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In this paper the notion of convergence on a lattice ordered group G will be ap-
plied in the same sense as in [11]. This notion was investigated (for the abelian
case) also in [5], [8], [10], [14]. Particular cases of convergences on lattice ordered
groups were dealt with in [6] and [17].

The system of all convergences on G will be denoted by Conv G. This system is
partially ordered by inclusion (cf. [9], [11], [14]). Assume that G is a direct product
of lattice ordered groups G; (i eI) with G; + {0} for each iel. To each system
(a;: i eI) with o; € Conv G, for each iel there corresponds in a natural way an
element o € Conv G. Let S be the set of all « € Conv G which can be constructed
in this way. Under the notation as above, « is said to be the product of the system
(esiel).

If I is finite, then S = Conv G (cf. [9]). It will be shown below that if I is infinite,
then

card (Conv G\ S) = 2% .

The question arises whether a direct product of maximal elements «; of Conv G;
must be a maximal element of Conv G. Analogous questions were studied for topo-
logical groups and for convergence groups. In both these cases the answers are “No”,
cf. [4], [5], [7]. (Let us remark that in [4], [7] the term “‘coarse” is applied instead
of “‘maximal”.)

For the case of lattice ordered groups the following positive result will be es-
tablished:

(A) Let ae Conv G, where G = [[i; Gi. Then the following conditions are
equivalent:

(i) o is a maximal element of Conv G;

(ii) there is a system (a;: i €I) such that for each i€l, a; is a maximal element
of Conv G;, and « is the product of the system («;: i € I).

The least element of Conv G will be denoted by d(G). If « e Conv G and a # d(G)
then « will be said to be a proper convergence in G. A minimal proper convergence
in G is called an atom of Conv G.
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The atoms of Conv G of an abelian lattice ordered group will be dealt with. The
following results (B), (C) and (D) will be established:

(B) Let o be an atom of Conv G. Then the interval [d(G), a] of Conv G is a direct
factor of Conv G.

(C) Assume that Conv G has an atom. Then the following conditions are equi-
valent: (i) Conv G has a greatest element; (i) each atom of Conv G has a pseudo-
complement; (iii) there exists an atom in Conv G which has a pseudocomplement.

(D) Let S be as above. Then each atom of Conv G belongs to S.

1. PRELIMINARIES

In this section we recall basic notions concerning the convergence lattice ordered
groups (cf. [11], [14]).

Let G be a lattice ordered group (shortly: I-group). Let N be the set of all positive
integers. An element of the direct product [T.en Ga» Where G, = G for each ne N,
will be denoted by (9wmen (or, if no misunderstanding can occur, by (g,)). If there
is g € G such that g, = g for each n e N, then we denote (g,) = const (g). (g,) is
called a sequence in G. The notion of a subsequence has the usual meaning. A subset
A of the positive cone (G¥)* of the I-group G" is said to be G-normal, if

const (9) + (9,) — const (9)e A whenever geG and (g,)€4.

Let « be a convex G-pormal subsemigroup of (GM)* such that the following
conditions are satisfied:

(I) If (g,) € @, then each subsequence of (g,) belongs to a.

(IT) If (g,) is a sequence in G* such that each subsequence of (g,) has a sub-
sequence belonging to o, then (g,) belongs to o.

(1) Let g € G. Then const (g) belongs to « if and only if g = 0.

Under these assumptions o is said to be a convergence on G. Let Conv G be the
system of all convergences on G; this system is partially ordered by inclusion.

For (g,) € G" and g € G we put g, -, g if and only if (|9, — g|) € «. Then G with
the convergence —, is a FLUSH-convergence group in the sense of [15], [16]
(cf. [11]).

Let A < (G")*, A # 0. We denote by 64 the system of all subsequences of se-
quences belonging to A. The convex closure in GN of the set A U {const (0)} will
be denoted by [A]. Next, let {4) be the G-normal subsemigroup of GV generated
by the set A; hence (4) is the set of all sequences (x,) such that there are sequences
(72)s (¥2), ... () in A4 and elements gy, g, ..., g, of G with

Xy =Y wc1(gm + V0 — gn) foreach neN.
Finally, the symbol A* will denote the set of all sequences in G* for which each

subsequence has a subsequence belonging to A4.
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Foreach® + A < (GV)* put T(4) = [<A)]*. The set 4 will be said to be regular
if, whenever 0 % g € G, then const (g) ¢ T(4).

