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INTRODUCTION

In this paper we continue the study of associative rings by means of lattices of
orthogonal theories. The general concept of an orthogonal theory was introduced
in [11]. There are at least two important groups of examples of this concept. First,
the torsion theories (= orthogonal theories of the Hom bifunctor), introduced
by Dickson ([4]) and now widely used in the theory of rings and modules (see [2],
[13] etc.). Secondly, the cotorsion theories (= orthogonal theories of the Ext
bifunctor), introduced by Salce ([14]) and now applied to the study of extensions
in various module categories (see e.g. [15]). Particular results relating the structure
of an associative ring to the structure of the lattice of orthogonal theories of the Hom,
Ext and tensor product bifunctors were obtained in [8], [2], [15], [16], [17], [12]
and [18], respectively. Recall also analogous results on lattices of hereditary torsion
theories and lattices of torsions (see e.g. [13]).

The paper is divided into two sections. In the first, for a given ring R and a non-
negative integer n, we study a semilattice embedding relating the lattice of orthogonal
theories of Tor} to that of Extk. In the second, we concentrate on cotorsion theories
and continue the work of [16] and [17]. Using another approach to the Ext bifunctor
we extend results of Eklof ([5], [6]) and apply them to the examination of cotorsion
theories over von Neumann regular rings in the universe of constructible sets.

PRELIMINARIES

In the following, an ordinal is identified with the set of its predecessors and
a cardinal is an ordinal which is not equipotent with any of its predecessors. Let ¢
be a regular uncountable cardinal. A subset C S cisacubif(i)X = Candsup X < ¢
implies sup X € C, and (ii) sup C = c. A subset E < c is said to be stationary if
E n C + 0 for any cub C. Let M be a set of cardinality < c. A sequence (M, |a < ¢)
is a c-filtration of the set M provided (i) M = U M, (ii) @ < b < cimplies M, = M,

a<c

(iii) card (M,) < ¢ for each a < ¢, and (iv) My = nga for each limit ordinal b < c.

595



In the following, all rings are associative with unit. The ring of integers is denoted
by Z. For a ring R, the category of unitary left and right R-modules is denoted by
R-mod and mod-R, respectively. Homomorphisms in R-mod are written as acting
on the right. A unitary left R-module is simply called a module. The sum and the
direct sum of modules is denoted by = and %, respectively. Let M be a module.
If ¢ is a cardinal, ¢ = 1, then M‘© and M°® denote the direct sum and the direct
product, respectively, of ¢ copies of M. Further, I(M) denotes the injective hull of M.
If ¢ is an infinite cardinal, then M is c-projective if every submodule of M which
is generated by less than c elements is projective. Further, gen(M ) denotes the mini-
mum of cardinalities of the generating sets of the module M. If x € M, then Ann (x)
denotes the left annihilator of x in R. If ¢ is a regular uncountable cardinal, then
a sequence of modules (M, | a < c)is a c-filtration of the module M if the conditions
(i), (ii) and (iv) of the definition of the c-filtration of the sct M are satisfied and,
moreover, M, = 0, gen(M,,) < ¢ for each a < ¢, and M, is a submodule of M, for
eacha < b <'c.

Let R be a ring. If n is a non-negative integer, then Exty and Tory denote the n-th
derived bifunctor of the Homjy bifunctor and of the tensor product bifunctor,
respectively. Further, R is said to be completely reducible if the module R is semi-
simple. For further details and terminology, the reader is referred to [1], [3] and [6].

1. A SEMILATTICE EMBEDDING

1.1. Definition. Let F be a bifunctor from R-mod (or mod-R) to Z-mod. For
a non-empty class 4, let A* = {Y| F(X,Y) = 0VXeA}and*4 = {X | F(X,Y) =0
VYe A} be the orthogonal complements of A with respect to F. A pair of non-empty
classes (4, B) is an orthogonal theory if A = *B and B = 4"

