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1. B- and B,-spaces. A T, topological space E is called a B,-space (B-space) if
every continuous, nearly open bijection (surjection) f from E onto an arbitrary T,
space F is open. Here f: E — F is called nearly open if for every x € E and every
neighbourhood U of x the set ¢l(f(U)) is a neighbourhood of f(x).

The notions of B- and B,-spaces in the above sense have first been used by T.
Husain in the categories of locally convex vector spaces ([Hu,]) and topological
groups ([Hu,]). They have been chosen in reminiscence of V. Ptédk’s open mapping
theorems ([P], [K6]). We have adopted Husain’s definition for the topological
case. References concerning the classical theory of B- and B,-spaces and groups
are [P], [K&], [AEK], [Hu,], [Ba;], [Pe], [Gr], [Su], etc. In a purely topological
context, B,-spaces have been considered in [We], [BP], although the term ‘B,-space’
has not been used there. Further references are [Wi], [St], [N;].

Every T, locally compact space is a B-space and every B-space is a B,-space.
In [We], Weston proved that every completely metrizable space is a B,-space. In
[BP] this has been generalized to Cech complete spaces. In [N;] we have further
generalized this to obtain.

Proposition 1. Every T, semi-regular topological space E containing a dense
Cech complete subspace is a B,-space. In particular, this is true for monotonically
Cech complete spaces.

In [N;] we have given a direct proof. Proposition 1 may also be deduced from
Byczkowski and Pols’ result [ BP] if we use the following

Lemma. Let E be a T, semi-regular space and let F be a T, space. Let f: E - F
be a continuous, nearly open bijection and suppose there exists a dense subset D
of E such thatf\ D:D —>f(D) is open. Then f is open.

Proof. Let x € E and a neighbourhood U of x be fixed. Choose a regular-open
neighbourhood V of x contained in U. We prove int cl(f(V)) = f(U). Let z €
eintcl(f(V)), z = f(»). Let W be a neighbourhood of y with f(W)c int cl(f(V)).
It is sufficient to prove W < V. So let we W and let O be a regular-open neigh-
bourhood of w contained in W. Proving that O n V = 0 remains.

589



Since O, V are regular-open in E, O n D, Vn D are regular-open in D, hence
f(0 n D), f(V n D) are regular-open in f(D). But note that int cl(f(0)) n f(D) and
int cI(f(V)) n f(D) are as well regular-open in f(D) and this implies int cl(f(0)) n
nf(D) = f(0) n f(D), int cl(f(V))n f(D) = f(V)n f(D). Since O = W implies
int cl(f(0)) < int cl{ f(V)) we obtain the desired result 0 n V0. [

In [N;] we have investigated an interesting class of B-spaces.

Proposition 2. Every Lindeldf P-space is a B-space. []
Using the lemma above, one may obtain the following result. Here ‘locally Lindel6f’
means that every point has a base of nzighbourhoods consisting of Lindel6f subspaces.

Proposition 3. Every T, semi-regular locally.Lindelof space E containing a dense
set of P-points is a B,~space.

Proof. Let f: E — F be a continuous, nearly open bijection onto the T, space F.
We may assume that F is semi-regular. Let D denote the set of P-points in E. We
prove that f | D: D — f(D) is open. First note that every point of f(D) is a P-point
in F. Indeed, let G,, n = 1,2, ... be open sets containing y = f(x), x € D. Choose
open sets ¥,, n = 1,2,... in E having xeV,, intcl(f(V,)) = G,. Then V=, V,
is a neighbourhood of x having int cI(f(V)) = G,, n = 1,2, ....

Let x € D and a Lindeldf neighbourhood U of x be fixed. We claim that cl( f(U)) n
N f(D) = f(U) n f(D). Assume the contrary and let z e cl{f(U))\f(U), z = f(y),
y € D. Let @ denote the filter of neighbourhoods of z, then {f(U)\ 0: Oe®} is an
open cover of f(U), hence there exist 0, € &, n = 1,2, ... having f(U) = U, f(U)\ O,,
a contradiction since we have ), 0,€ ¢. [

It follows from our lemma that every T, semi-regular space E containing a dense
B,-subspace is itself a B,-space. The corresponding result for B-spaces is not valid.
In § 7 we shall present an example of a completely regular space E containing a dense
Lindeldi P-subspace which is not a B-space.

