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Introduction. We take as our starting point the following theorem of Weinberg:
If G is an abelian lattice-ordered group which is finitely generated as a lattice-
ordered group, then G is a free abelian group. Weinberg’s own proof of this theorem
may be found in [C1]; otherwise we believe that it has not appeared in print. Against
this backdrop, it is fair to ask for conditions (on an abelian lattice-ordered group,
say) which deterinine that G has finite rank as an abelian group.

Let us state a slim version of our main theorem for abelian lattice-ordered groups.
It will follow as a corollary of our work in the setting of nilpotency. But first, some
notation: as usual, [-group stands f{or lattice-ordered group. When we wish to empha-
size that an [-group is finitely generated with respect to group and lattice operations,
we say that it is finitely l-generated. For each x € G, G(x) stands for the convex
[-subgroup of G generated by x, and N, for the intersection of all the maximal
convex I-subgroups of G(x). Also, if X = G I-generates G, we shall write G = (X),.

Recall the following definitions: a convex I-subgroup M of the I-group G is said
to be prime if a A b = 0 in G implies that a e M or b e M. The set of all prime
subgroups form a root system; that is, if M and N are incomparable primes then they
have no common lower bound in the lattice of convex I-subgroups which is prime.
M is a value of G if it is a convex I-subgroup of G and is maximal with respect to
missing some geG. Values are necessarily prime. (For the claims made in this para-
graph the reader might consult [BKW] if he feels in need of a proof.) InMcGisa
value of G it has a cover M = \{C < G| C 2 M}. If every value is normal in its
cover we say that G is normal-valued. If each 0 # g e G only has finitely many
values M;, M,,...,M,. meaning that g € M;\ M, then we say that G is finite-valued.

Notice that N is invariant under all the l-automorphisms of G(x); so, in particular,
N, is normal in G(x). Unfortunately, in general, G(x)/N, can be quite wild; but if G
is normal-valued then G(x)[N, is in fact a subdirect product of real groups.

Let us also adopt the following convention: suppose o stands for a certain property
or class of I-groups. We say that G locally a if every finitely [-generated I-subgroup
of G satisfies a.

We shall eventually prove the following theorem (and more).

Theorem 0. For an abelian I-group the following are equivalent.
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(a) G is locally finitely generated.

(b) Locally G has a finite root system of prime subgroups.

(c) For each 0 < xe G, G(x)|N, is representable as an Il-subgroup of real-
valued step functions.

Note. fe R' is a step function if f(I) is finite. As in [C3], let & denote the class
of I-groups which are l-isomorphic to an I-group of (real-valued) step functions.

Before proceeding to prove Theorem 0 we state one result which amplifies
Weinberg’s motivating theorem.

Proposition 1. For an abelian I-group the following are equivalent.
(i) G can be lattice-ordered so that it is I-generated by two elements.
(ii) G can be lattice-ordered so that it is finitely I-generated.
(iii) G is a free abelian group of countable rank.
Proof. (ii) = (iii) follows from the theorem of Weinberg quoted in our intro-
duction. (iii) = (i) By a theorem of Weinberg [W], the free abelian I-group on two
generations is free (as an abelian group) of countable rank. [

Several local conditions. In order to point the reader in the right direction, let
us begin with a representation theorem for abelian /-groups of finite rank. Recall
that if I' is a root system and for each y € I', R, is a real group, then V(F , R,) stands
for the [-group of all functions defined on I' so that f(y) € R, and the support of f
satisfies the ascending chain condition. V(I', R,) is ordered (as an [-group) by defining
f > 0if at each one of its maximal support components y,f(y) > 0.

Theorem 2. Suppose G is an abelian l-group which is finitely generated. Then
G = X(I', T,), where I is a finite root system and each T, is a finitely generated
subgroup of R. (Note. Z(F, Ty) is the [-subgroup of V(F, T,) consisting of all functions
which are finitely non-zero. Recall that, according to the Conrad-Harvey-Holland
Theorem, every abelian I-group can be embedded in some V(I', T,); sce [BKW].)

