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In the present paper we shall determine the minimum discriminants of normal
algebraic number fields of a prime degree over the rational field Q. Let D be the
discriminant of an algebraic number field K of a degree n over Q. The problem of
finding the lowest absolute value of D if K runs over all fields of the degree n with
a given number of real and imaginary conjugate fields is not solved in general. The
highest degree for which this problem is solved is n = 5 ([2], J. Hunter). The case
when all conjugated fields are real (totally real case) is known at most for n = 7
([6], M. Pohst). For greater n the minimum discriminants are not known. In the
following we shall show that this problem is simpler when we look for the minimum
discriminant of the normal fields a prime degree p over Q. Apart from the case
p = 2 we need not consider the absolute value of D, because all fields are totally
real and so D > 0.

By K,, we shall denote the cyclotomic field generated byan m-th primitive
rooth from the unit. Often we shall need the following results:

Leopold [4], Narkiewicz [5]: (A1) Let K be an Abelian algebraic number field
and let the degree of the extension K[Q be n. Then the following conditions are
equivalent:

(a) The field K has an integral normal basis.

(b) The field K can be embedded into K,,, where m is not divisible by any square
of prime.

(¢) The discriminant d(K) is not divisible by any n-th power of prime.

Hilbert [1]: (A2) An Abelian algebraic number field K, the discriminant of
which is prime to the degree of the extension K|Q, has an integral normal basis.

Narkiewicz [5]: (A3) If L|Q is finite and Q = K < L, then d(L) is divisible
by d(K)1"=X1.

(A4) If K|Q is a normal extension of a prime degree p, then d(K) is a (p — 1)-st
power.

(AS) Let Lj/Q (i = 1,2) be a finite extension of degree n, let (d(L,), d(L,)) = 1
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and let K = L, . L, be the sum of Ly, L,. Then [K* Q] = nyn, and
d(K) = d(K,)" d(L2)"
(A6) If K is the sum of Ly, L, with [L; : Q] = "o i = 1,2 then d(K) divides

d(Ly)™ d(Ly)"™ -
Lemma 1. Let K = K,,, where m = p* ... p** and let there be an i, 1l S i <'s
such that (d(K), p;) = 1. Then K < K,,,, where
m, =
S
Proof. Proof is by contradiction. Suppose K ¢ K,,.. We have
K, =KSK,,,

where by (A5)
[Ka £ 0] [KS : Q001 [K,, - QI = (3t g(mo0™).
Since t = [KK,, : @] > ¢(m;), and by (A6)
(d(K7), dKK,,)) = 1,
by (A5) we obtain
[Kn: Q1= o(pi)" t @(2) > (pi)*" (mi)e®!) = [K,, 2 0],
which is a contradiction. Hence K < K.

Proposition 1. Let p be a prime and let q be the smallest prime of the form
kp + 1. Then the minimum discriminant D of the normal extension of the field
of rational numbers Q with an integral normal basis of the degree p over Q is

|D| = g7 .
Proof. First we show that there is a field K with an integral normal basis of the
degree p over Q with the discriminant
|dK)[ = ¢77" .

Take the field K,. Clearly [K, : Q] = kp and the Galois group G(K,/Q) is a cyclic
group of the order kp. Hence there is G, = G(K,/Q) of the order k leaving fixed the
field K, [K : Q] = p. From the fact that g is the only prime dividing d(K,) we get
by (A3) that g is the only prime dividing d(K). According to (A4), d(K)isa (p — 1)-st
power and by (A1) we get |d(K)| = g7~ *.

Now we shall prove that \Dl = gP~ ! is the minimum discriminant. This we shall
show by contradiction. Let there be a normal algebraic number field K, with an
integral normal basis of the degree p over Q such that

(1 (K| < a7
Due to (A1), K, = K,,, where m is not divisible by any square of prime. By (A4),
d(K,) is a (p — 1)-st power. Hence from (1) and from the fact that g is the smallest
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prime of the form kp + 1, using Lemma 1 we conclude that K, = K, where s ! m
and s is not divisible by any prime of the form kp + 1. Therefore p ¥ [K, : Q] and
this is a contradiction with the assumption that [K, : Q] = p. Proposition 1 is
proved.

Lemma 2. Let K < K, and [K : Q] = p. Then p*®~V | d(K).

Proof. By (A4), d(K)is a (p — 1)-st power and therefore it is sufficient to prove
that p? | d(K). We shall prove it by contradiction. Let p? ¥ d(K). According to (A3)
p is the unique prime divisor of d(K) and therefore (Al) implies K < K,,, where m
is not divisible by any square of prime. Using Lemma 1 we get that K < K, which
is a contradiction, because [K : Q] > [K, : @]. Hence p” | d(K).

Proposition 2. Let p be a prime. Then the minimum discriminant D of a normal
extension of the field of rational numbers Q without an integral normal basis of
the degree p over Q is

ID‘ = pz(p—l).

Proof. First we shall show that there is a field K without an integral normal

basis of the degree p over Q with the discriminant

|d(K)| = p**=0.
Let K = K2. According to Lemma 2, K has no integral normal basis and it is
sufficient to show that p*®~1 y d(K). We shall prove it by contradiction. Let
p*®~ V| d(K). Then by (A3)

PO |d(K )| = p

It means that (p — 2)* + p — 1 £ 0, which is a contradiction. Hence |d(K)| =
— p2(p-1)
=p .

Now we shall show that |F| = p*®~ " is the minimum discriminant. Proof is by
contradiction. Let there be a normal field of algebraic numbers K, without an integral
normal basis of the degree p over @ such that |d(K,)| < p*®~". According to (A2),
p | d(Ko) and therefore by (A4) d(Ko) is not divisible by any prime g > p. Hence
Lemma 1 yields K, = K,,», where m is not divisible by any prime ¢ = pand n = 2,
because n = 1 would imply p ¥ [Kmp : @]. According to Lemma 2 K, ¢ K, and
therefore Ky N K, = Q. Clearly Ko N K,, = Q. Hence

[KOKm : Q] = P[Km : Q]
and by ([3], p. 224)
KoKmn K, =K',

where [K’ : Q] = p. By Lemma 2, P**"V | d(K") and using (A3) we get
(2) pZ(p~1)[Km:Q] ! d(KOKm) .

rding to (A6
Acco (49) d(KoKon) | d(K,)? d(K kw01
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where (d(K,), p) = 1 and
P> ¥ d(Ko),
which is contradiction with (2). Proposition 2 is proved.

As a corollary from Proposition 1, 2 we get

Theorem. Let p be a prime. Then the minimum discriminant D of a normal
algebraic number field of the degree p over Q is

1. |D| = ¢°™*, where q is the smallest prime of the form kp + 1, if there exists
a prime of this form less than p®.

2. |D| = p*®~Y, if there is no prime of the form kp + 1 less than p>.

Remark. It is known that there exist infinitely many primes p for which there is
aprime g = kp + 1 and q < p?. Tt is not known if there exists a prime p not having
this property.
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