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There are many metric characterizations of the Veronese surface ¥7; see [4], [8]
and the literature therein. see also a profound paper [1]. Nevertheless, in the fol-
lowing I try to treat a global purely projective characterization of ¥”. It seems that
there exists no satisfactory local theory of surfaces in P*(R); the treatise of them
in [3] excludes wide classes of surfaces (among them 77). Thus a systematic study
of global projective properiies of surfaces in P"(R) is needed; the present paper is an
initial first step in this direction.

1. First of all, let us explain what we mean by a Veronese surface ¥~ = P*(R),
P*(R) being the projective 4-dimensional space over reals. Let (x, y, z) be ortho-
normal coordinates in E* and (u, ..., us) orthonormal coordinates in E*, E? being
the p-dimensional Euclidean space. Denote by S%(r) = E°*' the hypersphere of
radius . The mapping ¢: S*(/3) — S*(1) = E® let be given by

(1.1) o(x, v. z) = (ayz, axz, axy, (x> — p?), {x* + y* — 22%))
with
(1.2) «=13.

To each point 6(p), p € S*(/3) we may associate an orthonormal frame {m; vy, ..., vs}
in E® such that

(1.3) dm = o'v; + @*v,;
2
do, = 0o, + 2w’ + aw'v, — wlvs, dv, = —wiv, + aw'v; — aw’vy — 0?vs,
2 2
dvy = —aw?v; — aw'v, — 20iv,, dv, = —ao'v, + wo’v, + 20iv,,

dos = w'v; + @?v,;

for this, see [7] where we have to change the sign of vs.
Let 1:S%(1) > PR) be the usual mapping; then 7.0:S5%./3) - P¥R) is
exactly what we are going to call the Veronese surface ¥".

2. Let us explain several elementary facts from the theory of Laplace transforms
in the projective space; for the hyperbolic case, see [5], Chap. IV.
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Given a surface D — P'(R), D being a 2-dimensional manifold, let us suppose
that the points of the surface satisfy exactly one hyperbolic partial differential
equation of order 2. Then we may choose local coordinates u, v on (a domain U of )
D in such a way that our surface is given by x = x(u, v), and we have

(2.1) Xy = ax, + bx, + cx,

the subscripts denoting derivatives. The Laplace transform of our surface x(u, v)
is a mapping £: U — P'(R), % = %(u, v), such that X{u, v) € {x(u, v), x,(u, v), x,(u, v}}.
%(u, v) * x(u, v) for each (u,v)e U, and there is a tangent field 1 = #(u,v) on U
satisfying #(u, v) %(u, v) € {x(u, v), %(u. v)} on U; by {z,. ..., z,}, we denote the pro-
jective subspace through z,, ..., z,. It is known that our surface x(u, v) has exacily
two Laplace transforms

(2.2) X; =X,—ax, x_,; = x, — bx.
Indeed,
-0 0
(2.3) —xy =bx; + hx, —x_; =ax_ + kx
du v
with
(2.4) - h=c+ab—a,, k=c+ab—b,.

The functions h, k are the so-called Laplace-Darboux invariants. In fact, they are
not invariants with respect to the transformation of proportionality factor x — gx’
and the transformation of parameters u’ = u’(u), v’ = v'(v), but the so-called point
forms

2.5) @, =hdudv, ¢_, =kdudo
Y

are; for their geometrical meaning, see [2].

The Laplace transform .\'1(11, v) is a surface if and only if h & 0 on Uj; it satisfies
the equation

(2.6) Xiwp = A1Xqy + byXy, + €14
with

(2.7) a; =a+ (logh),, by =>b, ¢;=c+h—k— bllogh),;
: (log h), := h™'h,.

Thus it has once again two Laplace transforms, and they are

(2.8) Xy = (xy); = Xy, — a3Xy, (x9)—y = Xy, — byxy = hx.

For the Laplace transform x_;(u, v), k # 0 on U means that x_, is a surface. The
points x_; satisfy

(2.9) Xoqu = @-1X_q, + b_yX g, + 41Xy
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‘with
(210) a_y=a, b_; =b+ (logk),, c_y =c+ k—h—a(logk),;
(log k), : = k™ 'k, ;

and the Laplace transforms of the surface x_,(u, v) are

(2.11) Xog=(x_q)oy =X_g,—boyx_y, (Xog)1 = X_yp — a_yx_y = kx.
The Laplace-Darboux invariants of (2.6) and (2.9) are
(2.12) hy =2h — k — (log h),, ky=h; h_y =k,

k_y =2k —h — (log k),
respectively. Thus we get two new invariant point forms
(2.13) @, =h,dudv, @_, =k_;dudv.