For a non-empty class 4 put Gen (4) = (4(4%), 4*) and Cog (4) = (*4, (*4)*).
Then Gen (4) and Cog(4) are orthogonal theories of F. Denote by OT the class
of all orthogonal theories of F. Analogously to the particular case of torsion theories
(F = Hom), we define a partial order < on OT as follows. If (4, B), (C, D) e OT,
then (4, B) £ (C, D)iff A = C (iff D < B). It is easy to see that < is a lattice order
and L= (OT, inf, sup, 0, 1) is a complete lattice, where 0 = Gen ({0g}), 1 =
= Cog({0g}) and for a subclass C = OT, C = {(4,, B,)| a I} we have

(1) sup C = Gen ( UI 4,) = Cog( nI B,) = (% nIBa), (]IB,,)

and

() infC:COg(UIB,,)=Gen(n[Aa)=(nA,,,(nAa)*).
ae ae ael acl

Note that our terminology is not standard since OT is a class and not a set. But in
most cases OT can be represented by a set and hence Lis in fact a lattice in the usual
sense. In some cases (e.g. for R = Z and F = Homz) OT has no small cardinality
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(see e.g. [10]) and Lis a lattice in the “‘conditional” sense, i.e. the assertions con-
cerning Lare understood as the appropriate assertions concerning the elements of L.
In the following, E, g and T, x denote the class of all orthogonal theories of the
Exty and Tory bifunctors, respectively. The operator L for F = Exty and F = Torg
is denoted by L, and +,, respectively. For F = Exty we denote Gen and Cog by
Gen, and Cog,, respectively.

1.2. Lemma. Let R and S be Morita equivalent rings. Let F, and F, be additive
functors realizing the equivalence of R-mod to S-mod and mod-R to mod-S,
respectively. For § + A < R-mod, 0 + B = mod-R put F,(A) = {F,(X)| X € 4}
and F,(B) = {Fy(X)| X € B}. Then, for each non-negative integer n, the mappings
e E, g > E,s and 1,:T,p— T, defined by e((A, B)) = (Fy(4), F,(B)) and
1.((4, B)) = (Fy(A4), Fy(B)), respectively, are lattice isomorphisms.

Proof. Using the definition of Ext} via injective resolutions and [1, Propositions
21.2 and 21.6] we see that Exty(M, N) ~ Exty(F,(M), F,(N)) for all M, N € R-mod.
Hence, the assertion concerning e, holds. Let U be an injective cogenerator in Z-mod.
By [3, Proposition VI.5.1] we have Torg(M, N) = 0 iff Extix(N, Homy(M, U)) = 0
iff Extp(Fy(N), Fy(Hom,(M, U))) = 0. By [1, Proposition 20.6, Theorem 22.1 and
Corollary 22.3] we see that this is equivalent to Exty(F,(N), Homy(F,(M), U)) = 0
and hence to Tork(F,(M), F1(N)) = 0, and the rest is clear.

1.3. Theorem. Let R be a ring and n a non-negative integer. Then the complete
upper semilattice (T, g, SUPTorgn) iS isomorphic to a subsemilattice in the complete
lower semilattice (E, g;infg,en). The complete semilattice embedding is given
by the mapping f,: T, g = E,r (A, B)f, = (B, B™). In particular Ogypnfn =
= lExtn"

Proof. Let (4, B) e T, x and let U be an injective cogenerator in Z-mod. Denote
by H the class of all modules of the form Homy(X, U), X € A. Then B < LnH. as
by [3, Proposition VL5.1], Exty(Y, Homy(X, U)) = Homy(Tork(X, Y), U) = 0 for
each Ye B. Moreover, for We *"H we have Homy(Tory(X, W), U¢) = 0 for any
X € A and any cardinal ¢, whence B = *"H. Thus (B, B*") = Cog,(H). Now, using
(1) and (2), we easily see that f, maps suprema in Ly gs to infima in Ly and the
rest is clear.

1.4. Remark. If f, is onto, then clearly f, is a lattice antiisomorphism. In general,
f» need not be onto (see 1.5 or 1.8). Moreover, f, need not be a lattice antihomomor-
phism, since it need not map infima in Lyo,» to suprema in Lgy» — Ste 1.8 (iii).
Note that special cases of 1.3 were applied in [15, Proposition 2.2] and [16, Proposi-
tion 1.1].

