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Let L be a Galois extension of degree n over an algebraic number field K. Let
91,92, --., g, denote the elements of the Galois group G(L/K). It is known that L
may possess a normal basis for the integers Z, over Zg consisting of the conjugates

aft, 0%, ..., afn

for an integer «. Such a basis is called an integral normal basis of L over K.

Let M, L, K be algebraic number fields such that M o L o K and all the extensions
are Galois. In the present paper we shall show that if there are integral normal bases
for M/Land M/K, then the existence of an element o generating the integral normal

_basis for both M/K and M|Lis equivalent to the existence of an integral normal
basis for L/K generated by a unit of Zy. It will be shown that there are exactly two
cubic fields over the rational number field Q for which there exists an integral normal
basis generated by a unit.

Proposition 1. Let M, L,K be algebraic number fields such that M > L> K
and all the extensions are Galois. If an element o generate an integral normal
basis for M/K, then Try,(2) generates an integral normal basis for LK.

Proof. xeZ;. Then
(1) M =x
for h e G(M|L) and

x= Yy ap,
9eG(M/K)

where a, € Zy . « generates an integral normal basis for M/K. Consequently, by virtue
of (1),

=o' for heG(M[L)

implies

Therefore

x= 3 afTryu(0)”
SfeG(L/K)

where a; € Zg, hence TrM/L(OC) generates an integral normal basis for L/K.
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Proposition 2. Let M, L,K be algebraic number fields such that M > L> K
and let « and B generate an integral normal basis for M|L and L|K, respectively.
Then of generates an integral normal basis for M|K.

Proof. Let x € Z);. Then

x= 3y yo,
9eG(M/L)
where y, € Z;. Further
h
y g = Z aghﬁ 5
heG(L/K)

where a,, € Zg and so
x=Y ag,,ozgﬁ" S
g,h
where for
fe G(MJK)
we evidently have
(agl;h)f — o‘q’ﬂh’ .
Hence aff generates an integral normal basis for M[K.
Proposition 3. If « generates an integral normal basis for L|K, then Trp k()
is a unit of Zg.
Proof. We have
[ = 1

= od
geGL/k) Try, K(oz)

and so
1

Try k(o)

Theorem 1. Let M, L, K be algebraic number fields such that M > L> K and
all the extensions are Galois. Let integral normal bases exist for M|K and M|L.
Then there exists an element o« which generates an integral normal basis for both
M|K and M|Lif and only if there exists an integral normal basis for L|K generated
by a unit of Z;.

eZg.

Proof. Let a generate integral normal bases for M/Land M/K. By Proposition 1
and Proposition 3 the element Try, (o) is a unit of Z, and generates an integral
normal basis for L/K.

Let B generate an integral normal basis for M/L. Let y be a unit of Z; and let y
generate an integral normal basis for L/K. According to Proposition 2, the element
By generates an integral normal basis for M/K. Due to Proposition 3 the element
Tryy1(B) is a unit of Z; and so the element

1
TrL/x(ﬁ)

By
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generates an integral normal basis for M/L. Clearly
1
B
TrL/K(B)

generates an integral normal basis for M/L. Using Proposition 2 we obtain that the
element « generates an integral normal basis for M|K.

In what follows, K,, will denote a cyclotomic field generated by an m-th primitive
root of unity.

Example. Let K; > K o Q,[K : Q] = 3. Let { be a primitive 7-th root of unity.
The element { generates an integral normal basis for K7/ Q. We shall show that {
generates an integral normal basis for K,/K, too. By Proposition 1 the element

o = Trg,x({) = ¢ + (¢
generates an integral normal basis
{o"|he GK[Q)} = {C +¢5 >+ (5, + (%)
for K/Q. To show that
{t"] 9 € G(K4[K) = {L,
is an integral norm?.l basis, it is sufficient to show that
¢ = al + bL°,
where a,be Zgx and k = 1,2, ..., 6. But we have
{ =g,
C=-C+O)-[C+O)+ @@+ 0O)]¢,

C=-C+ORE+)+C+ -0,
0= =l + )2 + ) + (€ + O],
C=-[C+O)+C+O))-(@+0)°,
CG = CG-

By the above example and due to Theorem 1 the element Try,k({) is a unit of Z.
This is only a special case of the following Proposition.