We may say that, because of (2.3), ¢, is associated to the line congruence {x, x},
@_1 0 {x.x_,}, ¢, to {x;,x,} and ¢_, to {x_y, x_,}. Of course, x,(u, v) being
a surface, we may construct its Laplace transform x3(u, v), etc.

Now, let the surface y: D — P'(R) satisfy exactly one elliptic partial differential
equation of order 2; we say that it has an elliptic conjugate net. It is known that
we may choose local coordinates (u, v) in such a way that

(2.14) Yuu + Voo = Ayy + By, + Cy.

I did not find this case to be mentioned and studied in the literature, but its theory
follows easily. We have to pass to the complexification P'(C) and complexify the
tangent bundle of D. Using the complex coordinate z = u + iv and the usual vector
fields

(2.15) ﬁ=l<i_iﬂ>, i=l<_5_+ii>
0z 2\0u ov 0z 2\du av
on U, (2.14) may be rewritten as
(2.16) Vo= Ay, + Ty, + Cy; of =HA+iB), €=1C.
‘The Laplace transforms are then
(2.17) vw=Yi— Ay, vy =y =y
with
(2.18) Ly =y, + Hy, —6;y_1 =dy_; +Ky;
cz 0z
(2.19) H=¢+AF —of., K=6+ AT — J,=H.
From (2.15), we see that
((2.20) Y1 =71
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Further, our point forms are
(2.21) Yy =Hdzdz, ¢y_, =KdzdZ=y,.

Let us suppose H + 0 on U < D; then yy(u, v) is a surface and y_,(u, v) is a suriace
as well. Then we get the second Laplace transforms

(2022) Vo=Yiz— Y1, Vora=Yoq.— Ay A=A+ (Iog H):;
see (2.7)—(2.11). Thus again, using (2.20),

(2.23) V-2 =2,
and we get the point forms
(2.24) Y,=H;dzdz, y_, =K_;dzdZ;

Hy=2H — K —(logH),;, K_;=2K—H — (logK)., = H,
satisfying, because of (2.19),
(2.25) " =T,

3. Consider a surface D — P*(R), D being a 2-dimensional manifold; we are
going to restrict ourselves to its coordinate ncighborhood U. Let us suppose that
our surface carries exactly one elliptic conjugate net and its first and second Laplace
transforms exist.

It follows easily that our surface si not contained in a P*(R). To each point m
of our surface (in U), let us associate a frame {m, ..., m,} consisting of analytic
points m; such that the geometric point m, coincides with m and m,, m, are situated
in the tangent plane of our surface at m. Further, let

(3.1) det [mg, ..., my = 1.

We have the fundamental equations

(3.2) dmy = ogmg + o'm; + 0?*m,, dm; = o{m, + ... + wim,
(i=1,...4)

with the usual integrability conditions

(33) do} =" Aol (i,j=0,...,4);

of course,

(3.4) oli=w), 0®i=0); 0 =o0f=0.

From (3.1), we get
(3.5) oy + ...+ w;=0.
Let us choose the frames in such a way that

(3-6) M, :=m, +im,, M,:=m, + im,
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are the first and the second Laplace transforms of our surface, respectively. The
equation (3.2,) may be written as

(3.7) dmy = womg + t'M, + T'M,
with
(3-8) = Yo' - i0?).

Then it is easy to see that
(39) dM, = (0} + i03) my + ol + ] + i(w; — w})} M, +
+ Hot — @) +i(0; + o})} My + H{of + o} +i(0} — o})} M, +
+ ol — 3 + (0 + 0})} M,,
dM, = (0 + i) my + {w} + oF + i(w) — wi)} M, +
+ Hoi — o] + (0] + o))} My + o] + o} + i(0} — 0})} M, +
+ Hoi — 03 +i(0} + 03)} M, .
The definition of M, and M, yields
(3.10) o] — o) + il +0}) =0, o -0} +iw] +o0})=0,
(3.11) (0 + i03) A T = {0} + 0; +i(0; — 0})} A" =0,
(0§ +i03) A ' = {0f — 0} + {0y + 0F)} A T' =