1.5. Proposition. Let R be a ring and n a non-negative integer. Then Ly, .f, =
= Ogyypn iff for each module M, w.gl. diim (M) < n — 1 implies gl. dim (M) < n — 1.
In particular: always 1g,.fo = Ogomg> and 1py f1 = Opyr iff R is left perfect.
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Proof. Easy.

The following proposition gives a criterion for elements of E, ¢ to belong to Im f,.

1.6. Proposition. Let R be a ring, n a non-negative integer, U an injective cogen-
erator in Z-mod and (4, B) € E, g. Then (4, B) e Im f, iff *"{X € B| 3Ye mod-R:
X = Homy(Y,U)} < 4.

Proof. By 1.3, (4, B)eImf, iff (*"4)*" = 4. By [3, Proposition VL5.1] it is
easy to see that We(*"4)"" iff Torg(Y, W) =0 for each Ye mod-R such that
Homy(Y, U) e B iff We *»{X € B| 3Ye mod-R: X = Homy(Y, U)}, q.e.d.

1.7. Proposition. Let R be a ring and O £ D = R-mod. Assume there are a ring S
and an injective cogenerator U € S-mod such that D < {X € R-mod l 3Y e S-mod-R:
X = Homy(Y, U)}. Then Cog,D) € Im f, for each non-negative integer n.

Proof. Analogous to the proof of 1.6.

Denote by F, C, S, N and I the class of all finitely generated, countably generated,
singular, non-singular and injective modules, respectively. The following theorem
provides us with some illustrative examples.

1.8. Theorem. (i) Let R be a commutative QF-ring. Then Cog,(A) € Im f,, for each
non-negative integer n and each ) += A = F.

(ii) Assume that either R is a completely reducible ring or R is a full matrix
ring over a commutative local artinian P.LR. or R is Morita equivalent to an
upper triangular matrix ring of degree two over a division ring (see [15, Remark
6.2]). Then for any non-negative integer n, f, is a lattice antiisomorphism of
Leorpn 0110 Lgyypn.

(iii) Let R be a P.ID. which is not a field. Then, for 0 = A = F, Cogy(4)eIm f,
iff A€ FnN.If R is not local, then there are (B, C),(D, E)eImf, such that
SUPome (B, C), (D, E)} ¢ Im f,, i.e. fo does not map infima in Lg, to suprema
in Lyomg. If R is a complete local ring, then Cog,(A) e Im f, for each ® + A < F.
If R is not complete and local then, for ) = A <= F, Cogl(A) elmf,if A< Fn S.
Anyway, Im f, = E, p = 0 provided n = 2.

(iv) Let R be a simple countable non-completely reducible von Neumann regular
ring (see [9]). Then, for each A = C with A & 0, {0}, we have Cogy(4) ¢ Im f,
and Cog,(A) ¢ Im f,. For n = 2 we have Im f, = E, z = 0.

Proof. (i) By 1.7, for S = U = Rand D = A.

(ii) The assertion concerning completely reducible rings is easy. If R is a com-
mutative local artinian P.I.R., then every module is a direct sum of cyclic modules
and (i) and 1.2 apply. If R is an upper triangular matrix ring of degree two over
a division ring, then R is a perfect hereditary T-ring (see [15, Proposition 5.2], and
hence the assertion holds for n =-1. Moreover, every module is isomorphic to
a direct sum of direct powers of modules X, Yand I ( Y), where X, Yare representatives
of the class of all simple modules, X is injective and Y is projective (see [ 15, Proposi-
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tion 5.17). It is easy to see that Eq g = Im fo = {Oomg> C0go(X), Cogo(Y),Cogo(I(Y)),
Ihoms)> and 1.2 applies.