In [Nz] we have investigated another interesting class of B,-spaces. Let S be
a cofinal subset of w,. Let S* denote the set of f € w{ having f* = sup {f(n): n < w}e
€ S. Give w, the discrete topology and let wf and S* have the product topology.
Recall that S is called stationary if it intersects every closed cofinal subset of w;.
We have the following '

Proposition 4. ([N, ], [FK] for (1) < (2)). Let S = w; be cofinal. Then the fol-
lowing statements are equivalent:
(1) S is stationary;
2) S* is a Baire space;
(2) s* p
(3) S*is a B,-space. [

This provides examples of metrizable B,-spaces which do not contain any dense
completely metrizable subspace, since clearly S* contains a dense completely
metrizable subspace if and only if S contains a closed cofinal subset.
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2. Order interpretation. We introduce an order relation < on the set of all T,
topologies on a fixed set E by postulating that 7, < 1, is satisfied if and only if
id: (E, ;) - (E, 74) is continuous and nearly open. Then (E, 1) is a B,-space if and
only if 7 is minimal among T, topologies on E. Dually one may consider the < maxi-
mal topologies. It turns out that these can be internally characterized as follows.

Proposition 5. T is maximal with respect to < if and only if every dense subset
of (E, ) isopen. [

Open problem. Obtain an internal characterization of < minimal (ie. B,-)
topologies.

Using the Kuratowski/Zorn lemma one easily proves that given any T, topology 7
on E, there exists a < maximal topology 7, having 7 < 7.

Open problem. Does a corresponding result hold for < minimality?

3. Category. Since T, minimal (= H minimal) topological spaces are clearly
B,-spaces, it follows from a result of Herrlich ([He]) that a B,-space need not be
a Baire space in general. One may ask, however, for a first category B,-space which
is completely regular. In [N;] we have provided an example of this type constructing
a first category Lindel6f P-space. On the other hand, all metrizable B,-spaces known
up to now are Baire spaces. In [N;] we have obtained the following

Theorem 1. Every strongly zero-dimensional metrizable B,-space is Baire. []

Open problem. Is it true that every metrizable B,~space is a Baire space?

Note that theorem 1 may be used to prove that every suborderable metrizable
B,-space is a Baire space. Another partial positive answer is obtained for metrizable
topological groups in view of the following

Proposition 6. ([N,]) Every topological group which is a B,space (in the topo-
logical sense) is complete with respect to its two-sided uniformity. [

4. Products. The situation in the classical categories (see [K6], [Gr]) suggests
that the product of even two B,-spaces need not be a B,-space. In [N,] we have
obtained the expected counterexamples.

Proposition 7. Let S, T = w, be stationary sets. Then the following are equi-
valent:
(1) S Tis stationary;
(2) S* x T* is a B,-space. [J
Clearly this provides the desired counterexamples for we may choose disjoint sta-
tionary subsets S, T of w,, then S*, T* are B,-spaces, but S* x T* is not.

One may ask for a B,-space E whose square E X E is no longer a B,-space. Such
an example can be obtained from the following construction.
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Proposition 8. Let F be a strongly zero-dimensional metrizable Baire space
such that for some n = 2 F" is no longer a Baire space. Suppose that F is a B,-space.
Then there exists r, 1 < r < n — 1 such that E = F" is a B,~space but E X E
is not.

Proof. The construction is based on theorem 1 and the fact that finite products of
strongly zero-dimensional metrizable spaces are strongly zero-dimensional and
metrizable. Regard F x F. If this is not a B,-space, then E = F.Otherwise F? is
a Baire space by theorem 1. Then regard F? x F2, If this is not B,, then E = F2,
Otherwise F* is a Baire space. etc. []

In [N;] we have obtained a space F as above using an example from [FK].

Though no general positive results concerning products of B,-spaces are to be
expected, there are positive results in special situations. Namely the classes of T,
minimal spaces, Cech complete spaces, LindelSf P-spaces are examples of productive,
countably productive, finitely productive classes of B,-spaces.

Open problem. Given a B,-space E and a compact T, space K, must E x K be a B,
space?