= {0} — 0} +i(0} + w}j} At =0.
Thus

(3.12) ol -0l =0+l =0} -0 =0t +0] =0,
and there are real-valued functions A4,, ..., F, such that
(3.13)  of + @} =2(4,0" + 4,0%), ©F — 0] = 24,0' — 4,07,
w; — 0} = 2(B;w' + B,0?), o)+ i = 2(B,0' — B;w?),
(3.14) wf — 03 = C,o' + C,0*, o} + 0 = Co' — C,0?,
(3.15) o) = E;0' + E,0?, o) = E,o' — E,0?,
o) = Fio! — F,0?, o) = F,o!' + Fo*.
Let the functions Gy, ..., H, be defined by
(3.16) oy + 0 = (G, + H) o' + (G, — H,) o,
wy — 0 = (G, + Hy) o' + (H; — G,) &” .
Then the system (3.12)—(3.14), (3.16) is equivalent to the system
(3.17) 0l =0}, 0;=-w?,
of = 03 + C,0' + C,0?, ) = -0} + Co! — C,0?,

o} = A|0' + 4,0%, @} = A;0' + A,0%,
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0 = 4,0 + A4;0%, o} = A0 — 4,0%,
wy = (B, + G; + Hy) o' + (B, + G, — H,) 0?,
o} = (G, + H, — B,)»' + (G, — H, — B,) 0?*,
w3 = (G, + H, + B)) o' + (H; — G, — B)) o?,
w; =(B, — G, — H)) o' + (G, — H — B)) .
Thus our starting point are the equations (3.17) + (3.15). Let us define
(3.18) QF, = dF, + Fy(0) — 0}), 9F, =dF, + F)(0) — o}),
DA, = dA4; + Ay(0) — 201 + 03) — 4,20} + ©}),
DA, = dA4, + A0} — 20] + 03) + 4,20} + of),
9E, = dE, + E,(20) — o] — 03] + Ej(0} — ©}),
DE, = dE; + E;(20) — o) — 03) — Ey(0} — o),
9B, = dB, + By(0f — 3) — B,(20} — 0?), '
9B, = dB, + By(w) — »3) + B,(20] — o}),
2G, = dG, + Gy(w) — w3) + G035, PG, = dG, + Gy(w) — w3) — G0},
9H, = dH, + Hy(0) — 3) + H,2w] + of),
9H, = dH, + H)(0) — 03) — H,(20} + 0f),
2C, = dC; + Cy(w) — 01) — Cy(w] — 20%),
2C, = dC, + Cy(0) — 01) + Cy(0] - 203).
Then the differential consequences of (3.17) + (3.15) are
(3.19)  DF, A @' — DF, A 0* =0, DF, A o' + IF, A 0* =0,

(3-20) DAy A @' + DA, A @0 = (4,C, — 4,C)) 0! A @,
DA, A 0 — DA, A 0 = (4;,C; + 4,C,) 0! A @,
(3.21) (2G, + 2H,) A o' + (2G, — 9H,) A 0* =

= {Cy(B;, + G,) — Cy(B; + G,)} o' A &?,
(2G, + 2H,) A o' — (292G, — 9H,) A * =
= {C{(B; — Gy) + C3(B2 — G,)} @' A &?,
(3.22) DE; A 0' + DE, A o = AE;Cy ~ E,C, — F|G, — F,G,) o' A 0?,
DE, A 0 — DE, A 0* = AF1G, — F,G,) 0" A 07,
DB, A 0! + DB, A 0 = {Cy(B, + G2) ~ Cy(B, + Gy) — Ey} 0 A 02,
DB, A ©' — IB, A 0* = {Cy(G, — By) + Cy(G, — B,) + E,} o' A &?,
DC, A 0" + 9C, A ®® = 4A4A;B, — A,B,) 0! A 00,
PC, A 0" — 9C, A 0 = {4(A4,B; + A,B,) — C? - Clo' A 0.
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From (3.9) and (3.17) we obtain
(3.23) dM; = Fi'm, + 1iM, + AT'M, ,
dM, = Et'm, + (Gt' + H') M, + Bt'M, + 13M, + Ct'M,

with
(3.24) A =24, +i4,),....H = 2(H, + iH,),
(3.25) 1 =] — i}, 1 =0 +io]+(C, —iC,y) 7.