1.1. Theorem (cf. [11], Theorem 2.2). Let A = (GN)*, A + 0. If A is regular,
then T(A) is the least element of Conv G which contains A as a subset. In the
opposite case there exists no a € Conv G with A < a.

2. DIRECT PRODUCTS

Let I be a nonempty set and for each i €I let G; & {0} be an I-group. Put G =
= [Ticr Gi- If i €I and g € G, then the i-th component of g will be denoted by g(i).

Let i be a fixed element of I and let h € G;. If no misunderstanding can occur, then
the element h will be identified with the element h’' of G such that h'(i) = h and
h'(j) = 0 for each j e I\ {i}. In this sense G; is considered to be a subset of G.

For X < G and i eI we denote

X(i) = {(xs(i)nen: (x,) € X} .
Ifieland 4 < (G})*, A + 0, then T”(4) has an analogous meaning as above
with the distinction that we take G; instead of G. Then we obviously have

2.1. Lemma. Let § + A = (G™)*, i el. Then TY(A(i)) = (T(4)) (i).

2.2. Corollary. Let O + A < (G")*. Assume that A fails to be regular. Then
there is i €I such that T(A(i)) is not regular.

2.3. Definition. For each iel, let Q)  a; = (GY)*. Let « be the set of all elements
(9x) of (G™)* such that (g,(i)) € «; for each iel. Then a is called the product of
the convergences o; and we write o. = H,-e, o;.

Next, we denote by S the set of all elements § < (G,)" having the property that
there are ;€ Conv G; with B = [[;; B:-

2.4. Lemma. For each i€l, let a;e Conv G;. Put o = [ [,y &;. Then o € Conv G.

Proof. Itis a routine to verify that o is a convex G-normal subsemigroup of (G")*
and satisfies the conditions (I), (II) and (III).

Let d(G) be the set of all (x,) € (G¥)* such that there is ny € N with x,, = 0 whenever
n > n,. It is clear that d(G) is the least element of Conv G. Let d(G;) have an analo-
gous meaning (with G replaced by G;).

Put dy = []ie; d(G;). In view of 2.4, dy € Conv G. Let us remark that if I is infinite,
then clearly d, > d(G).

Now let us assume that I is infinite. Then there exists a system {M;:je J} of
pairwise disjoint subsets of I such that

(i) card M; = card I for each j e J;

(ii) card J = card I.

Let o be the family of all nonempty subsets of the system {M;: je J}. ForK € o
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we denote by o(K) the set of all elements (g,) of (GN)* such that (¢,) € d, and there
is m € N such that for each n > m and each i e I \ K, we have x,,(i) = 0, where K,
is the join of all M; (j € J) with M; e K.

2.5. Lemma. For each Ke A, T((K)) belongs to ConvG. If K;,K,e X,
K, & K,, then T(«(K,)) ¢ T(«(K>)).

Proof. Let K € #". Then o(K) < do, hence «(K) is regular. Thus in view of 1.1
we have T(«(K)) € Conv G.

Let K, and K, be elements of # such that K, fails to be a subset of K,. Hence
there is M ;) € K; \ K,. Next, there are distinct elements s(1), s(2), s(3), ... in M.
For each neN, let 0 < g, € G,. Then (g,) € «(K;) < T(«(K,)), but (g,) does not
belong to T(x(K,)). Hence T(«(K,)) ¢ T(«(K5)).

2.5.1. Corollary. Let K, and K, be distinct elements of A#". Then T(«(K,)) %
* T(U(K))-

2.6. Lemma. Let Ke A, K % {M;:je J}. Then T(a(K)) does not belong to S.

Proof. Put § = T{«(K)). By way of contradiction, assume that § belongs to S.
Hence there are f; (i e I) such that

(i) B; e Conv G, for each i eI, and

(i) B = [lix B:- Because B; 2 d(G;) is valid for each iel, we obtain f 2
2 [l d(G)) = dy 2 T(«(K,)) for each K, € A", contradicting 2.5.