Proposition 4. Let p and | = 2kp + 1 be primes. If k = 1ork =2,K, o K o Q,
[K : Q] = p and { is an I-th primitive root of unity, then Trg,({) is a unit of Zy.
Proof. First we prove that 1 + {*is a unit for ¢ 5 0 mod I. { is a root of

filx)=x"1 + %2+ +x+ 1
and so

Ngoll +8) =fi(-1) =1
for t £ O mod I.

Now we show that Trg,/x({) can be expressed as a product of units of Z,.
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In the case k = 1 we have
Tr,[x(() = L+ 7 =1 + 72,
In the case k = 2 we get
Trg, k() =0+ C+ P+ =01+ + 7Y,
We have shown that in the cases k = 1, 2, Trg,/x({) is a unit of Z.
With respect to Theorem 1 it would be interesting to know for which algebraic
number fields an integral normal basis generated by a unit exists. We shall show that

there are only two cubic fields over Q for which a unit generates an integral normal
basis. First we prove the following lemma.

Lemma. Let K be a cubic field over Q and let an integral normal basis for K[Q
exist. Let m be the minimal natural number such that K < K,,. Then for p prime
p | m implies that p = 1 mod 3.

Proof. The field K has an integral normal basis over Q and so by [3], K = K,
with a square-free m. From [K : Q] = 3 it follows that there is a prime g, g | m such
that ¢ = 1 mod 3. Let p be a prime such that p l m and p £ 1 mod 3. Then

K, =Ky, . K,
where for | prime I|m, implies | % 1 mod 3 while /| m, implies I = 1 mod 3.
Clearly
¢(my) =[K,, : Q] & 0mod 3.

Since m is minimal such that K < K,,, we have

KnkK, =0
and

KnK,, =Q.
Further,

[K.K,,: Q] =3¢(m,).
Obviously
(K.Kn,)K,, =K,

and hence

[(K.Kn, 0 Kn): 0] =3,
which contradicts ¢(m,) F 0 mod 3.

Theorem 2. There are only two cubic fields over Q for which a unit generates an
integral normal basis. They are determined by the polynomials fy(x) = x* +
+ x* = 2x — 1, f5(x) = x* + x* — 4x + 1, respectively.

Proof. Let K be a cubic field over Q with an integral normal basis and let m be the
minimal natural number such that K < K,,. By Lemma if p is prime and p | m,
then p = 1 mod 3. Due to [2], an element «,

o = Ter/K(C) )
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where { is the m-th primitive root of unity, generates an integral normal basis for K/Q
and the minimal polynomial of « is

o (ML (met3m -1
fulx) =x* +x < 3 )x ( - >,
where 4m = ¢ + 27d? and ¢ = 1 mod 3.

It follows from the above that « may be a unit only for m < 27. Moreover, for p
prime p | m implies p = 1 mod 3. Therefore o may be a unit only for m = 7, 13, 19
and by the table in [1] « is a unit for m = 7, 13 (this follows also from Proposition 4)
and « is not a unit for m = 19.

By [4], in a cubic field with an integral normal basis over Q, the integral normal
basis is unique. Hence there are only two cubic fields over Q for which a unit generates
an integral normal basis. They are determined by the polynomials f,(x) = x> +
+ x* — 2x — 1 and f,(x) = x* + x> — 4x + 1, respectively.

Corollary. Let Lo K o Q and [K : Q] = 3. Let an element a generate integral
normal bases for L|K and L|Q. Then either 7| D(L) or 13 | D(L).

Proof. According to Theorem 1, K/Q has an integral normal basis generated
by a unit. By Theorem 2, the field K is determined by tke polynomial f,(x) or by the
polynomial f,(x) and either D(K) = 7% or D(K) = 13%. Therefore 7 | D(L) or
13| D(L).

Remark. There are only two quadratic fields over Q for which a unit generates

an integral normal basis. This case is trivial and they are determined by the poly-
nomials x* + x + 1 and x2 + x — 1, respectively.
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