The geometrical points my, My, M, are fixed; nevertheless, we may change their
factors of proportionality, i.e., choose other analytic points ny, Ny, N, by

(3.26) .~ mg=Rn,, M,=SN,, M,=T1N,

with R an R-valued and S,T a C-valued function, respectively. Further, because
of (3.1),

(3.27) RSSTT = 1.
Then the equations (3.7) + (3.23) become
(3.28) dng = @dng + ¢!N, + @'N,,

dN; = F*g'ng + 0IN; + A%¢'N,,
dN, = E*g¢'ny + (G*o' + H*@") N, + B*o'N, + ¢iN, + C*o'N,,
and we have
(3.29) o' =R7'St', F*=R¥SS)"'F, A* = RS ’TA,
E* = R*S"!'T"'E, G*=RT 'G, H*=RSS'T'H,
B* = RS™'ST™'B, C*=RS™'T"'TC.
Consequently,
(3.30) F*o'g' = F1'7', A*H*p'p' = AHt'7',
and we see immediately that we get the invariant point forms
(3.31) V, = Fi't', , = AHt'T!
the point forms y_, and y_, are given by (2.215) and (2.25), respectively.
Theorem. Let D = R” be a bounded domain, 0D its boundary. Let m: D — P*(R)
be a surface, and let us suppose (i) m(D) has exactly one elliptic conjugate net and

its Laplace transforms M,, M,: D — P*(C) exist; (ii) for the point forms y; and
and Y_, = i, we have

(3.32) Vi =V_y;
(iii) the (now real) point form y, is negative definite, , does not vanish, and the
Gauss curvature x of |/,| satisfies

(3.33) x>2(1-23)= —0371 on D, dx=0 on dD;
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(iv) if the Laplace transform M exists, it is situated on the straight line {Mz, N}
with Ne{m,M_; = My, M_, = M,}; (v) the tangent space of My(p) is 1-
dimensional for each p e 3D. Then m(D) is a part of the Veronese surface.

Proof. Let us formulate our conditions analytically: (ii) means that F is an R-
valued function, i.e.,

(3.34) F,=0 on D;

(iv) gives

(3.35) G=0 on D;

(v) is equivalent to

(3.36) E=B=C=0 on dD;

for the last two conditions, see (3.23,).
From (3.34) and (3.19), we get

(3.37) dF, + Fy(0} — 0}) = 0.
The exterior differentiation yields, because of F; = 0,
(3-38) AH, + A,H =0.
Thus we have AH = AH, and (3.31), (2.25) imply
(3.39) Vo =VY_y;

thus ¥, is a real form and

(3.40) AH 0.

From (3.29, ;) and the condition (iii) we see that we may choose the frames in such
a way that

(3.41) Fi=—-1; Aj=a=1y3, A,=0;

this and (3.38) imply

(3.42) H,=0, H, +0.

The condition (3.37) reduces then to

(3.43) wi = g,

and (3.20) are simply

(3.44) (0} — @) A @' + (207 + ©F) A ©* = C0" A @7,

(20} + @3) A 0 — (03 — ©g) A @ = C,0" A &

Let functions f1,f2: D — R satisfy a system of the form
(3.45) dfy A @' + dfy A @ = (ayufi + apfr) o' A o?,

df; A o' = dfy A @ = (ayfi + azf) o' A 0,
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a;;: D — R being given. We may choose the coordinates (#, v) on D in such a way
that

(3.46) o'=rdu, @®*=rdv; r=r(uv)*0.
Then the system (3.45) may be rewritten as

(347)  fio— fou= —r(asfs + arafa), fru+ f2o = —1(a2ify + a22f2).

This is clearly an elliptic system on D and f; = f, = 0 on éD implies f; =f,=0
on D; for this, see [9] or any other textbook on pseudoanalytic functions.