Since card A" = 2%°, from 2.5.1 and 2.6 we obtain:

2.7. Theorem. Let I be an infinite set and for each i €I let G; be a nonzero I-group.
Let G = []i; G;. Then card (Conv G\ S) = 2%,

3. MAXIMAL ELEMENTS

As above, let G be an I-group. We denote by M(G) the set of all maximal elements
of Conv G. We apply Axiom of Choice; then in view of Zorn Lemma, the set M(G)
is nonempty.

3.1. Lemma. Let a € Conv G. Then the following conditions are equivalent:

(i) we M(G);

(ii) if (9n) is a sequence in G* with (g,) ¢ o, then the set a L {(g,)} fails to be
regular,

(iii) if (g.) is a sequence in G* with (g,) ¢ o, then there are (hy), (h3), ..., (ht) e
eav &g,)} and elements t,,t,,...,t,€ G, g€ G, g > 0 such that for each ne N
the relation Y %_, (t; + b} — 1)) z g is valid.

Proof. This is an immediate consequence of 1.1.

In particular, for the abelian case we obtain:
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3.2. Corollary. Let G be an abelian I-group and let a € Conv G. Then the fol-
lowing conditions are equivalent:

(i) xe M(G);

(ii) if (g,) is a sequence in G* with (9s) ¢, then there are (g,),(g2), -..,(9%) €
€ 6{(9)}, (h,) e @ and 0 < g € G such that for each n € N the relation g* + g> + ...
ot g+ h, = g is valid.

3.3. Theorem. Let G = [[;; G;, where G; % {0} for each iel. Let a;e M(G))
foreachiel, a = [[i ;. Then x € M(G).

Proof. By way of contradiction, assume that there is g e Conv G with o < .
Thus there exists (g,) € B\ a. Therefore there exists j € I such that

1) (9n1) # 2 -

We have 0 < g,(i) < g, for each neN and iel, hence (g,(i)) € . Also, if iel,
then «; < a < B, whence «; U {(g9,)} S B. Thus a; U {(g,)} is a regular subset of
(GM)*. Therefore in view of 2.1, a; U {(g,(i))} is a regular subset of (G})*. Hence
there is y € Conv G; with o; U {(g,(/))} E 7. Then according to (1) we have a; = y.
Since a; € M(G;), we have arrived at a contradiction.

3.4. Theorem. Let G be as in 3.3. Let a € M(G). Then o(i) € M(G,) for each iel
and o = [ ofi).

Proof. Let i e]l. We obviously have «(i)e Conv G;. By way of contradiction,
assume that a(i) does not belong to M(G;). Hence there is o’ € M(G;) with o(i) < o’.
Put f; = o« and B; = «fj) for each jeIN{i}. Let B = [[ies Bi. According to 2.4
we have B e Conv G and clearly « < B, which is a contradiction. Hence «(i) € M(G,)
for each iel.

Next, we have a £ ] ofi). Since o is maximal, the relation o = [ ];ey o(i) must
be valid.

In view of 3.3 and 3.4 we infer that (A) holds.

4. ATOMS IN Conv G

In this section the abelian I-groups will be investigated. The assertions (B), (C)
and (D) formulated above will be proved.

Let G be an I-group. If X is a sequence in G, then its n-th member will be denoted
by X(n). For a subset C of G we denote C* = {ge G: |g| A |¢| = 0 for all ce C}.

4.1. Lemma. Let G be an l-group, C its convex non-trivial linearly ordered
l-subgroup, and let H be an l-subgroup generated by C v C*. If ye Conv G and
X ey, then there exists a positive integer m such that X(n) € H for each n 2 m.

Proof. Since C # {0}, there exists ¢; € C, ¢; > 0. The set {ne N: X(n) = c,} is
finite: if not, there is a subsequence Y of X such that Y(n) = ¢, for each neN.
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Because Ye?y, we have const(cq)€y. Therefore ¢; = 0, which contradicts our
assumption.