Proof. Let G* be the divisible hull of G; then it is an [-group, and [-isomorphic
to V(F, S,,), with I' a finite root system and each S, < R and of finite dimension
over Q. (Again, refer to [BKW] for details.) What we want is an [-automorphism
of G, say ¢ so that ¢G = X(I', T,) as promised; so let us proceed by induction on
the rank of G (which is the rational dimension of G?).

There is nothing to do if the dimension of G* is one. In general, the argument has
two parts: suppose G is cardinally decomposable; so G = 4 @ B, both non-trivial.
Then G? = A ® BY, and we can apply induction to each piece: there are l-auto-
morphisms of 4? and B%, a and B respectively, so that ad = 2(I'*, T”) and BB =
= X(I'*, T”), with each T a finitely generated subgroup of R. Now use « and S to
define o on G*. So we may suppose that G (and G") are cardinally indecomposable.
In this case we have a convex I-subgroup C of G such that G = lex (C)—meaning
that C is prime in G and each 0 < g € G\ C exceeds all ce C — and in addition,
G|C is finitely generated and hence free, so G = C x G where G = G/C. Notice
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that G¢ = C? x G Again we use induction to obtain 7, an l-automorphism of C*
so that tC = X(I", T,) with each T, < R finitely generated. Finally, left 7 to an
l-automorphism ¢ of G%. []

In the non-abelian setting we have an anlogue for Theorem 2. Recall first the
so-called Finite Basis Theorem; (see for example, 2.47 in [C1].) If in G each subset
of pairwise disjoint elements is finite then there is a positive integer n so that G
has n pairwise disjoint elements but not n + 1 of them. This is the case if and only
if there exists a chain 0 = G° =« G! = ... € G' = G of convex l-subgroups of G
such that

(i) G' = C; @ ... ® C,,, where each C} is an o-group and

(i) G =Ci"' @ ...® C.T), where each Ci*'is one of the C; or else a proper

lexicographic extension of twoo or more of them.
(If (i) and (ii) above hold we say that G is a finite lex-sum of the o-groups C, ..., C,,.)

Proposition 3. Suppose g is an I-group and {G, |‘y € I'} is the root system of values
of G, with G” as the cover for G, (y € I'). Consider then the following conditions on G:

(a) T is finite and each G|G, is finitely generated.

(b) G satisfies the ACC on all subgroups.

(¢) G satisfies the ACC on all l-subgroups.

(d) G is a finite lex-sum of o-groups and each o-groups used in building the

lex-sum satisfies the ACC on subgroups.

(¢) G has a finite basis, I satisfies the ACC and each G?|G, is finitely generated.

Then (a) = (b) <> (c) <> (d) = (e).

Proof. (a) = (d). First, if G is an o-group for which (a) holds then G has a finite
chain of convex subgroups 0 = K° c K' = ... < K" = G with each K'*'[K’
a finitely generated archimedean o-group. Use induction to conclude that G is finitely
generated. Then if H is any subgroup of G the root system H of values of H is, like-
wise, finite with each H?[H, finitely generated, and therefore H is finitely generated.
This says that G satisfies the ACC on all subgroups.

If G is any l-group satisfying () use the Finite Basis Theorem. As in our discussion
preceding this proposition, let G' = C| @ ... @ C,,, where each C} is an o-group.
Then C} satisfies the ACC on all subgroups, by our first paragraph and hence so
does G'. Suppose we have shown that each G' (i < k) satisfies the ACC on all sub-
groups. G**! = C{*' @ ... @ C;', where each Ci*' is one of the C* or a proper
lexicographic extension of two or more of them. In elther case C* ! satisfies the ACC
on all subgroups, from which we conclude that G*** does as well; by induction we
are done.