(iii) Denote by K the quotient field of R. If @ + A = F n S, then, using 1.7 for
S =R,U =K|Rand D = 4, we get Cog,(4) e Im f,foreachn = 0.If 4 & Fn N,
then *°4 = (4 N S), as each left ideal is isomorphic to R. Hence Cogo(4) € Im f,.
If 9+ A< FAN, then *°4 = *{R} 2 Sul. Thus *°(**{R}) = SnI and it
follows easily that *°(*°{R}) = {0}. Thus, by 1.3, Cogo(4) ¢ Im f,. Assume R is not
local and J,, J, are simple modules such that J, & J,. For i = 1,2 put H; =
= Homg(I(J;), K/R). Then, for i = 1,2, we have Cogo(H;)eImf,, as X e *°{H,}
iff X e {I(J))}*°. Further, R < H, for i = 1,2, whence (**{R})* < (*{H,})**n
N (*{H,})* and supgome{Cogo(H;)} < Cogo(R). On the other hand, for i = 1,2,

i=1,2

using the results of [7, Ch. X], we get "°({I(J;)}"°) = {X emod-R|Je: X =~
=~ I(J;)}, whence infg . {Gen(I(J;))} = ({0}, R-mod). Hence f, does not map infima
i=1,2

in Lg, to suprema in Lyomg- If R is a complete local ring and @ # 4 < F, then by
[6, Theorem 9.1] Extg(K, R) = 0 and Cog,(4) = Cog,(4 n S)eImf;, as *'{R} =
= N. If R is not complete and local and A4 & Fn S, then Extg(K, R) % 0 and
N & *'4, whence Cog,(4) ¢ Im f; by 1.3, and the rest is clear.

(iv) We have *°4 = I, whence *°(*°4) = 0 and Cog,(4) ¢ Im f,. By the regularity
of R we get Ty g = {(mod-R, R-mod)}. Hence, if @ & B = R-mod and Cog,(B)e
eImf;, then by 1.3 B = I and Bn C = {0}. The final assertion follows from the
fact that R is left hereditary.

2. A DIAMOND PRINCIPLE AND COTORSION THEORIES

There are at least three different approaches to extensions of groups and modules.
Namely, extensions may be regarded cither as systems of factors or as short exact
sequences or as certain homomorphisms (see e.g. {7, Ch. IX]). The approach vi
systems of factors is used more in the general group theory. Nevertheless, it proved
to be useful in the study of vanishing of Ext in abelian groups under the assumption
of the weak diamond (see [6, Ch. 3 and Ch. 4]). On the other hand, using the defini-
tion of Ext via short exact sequences, and assuming the diamond, Eklof proved
a theorem on the vanishing of Ext for modules over countable left hereditary rings
([5, Theorem 1.5]). Here, in 2.2, we obtain an analogous result even for rings of
cardinality <N;, assuming a diamond principle close to the weak diamond. This is
possible since we start with the homological definition of Ext. It enables us to use
another proof, replacing the cardinality assumption on the ring by a cardinality
assumption on an injective hull of a module. Finally, we apply our result to the
study of cotorsion theories over von Neumann regular rings.

Throughout this section, ¢ denotes a regular uncountable cardinal and E a sta-
tionary subset of c. As usual, we denote by O(E) and &,(E) the diamond and the
weak diamond, respectively (see [6]). We shall need the following diamond principle
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D,(E), in which partitions from the weak diamond are replaced by partitions into
a varying finite number of parts: D(E): “Let A be a set of cardinality ¢ and
(4,] a < c) a c-filtration of the set A. Assume that for each a € E there are a natural
number p, = 2 and a partition P, of Exp (Aa) into p, parts, i.e. P,: Exp (4,) > p..
Then there exists a function ¢: E — ¥, such that ¢(a) € p, for each a € E and the
set Sy = {a€ E| P, (X n A,) = ¢(a)} is stationary in ¢ for each X < A”. Clearly,
O (E) implies D(E), and D(E) implies & (E). Hence, under the assumption of the
axiom of constructibility (V = L), D(E) holds for any regular uncountable cardinal ¢
and any stationary set E < c.

2.1. Lemma. Assume D(E). Let R be a ring such that card (R) < c. Let M be
a c-projective module with gen (M) = ¢ and N a module with gen(I(N)) < c.
Assume there is a c-filtration (C,|a < c¢) of the module M such that E =
= {a < ¢| Extg(C,+4/C,, N) # 0}. Then Extg(M,N) % 0.