Thus there exists m € N such that X(n) % ¢, for each n = m. Take ne N, n =z m.
Then X(n) % ¢, and we shall show that X(n) € H. Clearly, X(n) = X(n) — (X(n) A
A ¢;) + (X(n) A c;)and X(n) A ¢; € C. Denote b = X(n) — (X(n) A ¢;),

c; =c¢; — (X(n) A cy).
Itis easy toseethat b = 0,¢, > 0,b A ¢, = 0and ¢, € C. For completing the proof
it suffices to verify that b € C*. Let ¢ be an element of C*. Then b A c is an element
of C and thus it is comparable with ¢,. However, if b A ¢ = ¢,,then b =2 b A ¢ =
= cy,and then 0 = b A ¢, = ¢, > 0, a contradiction. So we have b A ¢ < ¢, and

then b A ¢ £ b A ¢, = 0. Hence for each ce C* the relation b A ¢ = 0 is valid,
ie., beCL.

4.2. Remark. Let H be a convex I-subgroup of an abelian I-group G. For each
a e Conv G we denote by @y(a) the set « n (HY)* and for each f € Conv H we denote
by Yg(B) the set of all X € (GV)* such that there are Te f and me N with
T(m + n),ey € B. In [13], it was shown (cf. Lemma 5.1) that
(i) if e Conv G, then @x{«)e Conv H and Yg(@u(e) < a,
and )

(ii) if e Conv H, then Y¢(B) e Conv G and ¢u(Y6(B) = B.

Let H be a convex I-subgroup of G generated by C v C*, where C is a nontrivial
convex linearly ordered subgroup of G. Let ¢y, Y¢ be as above. In this case, the
assertion (i) can be improved in the following way:

(") if ae Conv G, then @g(a) e Conv H and ¥¢(@u(a) = a. In fact, if ae Conv G
and X € o, by Lemma 4.1 there exists m € N such that X(n)e H for each neN,
n 2 mjie., X(m + n),y € @y(0). Therefore X € Yg(@u(e)).

4.3. Lemma. Let H be a convex I-subgroup of G generated by C v C*, where C
is a nontrivial convex linearly ordered subgroup of G. Let @y, g be as above.
If ye Conv G, B e Conv H such that y < Ye(B), then Yo(ou(y)) = 7.

Proof. Straightforward.

4.4, Corollary. Let G be an abelian l-group containing a non-trivial convex
linearly ordered I-subgroup C. Let H be a convex l-subgroup of G generated by
C v C*. Then ¢y and g are mutually inverse isomorphisms of partially ordered
sets Conv G and Conv H.

Let & be an isomorphism of a partially ordered set P onto a direct product A" x B’.
Assume that Op, 04, Op. are the least elements of P, A’, B'. Denote A = £~ *{(a, 03.):
a e A’y and let B be defined analogously. Then 4 and B are convex subsets of P and
each element p of P can be uniquely represented in the form p = p, vV pg where
p4€ A, pge B. Conversely, if this condition is fulfilled then the mapping n(p) =
= (a, b) is obviously an isomorphism of P onto A x B. Motivated by the above
observation we introduce the following definition.
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4.5. Definition. Let (P, <) be a partially ordered set containing the least element.
Let A and B be convex subsets of P. Then P will be called the direct product of A
and B if for each p € P there exists exactly one pair (p4, pg) of elements of P such
that p,e A, pgeBand p = p, vV pg. The sets A and B will be called direct factors
of P.

4.6. Lemma. Let H be an abelian l-group containing a convex linearly ordered
I-subgroup C such that H is generated by C v C*. Let B be an atom of Conv H
such that B n Cy =+ d(C). Then Conv H is a direct product of the prime interval
[d(H), B] and of the set {g € Conv H: B n ¢ = d(H)}.

Proof. Denote

A =[d(H), f] and

B ={geConvH:fng=dH)}.