(d) = (b) Clearly each G' in the construction of the lex-sum possesses the ACC
on all its subgroups, and hence, by extension, G does as well.

(b) = (c) is evident.

(c) = (d) Suppose, by way of contradlctlon that ay, a,, ... is an infinite, pairwise
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disjoint set in G then <a;); = {ay,a,>, = ... ={ay,...,a,y; < ...i an infinite
ascending chain of I-subgroups. Therefore G does have a finite basis, and so the
Finite Basis Theorem applies. Since each o-group used in constructing the lex-sum
is an I-homomorphic image of a convex l-subgroup of G it too satisfies the ACC
on all subgroups.

(d) = (e) is clear. [

Two immediate comments on the preceding proposition:

I. () does not imply (d). Take the free group F on two generators. F contains
a subgroup of infinite rank, namely the commutator subgroup. Now totally order F
by its descending central chain. Its I clearly satisfies the ACC and each G'[G, is
finitely generated. However F does not satisfy the ACC on its subgroups.

II. We do not know whether (b) implies (a). If this implication is valid for o-groups
then it follows in general. But the problem seems to be precisely with the o-groups.
We shall see presently that for nilpotent o-groups (b) = (a).

Indeed, let us now turn to a study of the following seven conditions:

(1) Locally G satisfies the ACC on all subgroups.

(2) Locally G satisfies the ACC on all I-subgroups.

(3) G is locally finitely generated; (for emphasis, this says that each finitely
I-generated I-subgroup of G is finitely generated as a group).

(4) Locally g has a finite root system of prime subgroups.

(5) Locally G has a finite basis.

(6) G is locally finite-valued.

(7) Foreach 0 > x€ G, G(x)/N, e &.

The following should all be evident:

i) (1) and (2) are equivalent, in view of Proposition 3, and (1) implies (3).

ii) Using the proof of Proposition 3 — specifically, of (c)=(d) — one gets
that (2) = (5).

iii) Clearly (4) = (5) = (6).

In order to go any further we need to investigate the situation for archimedean
l-groups.

Proposition 4. Suppose G is archimedean. Then G is locally finitely generated
if and only if for each 0 < x € G, G(x) e &.

Proof. Suppose first that G is locally finitely generated. We show first that G
is hyper-archimedean: if 0 < a, b € G then H = {a, b}, has finite rank, and therefore
H is (l-isomorphic to) a finite cardinal sum of real o-groups; in particular, there is
a natural number m such that ma A b = (m + 1) a A b, which is condition (6) of
Theorem 1.1 in [C3] characterizing hyperarchimedeaneity.

Next, suppose 0 < xe G. Since G is hyper-archimedean, we know that G =
= G(x) @ x’, and we may suppose without loss of generality that G(x) = R' and
that x is identified with s(i) = 1 for each i e I. Now take y > 0 in G(x); if y does have
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infinite range we have indices i,,i,,..., i, ...€J so that y(il) < yia) < ...
... < y(ix) < .... Choose natural numbers m, and n, such that m, Wiy) <ng <
< my y(iz); then (nyX — myy) v Ohas support I; = {iel|y(i) = y(i,)} and con-
stant non-zero range n; — my y(i;). Then choose m,, n, > 0 so that m, y(i,) <
< ny < my J(is); as before, (n3x — m,y) v 0has support I, = {i el | y(i) = y(i,)}
and constant non-zero range n, — m, y(i,). If we continue in this manner we get
an infinite independent set living in {x, y),; this contradicts our hypothesis. Hence
G(x)e Z. v

Conversely, suppose each G(x)e ¥ (x > 0). Clearly, g is hyperarchimedean,
and it suffices to prove that the I-subgroup H of G generated by ag, ..., a, has finite
rank. (Without loss of generality, take each a; > 0.) Let x = a; Vv ... V a,; since
G(x) e & we may think of G(x) as an I-group of real-valued functions in R so that,
once more, x{i) = 1, for each i € 1. In particular, each a; is a step function. Arguing
as in the proof of the reverse implication, each a; is the sum of disjoint functions
in H which are constant on their support. This makes it clear that H has finite rank.