Proof. Clearly, there is a c-filtration (4, | a < ¢) of the set ¢, and for each a < ¢

an element m, € M, such that C, = )’ Rm,. Let (B, I a < c) be a c-filtration of the
bedq

Z-module I(N). Denote by ¢ the embedding of N into I(N), by 7 the canonical
projection of I(N) onto I(N)/N¢ and, for a < ¢, by v, the inclusion of C, into
C.+1- For aeE put X,= Homg(C, N) and Y, =v,Homg(C,+;,N), and
take a fixed f, € X, — Y,. Denote by r, the order of f, + Y, in the group

Extg(C,41/Ca N) = X,[Y,. If r, = o0, put p, = 2. Otherwise, put p, = r,. Define
an equivalence relation ~ on the set of all mappings from A4, to B, as follows:
u ~ v iff there are an integer n and y e Y, such that v = u + n(f, | 4,) + ¥ | 4.
Note that if r, = oo then n is unique, and if r, < 00, then n is unique modulo p,.
Let P,: Exp (4, x B,) = p, be any partition such that, for all u,v with u ~ v,
the following two conditions are satisfied: (1) if r, = oo then P,(u) = P,(v), (2) if
r, < oo then P,(u) = P,(v) iff n is divisble by p,. Let ¢: E - ¥, be the function
corresponding by D,(E) to P,, p,,a < ¢. To prove Extg(M,N) # 0, we have to
construct g € Homg(M,I(N)/Ng) — Homg(M,I(N)) n. By induction on a < ¢ we
construct a sequence of homomorphisms g,: C, — I(N)/Ng such that g, | C, = g,

for each a < ¢ and g, = U g, for each limit ordinal a < c. Put g, = 0.Assume g,
’ b<a

is defined for a < ¢. We distinguish the following two cases: (I) a € E and there is
feHomg(Cay 1, I(N)) such that f| A, = A, x B, and P,(v.f) = ¢(a) and g, =
= v,fr, (II) = not (I). In the case (II), the projectivity of C, yields the existence of
h, € Homg(C,, I(N)) such that g, = h,z. The injectivity of I(N) yields the existence
of h,y, € Homg(Cas1,I(N)) such that vaiy = he PUt gouy = hgyym. Then
clearly Vogas1 = 9o In the case (1), take a fixed f satisfying the conditions of (I)
and use the injectivity of I(N) to get h, € Homg(C,+ 1, I(N)) such that v,h, = v.f — f,.
Put go41 = hgr. Then Vofars = v fm — f,n = g, Finally, put g = U g,. Cleatly,

a<c

g € Homg(M, I(N)[Ng). Assume the existence of h" e Homg(M,I(N)) ‘such that
g = h'm. Clearly, {a < c¢| W |4, < 4, x B} is a cub in c. Hence there is a€ E
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such that v,h < Ay X By, 9o = vhn and Py(vsh) = ¢(a) where h=h'|C,,,.
Hence the case (I) occurs and (h — h,) = = 0 whence y, = v,(h — h,) € Y,. Finally,
Vof = fa + vsh — y, and thus P,(v.f) = P,(vsh + fa — y,) # P,(v,h), a contra-
diction.

2.2. Lemma. Assume DE) for all stationary E < c. Let R be a left hereditary
ring such that card (R) £ c. Let M be a c-projective module with gen (M) = c
and N a module with gen(I(N)) < c. Then Extg(M,N) =0 iff the module M
has a c-filtration (C, | a < c) such that Extg(C,4/C,, N) = 0 for all a < c.

Proof. The same as for [5, Theorem 1.5], only the use of [5, Lemma 1.4] is
replaced by the use of 2.1.

2.3. Theorem. Assume V = L. Let R be a von Neumann regular ring such that
each left ideal is countably generated and card (R) < ¥;. Let N be a module such
that gen (N) < 8, and Extg(M,N) = 0 for all finitely generated non-projective
modules M. Then Extg(M, N) = 0 for all non-projective modules M.