5. Closed subspaces. From the situation in the classical categories (concerning
the open mapping theory) one would expect that closed subspaces of B,-spaces
are again B,. In fact, the corresponding statements are known to be valid in the cate-
gories of locally convex vector spaces ([K6]), linear topological spaces ([AEK])
and Abelian topological groups. In the case of topological groups the answer is not
known (see [Ba,], [Gr]) although there are some positive partial results. In the
topological case, the situation seems to be of a completely different nature for we
have the

Proposition 9. Every T, semi-regular topological space E is the closed subspace
of some B,-space F.

Proof. Let F = E x {1} UE x {2} and define a topology on F by imposing
that {(x, 1)} is a neighbourhood of (x, 1) for each x € E and U(x) is a neighbourhood
of (x,2), whenever x € E and U is a neighbourhood of x in E, where U(x) denotes
the set {(y,i): ye UN{x}, i = 1,2} U{(x,2)}. Then E x {2} is a closed subspace
of F homeomorphic with E and E x {1} is an open dense and discrete subspace of F.
Since F is semi-regular by construction, it is a B,-space by proposition 1. []

6. Sums of B,-spaces. The class of B,-spaces behaves very strange with respect
to summation. First note that the sum of even two B,-spaces need not be a B,-space.
Indeed, let S, T be disjoint stationary subsets of w;, then S*, T* are B,-spaces but
S* + T* is not B, in view of the fact that S*, T* are disjoint dense subspace of wf
and hence the natural mapping f: S* + T* — w{ is a continuous nearly open bijec-
tion onto f(S* + T*) which is not open.

On the other hand there are certain positive results on sums of B,-spaces.
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Proposition 10. ([N,]) Given any B,space E, the sum E + E is a B,-space. []

In [N,] we have investigated summation with Cech complete summands and have
obtained the following interesting

Theorem 2. Let E be a completely regular B,-space. Then the following statements
are equivalent:
(1) E is a Baire space;
(2) E + F is a B-space whenever F is Cech complete. []

As a consequence of theorem 1 and theorem 2 we deduce that E + F is a B,-space
if E is a strongly zero-dimensional metrizable B,-space and F is Cech complete.
On the other hand, if E is a Lindel6f P-space of the first category, theorem 2 provides
a Cech complete space F such that E + F is no longer a B,-space.

Another positive result on sums is the following

Proposition 11. Given a B,-space E and a T, locally compact space L, the sum
E + Lis a B,-space.

Proof. Let f: E + L— F be a continuous, nearly open bijection onto the T,
space F. Since f| E: E — f(E), f| L: L— f(L) are as well nearly open, we have
E ~ f(E), L~ f(L). It remains to prove that f(E) is closed in F. But this follows
from the fact that (L) is open in its T, extension int cl(f(L)) and so is open in F. []

7. B-spaces. It has been an open question for a long time whether there exist
B,-complete locally convex vector spaces which are not B-complete. Finally, an
example of this type has been found by Valdivia ([ V]). In the category of topological
groups the corresponding counterexample was constructed in [Su]. Now in the
purely topological case the situation is different. While the class of B,-spaces is
considerably large, B-spaces seem to be of a rather special type. In fact, even com-
pletely metrizable spaces need not be B-spaces. An example may be found in [BP].

Example. A T, minimal space need not be a B-space. Indeed, let E denote the T,

minimal space constructed in [He], whose point set is R, U R; U R,, where Ry =

"=R\NQnIx {0}, Ry=QnI x {i}, i =1,2. Define f:E—>1I by f(x,i) = x,
then fis a continuous, nearly open surjection which is not open.

Concerning sums of B-spaces we have the following

Proposition 12. ([N;]). Let E be a completely regular B-space. Then the fol-
lowing statements are equivalent:
(1) E + Lis a B-space whenever Lis T, locally compact;
(2) E + K is a B-space whenever K is T, compact;
(3) E + BE is a B-space;
(4) E is locally compact. [

Let E be a non-discrete Lindelof P-space. Then E is a B-space but E + fE is not
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since E is not locally compact. On the other hand, E + E is clearly a B-spaée since
it is Lindelof P. This proves that the lemma from § 1 is not valid for surjective map-
pings f resp. the class of B-spaces is not closed with respect to taking T, extensions.
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