O

As corollary of Proposition 4 we obtain, refering once again to our several con-
ditions:

Proposition 5. If (6) holds for G then G is normal-valued and for each 0 < x € G,
G(x)/N,e&. .

Proof. If G is locally finite-valued, then for each p < x, y € G, x and y are finite-
valued in {x, y>,. Using their decompositions into disjoint special elements one can
prove that x = x; + x, with x; A x, = 0, x, € G(y) and x, > x, A y. This means
that G is a pairwise-splitting I-group — see [M2], Theorem 2 — and hence normal-
valued. ‘

Next, if (6) holds for G it also does for any convex Il-subgroup of G and any
I-homomorphic image of one of these. So each G(x)|N, satisfies (6); since it is
archimedean as well it follows that in G(x)/Nx every finitely I-generated I-subgroup
is a finite cardinal sum of real o-groups, which, in turn, are finitely generated. Thus
G(x)/N, is locally finitely generated and, by Proposition 4, G(x)/N,e &. []

We are, at last, ready for the main theorem, of which Theorem 0 is a consequence.

Theorem 6. For a nilpotent I-group G the conditions (1) through (7) are equivalent.

In the proof we will use the following fact about finitely generated nilpotent
groups; it is due to Baer [Ba]: if G is a finitely generated nilpotent group it satisfies
the ACC on all subgroups; hence every subgroup is finitely generated. (Also, in any
central chain the factors are finitely generated.) In fact, we can do better: suppose
that G is polycyclic; that is, G has a weak composition series with cyclic factors:
G =Gy> G, > ...> G, = {0}, each G;,, normal in G; and G;/G,,, cyclic, with
no possible refinements. Then the torsion-free factors in such a composition series
are invariants of G and hence their, number as well. (For details see [R], pp. 664.)
Since every finitely gencrated nilpotent group is polycyclic we get:
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Lemma 7. If G is a nilpotent, finitely generated o-group its chain of convex
subgroups is finite. The length depends only on the number of generators and the
nilpotency class.

Proof of Theorem 6. First (3) = (1) If G is locally finitely generated and H is
finitely /-generated in G, then H is finitely generated, and, by Baer’s result, has the
ACC on all subgroups. We now know that (1), (2) and (3} are equivalent for nilpotent
I-groups.

(1) = (4): This follows from Proposition 3 and Lemma 7. In fact, we obtain in
Proposition 3 that (b) = (a), as promised earlier.

Finally (7) = (1): suppose H is a finitely I-generated [-subgroup of G. In view of
Lemma 7 there is a bound on the length of the roots of H. So it makes sense to speak
of the length 7 of the longest root of H. We will proceed by induction on 7. Pick a set
of generators {yy, ..., y,}, all positive; leta = y; v ... v y,and consider G(a})/N, =
= §,. The image of H in S, is a finite cardinal sum of real o-groups. This means that
in H a is finite-valued; splitting it into the sum of its special components we get
H=H,®...® H,, where each H; satisfies (7) and has a connected root system
of primes. Without loss of generality assume H = H,.

The situation is as follows: H is I-generated by {y;....,y,} and H = lex (M),
where M is the maximal convex I-subgroup of H. The trick is to prove that M is
finitely [-generated; then apply induction: M satisfies the ACC on all subgroups.
Then since H/M has the same property we may conclude that the ACC holds for H;
that will prove (7) = (1).

