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(Received November 19, 1987)

Let X be a real or complex Banach space and t a topology on B(X). We say that
B(X) is t-generated by its subset G if it coincides with the smallest t-closed sub-
algebra of B(X) containing G. In particular we say that B(X) is strongly generated
by G if t is the strong operator topology. Similarly we say that B(X) is generated
by G if t is the norm topology and B(X) is algebraically generated by G if 7 is the
discrete topology.

As a motivation for the result presented here we mention a similar theorem known
for X being a separable Hilbert space (see [1], [2], cf also [3] and the references
therein) and the results given in [6]—[8]. In [6] it is shown that for any Hilbert
space H there are two subalgebras A, A, = B(H) with square zero and therefore
commutative such that the set G = A, U 4, algebraically generates B(H). In [7]
this result is extended to those Banach spaces X which are ,,n-th powers”, n > 1,
i.e. which can be decomposed into direct sums X = X; ® ... @ X,, of closed sub-
spaces X; which are mutually isomorphic. In [8] it is shown that for every Banach
space X the algebra B(X) is strongly generated by two commutative subalgebras
(in fact by two subalgebras of square zero) if dim X > 1. Our present result improves
the last one for separable Banach space so that instead of commutativity we have
a single generation. Our proof is based upon the following result due to Ovsepian
and Pelczyfiski ([4], Theorem 1) on the existence of total bounded biorthogonal
systems in separable Banach spaces:

" Theorem [O—P]. Let x be a separable Banach space. Then there is a sequence
(x;) of elements in X and a sequence (f;) of functionals in X such that

(1) fu(x,) = O, (the Kronecker symbol) for m,n = 1,2, ....

(2) The linear span of (x;) is dense in X in the norm topology.

(3) If f(x) = 0 for all n then x = 0.

(@) sup |l 1] = M < o

By [5] we can assume M < 1 + ¢ for a given positive ¢. In what follows we shall
assume that the sequences (x;) and (f;) satisfying (1) —(4) are normalized so that they
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satisfy
(5) [xi] =1 and |f] =M forall i.

We can now formulate our result.

Theorem. Let X be a real or complex Banach space. There exist operators R
and S in B(X) such that B(X) is strongly generated by {R, S}.

Proof. For operators R and S in B(X) denote by Alg (R, S) the subalgebra of B(X)
algebraically generated by R and S. It consists of linear combinations of the products
of powers of R and S. We have to construct two operators R and S so that Alg(R, S)
is strongly dense in B(X). This means that for a given T in B(X), y,, ..., y, linearly
independent elements in X and a positive &, there is an operator B in Alg(R, S) such
that

(6) [By: — Ty <& for 1 <i<n.

In order to have (6) it is sufficient to find operators B; in Alg(R, S),1<i<n,
such that ||B,y; — Ty;| < & and B;y; = 0 for j + i, because then (6) is satisfied

by B = Y B;. Thus for proving strong density of Alg(R, S) in B(X) we have to show
i=1

that for given linearly independent y,, y4, ..., y, in X, positive £ and an element z
in X there is an operator B in Alg(R, S) such that
7) [Byo —z| <& and By,=0 for i=1,2,...,n.

Let (x;) and (f;) be a sequence of elements and functionals satisfying conditions
(1)—(5) and put
(8) R=Y2"(fi®x;4+;) and S = le‘i(fi+1 ® x;},

i=1 i=

where f @ x is the one-dimensional operator on X given by u — f(u) x. By (5) we
have |R|, |S|| £ M and so R, S € B(X).

First we show that all operators f,, ® x,, 1 £ m, n < o0, are in Alg(R, S). To
this end we prove the formula

) Su® X, = 2P R"I(4SR — RS)S™™', p= (';) + (g)
1Smn< o,

where (I;) is 0if k = 1. Using (1) we obtain immediately from (8)

(10) Rx,=2""x,,; and Sx,=2"""!x,_,, n=1,2,...,

where x, = 0. This implies
(11)  (4SR — RS)x, = x, and (4SR — RS)x, =0 for m# 1.
Denote by 4,, , the right-hand side operator in formula (9). We see by (10) and (11)
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that 4,, ,x;, = 0 for k + m and
ApnXm = 2PR""1(4SR — RS)27™*1 .. 27'x; = 27R" " 'x; = x

=)+ ()

We infer that 4, , = f,, ® x, since both operators agree on linearly dense sequence
(x;) and formula (9) holds true.

Let yo, Y1, --., ¥n be linearly independent elements in X, let z be in X and let ¢
be a positive number. We shall be done if we find an operator B in Alg(R, S) so that
relations (7) are satisfied. To this end observe that the sequences {fi(yo)}iZ .
(v, oo {fiya)} 2, are linearly independent elemems in I, otherwise there

no>

would exist non-zero coefficients Ao, ...s Ay such that 0 = Z Aifly;) = fi Zijyj)
for all i and by (3) we would have Z A;y; = 0 which is a contradxctxon The lmear

independence of these sequences 1mphes that there are indices ig, iy, ..., i, such that
the finite sequences

{fik(YO)}Z=o: {fik(h)}Z:o’ cees {fik(yn)}:=0

are linearly independent. This means that there are coefficients ¢y, ¢y,..., ¢, such that

(12) Zockfik(yo) =1 and kzockfik(yj) =0, 1=j=n.
k= =
Define now 4 = Y. ¢(f;, ® xy).
k=0
By (9) we have 4 € Alg(R, S) and by (12) we conclude
(13) Ayo =kzockfik(y0)x1 = X3 ‘and Ay, :kzockfik(yi)xl =0,
Ilsis

n.
For a given positive ¢ and z in X we fi (2) a finite linear combination

by
(14) z
sﬁch that
(15) : |z = zo| <e.

Define B = Z b{(fy ® x;) A. This is again an operator in Alg(R, S). By (13) and
(14) we have

By, = .Zlbjfl(Ayo) Xj = Zlb;x,- = Zo
i= i=
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and
By, =Y b;fi(Ay)x; =0 for i=1,2,....n.
i=1

Thus by (15) we obtain (7) and the conclusion follows.

Remarks. 1° Without assuming that X is a separable space our conclusion fails
to be true. This follows from the fact that for any operators R, S in B(X) and for any
element x in X the orbit 0(x) = {Tx: Te Alg(R, S)} is separabe. Thus for non-
separable X there is an element z in X such that dist (z, O(x)) = 1, and there is no
operator Tin Alg(R, S) satisfying |Tx — (f ® z) x| < 1 if f(x) = 1.

2° It is still an open problem whether B(X) can be separable for an infinite-
dimensional Banach space (for this information the authors are indebted to Tadeusz
Figiel), and for most familiar Banach spaces the algebra B(X) is known to be non-
separable. Thus for many cases (perhaps for all cases) our theorem cannot be im-
proved by replacing strong generation by generation. In particular the algebra B(H)
cannot be generated by two operators if H is an infinite-dimensional Hilbert space.

3° In our theorem we can replace strong generation by weak generation (gcnera
tion in the weak operator topology). This follows from the fact that for linear sub-
spaces of B(X) their closures in strong and in weak operator topologies coincide.
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