Proof. By [16, Lemma III.3] we have Extg(M,N) = 0 for all non-projective
modules M with gen (M) < R,. Further, by [16, Lemma II.2] the module P =
= N /N™ s injective. Clearly, the homomorphism g € Homg(N, P) defined by
xg = (x|i < No) + N®) xeN, is injective. Since 2% = X, card (P) £ ¥, and
gen(I(N)) < X,. Now, the assertion follows by induction from2.2 and [19, Theorem 5].

2.4. Corollary. Assume V = L. Let R be as in 2.3. Let (4, B) be a cotorsion theory
cogenerated by a class of N;-generated modules. Then A contains a non-projective
module iff A contains a non-projective finitely generated module.

2.5. Lemma. Let R be a ring. Let X, Y, P and N be modules such that P is pro-
jective and X, Y are R-independent submodules of P, and Extg(P|(X + Y),N) = 0.
Then Extg(P|X,N) = 0.

Proof. Easy.

Let 0 < n < N,. For 0 £ j < n denote by 7; the j-th canonical projection of R™
to R. The following theorem shows that the premise of 2.3 concerning the module N
can be tested in much weaker form.

2.6. Theorem. Let R be a left hereditary von Neumann regular ring. Let N
be a module with Extg(M, N) = 0 for all modules M such that there are a positive
integer n, orthogonal idempotents e;, i < N, in R and elements x;€ R™, i < N,
such that (1) x;, = e; for each i < W, (2) the elements x;m;, i < W, are R-in-
dependent for each j < n, (3) Ann(x;7;) = R(1 — e;) for each i <N, and j <n
and (4) M ~ R™[ % Rx;. Then Extg(M,N) % 0 for all countably generated non-

i<No
projective modules M.

Proof. Let M be a finitely generated non-projective module. Using induction
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on gen (M) we prove that Extg(M, N)# 0. For gen (M) = 1, this follows immediately
from the premises (1) and (4), and from [9, Proposition 2.14]. Let gen (M) = n > 1
and M = R™|I. By [1, Proposition 26.2] and [9, Proposition 2.11], there are a car-
dinal ¢ = 8, and elements x;€ R™, i < ¢, such that I = Zin. By 2.5 we may

i<c
assume that ¢ = X,. Assume there are infinitely many indices i < N, such that
there exist jy, j, < n with Ann (x;m;) % Ann (x;7;,). Then there is a set 0 + S &

< {0, ...,n— 1} such that I has a direct summand I’ < 3’ R™g; such that gen (I') =
Jjes
= N, and the assertion follows from the inductive premise and 2.5. Hence we may
assume that for each i < ¥, there is a non-zero idempotent e; € R such that
Ann (x;7;) = R(1 — ¢;) for all j < n. Moreover, by [9, Proposition 2.14] we may
assume that x;my = e; for alli < N, and that e;, i < N, are orthogonal idempotents.
Further, assume there is an index j < n such that no infinite subset of {x;7; ‘ i < R}
is independent. Then there exist finite sets 4;, i < N, such that card (4;) = 2 for
each i < No; 4;, N 4;, =0, U 4; = X, for each iy,i, < Ny, i; F i,; and for each

i<No
i <¥, and each aeA; there is r,e R with r,x,n; + 0 and ern = 0. Put
acA;
2 R(Y, ryx,). Then gen(I') =N, and I' is a direct summand of I, and
i<No bed;

the assertion follows from the inductive premise and 2.5. Thus, we may also
assume (2). Finally, [16, Lemma II1.3] applies.

2.7. Remark. If R is a simple von Neumann regular ring with card (R) = N,,
then the premises of 2.6 are satisfied for any module N with gen(N) < ¥, (see
[16, Theorem IIL.4]). Hence 2.3 applies: there are no non-trivial cotorsion theories
cogenerated by countably generated modules provided ¥ = L (see [16, Theorem
IIL.6]). Moreover, if R is not completely reducible, then the previous assertion is
independent of ZFC + GCH (see [17, Theorem 2.4]). Nevertheless, in this case
there is a module N for which the premises of 2.6 fail (see [17, Theorem 1.5]).
As for rings of cardinality ¥, 2.3 and 2.6 indicate the role of finitely generated
modules for tests of the vanishing of Ext. Nevertheless, the validity of results
analogous to those for card (R) = ¥, remains an open problem.
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