So let us prove that M is finitely I-generated. First arrange the y; so that y, ..., y,
are maximally independent modulo M. (Yes, ¢ = n is a possibility.) Now let T be the
subgroup of H generated by {y, ..., y,}, and S be the normal subgroup of T'generated
by all commutators [y;, y;] (1 £ i,j < t)and y, (t < k £ n), if any. By Baer’s result
S is finitely generated. A typical element of T'is a “linear”” combination f(y, ..., y,,)
of the y; (1 £ i < n). In view of the choice of ¢ such an f(yy, ..., y,) is in M if and
only if the sum of the coefficients of each y; is zero for each i = 1, ..., #; that s, if and
only if f(yl, ..., Ys)€S. From this it follows that S I-generates M, and so M is
finitely I-generated, as promised. [J

Having concluded the proof of Theorem 6 let us list some examples which will
indicate how some of the above implications can fail in general.

An o-group which satisfies (4) but not (1). Let R, be the subgroup of R of all “poly-
nomials” in 7 with integer coefficients and exponents; and fe R, has the form
f=Y1-1amn", with a;, t,e Z. Form a splitting extension G = R, x ~ Z so that the
integer k on top conjugates an element of R, by multiplying it by n*. G has exactly one
non-trivial proper convex subgroup, namely R, ; it can be generated by two elements,
but R, is not finitely generated. Hence G does not satisfy the ACC on subgroups.
Notice that G is locally finitely generated, so (3) does not imply (1), in general, either.
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An o-group satisfying (5) but not (4). The free group on two generators, ordered
via its lower central chain. (Recall the comment following Proposition 3.)

(6) does not imply (5). Let G = Z Wr Z with the cardinal order on the bottom.
This can be generated by two elements, is finite-valued, but does have an infinite set
of pairwise disjoint elements. G is normal-valued, but not representable. We do not
known whether (6) = (5) for representable I-groups.

(7) does not imply (6). In Z Wr Z, the unrestricted wreath product, let G be the
I-subgroup of those { —x, —; k) € Z Wr Z for which (— x, —) is eventually a con-
stant at both ends; that is, there is a natural number n, such that s, = x,, for all
n=ng,and n' £ —n,. G is I-generated by x = (— 0 —;1), y = (—1 —;0) and
z = (- z, —;0). where z, = 0 for n + 0 and z, = I. It is evident that (7) holds
but G is not finite-valued. Once again, this is normal-valued but not representable.
We do not know what happens if G is a representable I-group, but strongly suspect

that (7) does not imply (6) even so.

(6) does not imply (3). Let Q|2 stand for the group of rational numbers whose
denominators are powers of 2. Set H = Q2 x ~ Z with the following group
operation:

(a0, m) + (B,n) = (¢ + 2"B, m + n).

Then let K = Z wr H and G be the [-subgroup of K I-generated by x = (—x(m—;
0,1), where x( o) =1 and X@m = 0 if (x,m) +(0,0), and y = (- 0 —;1,0).
Let K = {(—X(m —30.0) | X,m € Z}. By I-generating G with x and y we will
produce positive elements of K which have support elements (o, m) which are
arbitrarily close in the rational coordinate «. No finite subset of G will do this using
the group operations along; hence, G is not finitely generated.

We believe that (4) implies (3); however, most arguments we have tried seem to
involve some rather intractable problems — at least intractable to us — concerning
finitely generated groups.

We should like to present one more characterization of the I-groups which satisfy
condition (7): G(x)/N, € & for each 0 < x € G. It involves the notion of a u-constant,
which is motivated by the following observation: suppose G € & and has a strong
order unit u (which we promptly identify with the function u(i) = 1, where iel
and G is an l-group real-valued, step functions on I). Then 0 < g € G is constant
on its support — say g(i) = r{0 < r € R) whenever g(i)+0 — if and only if for each
pair of natural numbers m and n, g,,, = (mu — ng) v 0 is either an order unit or
disjoint from g. '

So for any I-group G having a strong order unit u — that is, G = G(u) — we call
0 < ge G a u-constant (or simply a constant when the unit is understood) if for
each m, n € N either

(i) M + g,,, > M for all the maximal convex I-subgroups of G or

(i) gmn A g€ M for all the maximal convex [-subgroups of G, where, as before
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Jmn = (mn — ng) v 0. Then, assuming all the maximal convex I-subgroups of G
normal, the following is more or less obvious:

Lemma 8. g > 0 is a u-constant if and only if g € N, or else in G/N,,, with u
represented as the constant function 1, N, + g is constant on its support.