Aplying this remark to (3.221,2) with G; = G, = 0, we see that E;, = E, =0
on D; here we use (3.36,). Similarly, we get B, = B, = 0 and C; = C, = 0. Thus
(3.36) implies

(3.48) E=B=C=0 on D.
Now the equations (3.21) are
(3.49) {dH, + H\(w} — 03)} A o' + 20} + 0f) A 0> =0,

—(20] + 03) A @' + {dH, + Hy(0) — 03)} A @* =0,

and the system (3.19)—(3.22) reduces to (3.49) + (3.44) with C; = C, = 0. But
this system immediately implies

(3.50) dH, + (H, + 1) (0§ — @3) =0,

this last equation being completely integrable. Applying Cartan’s lemma to (3.44),
we get the existence of functions M, N such that

(3:51) 03 — 0y = Mo' + No?, 20} + 0} = No' — Mw?,
with the differential consequences
(3.52) (dM — Noi) A @' + (AN + Mo?}) A 0* =0,
(AN + Mo?) A @' — (dM — Noj) A 0? = =2(1 + 3aH,) o' A o?;
for o, see (1.2). Thus we get functions K, L, P such that

(3.53) dM — No? = Koo' + Lo*, dN + Mo? = Lo' + Po®,
(3.54) K + P =2(1 + 3aH,).

The exterior differentiation of (3.53) yields

(3:55) (dK — 2Lw}) A @' + {dL+ (K — P) i} A 0? =

= 2(1 + 20H,) No' A ?,
{dL+ (K — P)wi} A o' + (dP + 2Lo}) A 0® =
= =21 + 20H,) Mo' A 0?,
and we write

(3.56) dK - 2Lwi = K,0' + K,0?, dP + 2Lo} = P,0' + P,0?,
dL+ (K — P) o} = Lio" + L,o?
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with
(357) L —K,=21+2H)N, P, —L,==2(1 +2aH,)M.
From (3.54) we get, using (3.50)

(3.58) Ky +P, =6a(H, +1)M, K, + P, =6x(H, +1)N.
Consider the function f: D — R defined by

(3.59) 2f = M* + N2.

Then

(3.60) «df = —(ML + NP) ' + (MK + NL) 0?,

* being the Hodge *-operator with respect to the metric

(3.61) ds? = (0')? + (0?)? = -4y, .

From (3.60) we get the Stokes theorem in the form

(3.62) [p*df = [p{K? + 2% + P? + 2(M*> + N*)(1 + 3a + 5aH,)} o' A @
Let us now calculate the Gauss curvature %' of the metric (3.61). We have

(363) do'= -0? A 0], do’=0'A o], doj = -¥0' A o,

ie.,»’ =1 + 2aH,. Thus the Gauss curvature » of |l//1‘ = 1 ds? is given by

(3.64) % = 41 + 2H,),

and we have

{(3.65) dx = 8a(H; + 1) (Mw' + No?)
because of (3.50) and (3.51). Because of (3.33;) and (3.64),
{3.66) 1 +3a¢+5H,; >0 on D.

The equation H; = —1 contradicts (3.66), and (3.33,) implies M = N = 0 on dD.
Thus the integral formula (3.62) implies

(3.67) M=N=0 on D.

The equations (3.51) reduce then to

(3-68) 0l —wd=0, 20} +awt=0

with the integrability condition 1 + 3aH, = 0, i.e.,

(3.69) H = —u.

Finally, from (3.5), (3.17,), (3.175) + (3.365), (3.43) and (3.68) we get
(3.70) w)=..=w;=0.

Considering now (3.15) + (3.17) with all the specializations made up to now, we
see that we get exactly the equations of the form (1.32_6). QED.

468



Bibliography

{11 O. Borivka: Sur les surfaces représentées par les fonctions sphériques de premiére espece.
J. Math. Pures et Appl., 1933, t. XII, 337—383.

[2] E. Cech: O Toyeunbix W3rmGaHmsx KOHrpysHImit mpsmeix, Czech. Math. J., 5 (80), 1955,
234—273.

[31 G. Fubini, E. Cech: Geometria proiettiva differenziale, t. 2, Zanichelli, 1927.

[41 M. Kozlowski, U. Simon: Minimal immersions of 2-manifolds into spheres. Preprint TU
Berlin, 115/1983.

[S] E. P. Lane: Projective differential geometry of curves and surfaces. Univ. of Chicago Press,
1932.

[6] A. Svec: Projective differential geometry of line congruences. Czech. Acad. of Sciences,
Prague 1965.

[71 A. Svec: Vector fields on hyperspheres. Czech. Math. J., 37 (112), 1987, 207—230.
[8] A. Svec: On Veronese surfaces. Czech. Math. J., 38 (113), 1988, 231—236.
[91 W. L. Wendland: Elliptic systems in the plane. Pitman, 1979.

Author’s address: Ptehradni 10, 635 00 Brno, Czechoslovakia.

469



		webmaster@dml.cz
	2020-07-03T06:58:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