Since B is an atom of Conv H, then 4 is a convex subset of Conv H. It is easy to
verify that B is convex as well. Take y € Conv H and denote y, =y N f and yp =
=V{eeConvH: o <yand fne=dH)} We will verify that
(1) y € 4,
(2) ys€B,
(3) y=17y4 Vv 78 and
(4) if y = @4 V op for some o4 € A4, gp € B, then ¢, = 7, and gp = 75.
Since B Ny € Conv H (cf. [11], Lemma 2.1) and f is an atom of Conv H, (1) is true.
By [11] (Lemma 2.3), yg € Conv H. According to Thm. 2.5 (c) of [11], the closed
interval [d(H), y] is a complete Brouwerian lattice, threefore (cf. [1]) the infinite
meet-distributive law holds there. Hence f N yp = d(H), and the assertion (2) holds.
Assume X €. The relations y = (H*)¥ and H* = C* x (C*)* (see [2], Prop.
3.5.8) imply that there exist X,e C" and Xze(CH)Y such that X = X, + Xp.
First, const(0) < X, £ X ey, thus X ey. In view of [10], Thm. 3.9, we have
Conv C = [d(C), Bpn C"]. Since yn C¥eConvC, we obtain X,eynCNc
< Bn CY = p; finally, x, €74 Secondly, const(0) < X < X, thus Xpey; hence
the set {Xp} is regular, T({X3}) e Conv H and T({Xj}) < y. Let Re B n T({X5}).
Then there exists m € N such that R(n) e C for each n 2 m. On the other hand,
we have R(n) £ Xj(n) + Xj(n) + ... + X§(n) where keN and Xg Xj,..., X}
are subsequences of X . Because Xpe(CH)¥ and C* is a convex subgroup of H,
we have obtained that R(n) € C* for each ne N. Hence for ne N, n = m we get
R(n)e Cn C* = {0}. We have shown that Red(H), thus B n T({Xp}) = d(H)
and Xy e T({X35}) S yp. In this way the inclusion y = y, Vv 75 holds; the converse
inclusion is trivial. Suppose y = y, V 75 = 04 V 0p for some Y4, 04 € 4, V5, 0p € B.
In the same way as when proving (2), we get g, N y5 = 74 0 0 = d(H). Since
pe A, we have

Ya=9aAB=0GanB)V (r5AB)=(raVys)ABE=
=(eaven)AB=(sAB)V(arB)=0snbB=2
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and thus
)’Bz)’B/\V:)’B/\(QAVQB)=(?B/\QA)V(?B/\QB)=
=0 As=(AV8)V(eAY) =0 A(BYV V4 =0AY=0p.
Now Conv H is a direct product of the sets 4 and B.

4.7. Theorem. Let G be an abelian I-group and let o be an atom of Conv G.
Then Conv G is a direct product of the prime interval [d(G), o] and of the set
{reConv G: «ny = d(G)}.

Proof. By [11] (Thm. 3.6), there exists a convex linearly ordered I-subgroup C
of G containing a decreasing sequence belonging to o. Let H denote a convex
l-subgroup of G generated by C v C*. By Lemma 4.6, [d(H), pu(«)] is a direct
factor of Conv H. Applying the isomorphisms @y and g, namely their properties
(i) and (ii) of Remark 4.2, we obtain that Conv G is a direct product of [d(G), «]
and {ye Conv G:any = d(G)}.

4.8. Definition.’Let (P, <) be a partially ordered set containing the least element
po and let p; € P. Then an element pc(p,) € P will be called a pseudocomplement
of py if pc(py) is the greatest element of the set {peP: p A p; = pq}.

4.9. Theorem. Let G be an abelian l-group and let Conv G have an atom. Then
the following conditions are equivalent:
(i) Conv G has a greatest element;
(ii) each atom of Conv G has a pseudocomplement;
(iii) there exists an atom in Conv G which has a pseudocomplement.

Proof. (i) implies (ii): If we denote by y the greatest element of Conv G and by «
an atom of Conv G, then by Theorem 4.7 (under the notation as in the proof of 4.6)
there exist 74, yp € Conv G such that y = y, v yp and & N y5 = d(G). Since y is the
greatest element of Conv G, we conclude that yg is a pseudocomplement of .

