an archimedean lattice ordered group and if 0 < z € B'(p), then the interval
[0, z] of B(p) fails to be linearly ordered. Therefore B'(p) + {0} and B'(p) has
no special element. Thus
(1) B(p) ¢ & free.
2.5. Proposition. Let T be a torsion class of lattice ordered groups. Then & frec +
+ TC.
Proof. By way of contradiction, assume that the relation
(2) L frec =
is valid. Let G be as above. In view of 2.4 and (2) we have G € T . Hence
G= TC(G) = G)G
Thus T{G) # {0}. Hence there exists 0 < ye T(G). Since T(G)e T and [y] is
a convex I-subgroup of T(G), we obtain [y]e T. ‘
There exists p € P(y). Then B(p) is a convex I-subgroup of [y], which yields that
B(p) € T. Since T'is closed with respect to homomorphisms, B'(p) € T. In view of (2)
and 1.3 we have T < T = & fice, whence B'(p) € & frec. This contradicts (1).

References

[1] P. Conrad: Lattice ordered groups, Tulane Lecture Notes, Tulane University, 1970.

‘ [2] M. Darnel: Closure operators on radical classes of lattice ordered groups. Czech. Math.
J. 37, 1987, 51—64.

[3] L. Fuchs: Partially ordered algebraic systems, Pergamon Press, Oxford 1963.

[4] J. Jakubik: Radical classes and radical mappings of lattice ordered groups, Sympos. Math. 3/,
1977, Academic Press, New York-London, 451—477.

[5] J. Martinez: Torsion theory for /-groups, I. Czechoslov. Math. J. 25, 1975, 284—294.

Author’s address: 040 01 Kogice, Zdanovova 6, Czechoslovakia (Matematicky tstav SAV,
dislokované pracovisko).

643



		webmaster@dml.cz
	2020-07-03T07:07:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