In view of the assumption of the theorem, (ii) implies (iii). (iii) implies (i): Let a
be an atom of Conv G, pc(«) its pseudocomplement and B an arbitrary element
of Conv G. Let us again apply the notation introduced in the proof of 4.6. According
to Theorem 4.7, there exist B, € [d(G), a] and By e Conv G such that f = B, Vv Bg
and an By = d(G). Since B, < « and By < pc(«), we have B < o v pc(a). Thus
o Vv pe(a) is the greatest element of Conv G.

From the results of [10] (Sections 4, 5) we get the following lemma (for the defini-
tion of the lex-sum of linearly ordered groups see [3]).

4.10. Lemma. Let G; be an abelian linearly ordered group for each ie
€{1,2,...,m}. If G is a lexico-sum of Gy, G, ..., G, then the partially ordered
set Conv G is isomorphic to the direct product of the partially ordered sets Conv Gy,
Conv G,, ..., Conv G,,.

4.11. Theorem. Let G be an abelian l-group which contains m strictly positive
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pairwise disjoint elements g1, 92> -+ Gm but not m + 1 such elements. Let k be the
number of such g;, ie{1,2, oo m}, for which the l-subgroup of G generated
by g; contains a strictly decreasing sequence X with inf {X(n): ne N} = 0. Then
Conv G is a Boolean algebra isomorphic to 2*.

Proof. Let G, be an I-subgroup of G generated by g, for eachie{1,2, ..., m}.
Since every G; is linearly ordered, according to [10] (Theorem 3.9) we have
card (Conv G;) € {1,2}. By [3] (Theorem, p. 2.47), [10] (Corollary 3.10) and the
assumption, there exist exactly k groups G;q), Gy, ---» Gigy such that Conv G; ~ 2
for each j e {i(1), i(2), ..., i(k)}. The other G;’s possess only the discrete convergence.
By Lemma 4.10, Conv G is isomorphic to the direct product of Conv G;, i€
e{l1,2,...,m}. Thus Conv G = 2.

In 4.12 and 4.13 we assume that I is a non-empty set of indices and G(i) is an
abelian I-group for each iel. Denote by G the direct product of G(i). Since no
misunderstanding can occur, we again identify the elements of G which have only
one non-zero component with their projections on the corresponding factor (like
in Section 2), ¢ and ¥ are as in 4.2.

4.12. Theorem. « is an atom of Conv G if and only if there exist i € I and an atom
B of Conv G(i) such that a = Yg(p).

Proof. If « is an atom of Conv G, then by [11] (Thm. 3.6) there exist C = G
and X e CY such that C is a convex linearly ordered I-subgroup of G and X is
a strictly decreasing sequence. Since C is a convex linearly ordered subset of G,
there exists i eI such that C < G(i). Denote B = @g;(). By [13], B e Conv G(i),
Ye(B) e Conv G and Y4(B) = Ve(Psy(2)) = o Because o is an atom of Conv G
and X € y4(B) \ d(G), we have obtained that 4(f) = «. To show that f is an atom
in Conv G(i), let y be an element of Conv G(i) such that d(G(i)) = y = . Then
by [10] (Thm. 3.9), d(G) = ¥¢(d(G(i))) = ¥e(7) S ¥(B) = @ According to the
assumption, a is an atom and therefore either Y4(y) = d(G) or Yg(y) = o

Thus 7 = @i (We(?)) = d(G(i)) or ¥ = s (Vel(?)) = Pe(®)-

Conversely, let f be an atom of Conv G(i) and let « = yYg(B). In view of [13]
(Lemma 5.1), € Conv G. If d(G) = y < « for some y € Conv G, then d(G(i)) =
= 06(d(6)) € Po(?) € Po(®) = Pow(Ve(B)) = B. Thus @ew(B) = d(G(7)) or
©6w(y) = B. By Lemma 4.3,y = d(G) or y = a.

4.13. Corollary. If « is an atom of Conv G, then o€ S.

Proof. By Theorem 4.12, a = yg(B) for some pe Conv G(i). In order to get «
as a product convergence, it suffices to take f and all d(G(j)) for jel, j =+ i.
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