Lemma 8 says that 0 < g € G = G(u) is a u-constant if and only if N, + g is an
(N, + u)-constant, (under the assumption of normality for all the maximal convex
I-subgroups). So if G/Nu € & then, if x > 0, each coset N,, + x is the sum of pairwise-
disjoint (N, + u)-constants; that is x = ) 7_; g; + a, where a € N, and each g; is
a constant; moreover, without too much pain we can arrange it so that the g; are
pairwise disjoint.

Writing ¢ = a* — a~, we getthat a” < gy + ... + g,,, because a™ A a” =0
and x > 0. By the Riesz-Interpolation Property: a~ = a; + ... + a,, Wwith
0 < a; < g,. Replacing each g; by g; — a; and observing that a* is (trivially)
a constant, we get half of

Proposition 9. Suppose G = G(u), u > 0, and each maximal convex I-subgroup
of G is normal in G. Then G[N,e & if and only if each 0 < xe€ G is a sum of
constants.

Proof (of sufficiency). If each 0 < x € G is a sum of constants then (by Lemma 8)
N, + x is a sum of constant functions, whence G/N, e &#. [

From a global point of view we can be a little better. If condition (7) holds each
G(x)/N, is hyper-archimedean, so, using Lemma 3 from [M2], we can deduce that G
is a pairwise-splitting I-group. The notion of pairwise-splittings allows us to prove

Theorem 10. If G is normal-valued then condition (7) holds if and only if for
each 0 < ue G each 0 < x € G(u) can be written as a sum of pairwise disjoint
u-constants.

Proof. The sufficiency has been done. So suppose G satisfies condition (7), and let
us return to the argument preceding the statement of Proposition 9; what we have in
G(u)is: 0<x=3Y"_, g; + a, with each g; u-constant, 0 <aeN, and g; A g; = 0 for
i % j. Now notice that no value of a can exceed a value of one of the g;’s; (if SO we
would violate the pairwise disjointness of the g;). Use pairwise-splitting and split a
by gi: a = a; + by, which in view of the preceding remark means that b; A g; = 0.
So we rewrite x = g7 + g, + ... + g, + by, With gy =g, + ay,and by A g, =0
and g is still a u-constant. By induction (repeat the above procedure with all the
remaining g;) we obtain: x = ) 7, g + ¢ where each g is u-constant, ¢ A g; = 0,
(1<j<m)ging;=0ifi*jand CeN, 0O

The class of I-groups satisfying condition (7) will be denoted Loc (&). Elsewhere
we will prove that Loc (&) is a (hereditary) torsion class. (For a definition of torsion
classes we refer the reader to [M1] or [M3].)

Abclian /-groups in Loc(#) and vector lattices. Or: back to square one. This work
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was, after all, motivated by a statement about abelian I-groups. We know now that
conditions (1) through (7) are equivalent for abelian I-groups. Let us begin here with
a companion theorem for (real) vector lattices.

Theorem 11. Suppose Vis a vector lattice. Then the following are equivalent:

(Lv) Vis locally of finite dimension.

(2v) Locally V has a finite root system of prime subspaces.

(3v) Locally V has a finite basis.

(4v) Vis locally finite-valued.

(5v) For each 0 < x €V, V(x)[N, is hyper-archimedean.

(6v) Each finitely I-generated I-subspace W is l-isomorphic to X(I'y, R,), where I'y,
is a finite root system and R, = R for each y € I'y.

Proof. The implications (1v) = (2v) = (3v) = (4v) and (6v) <> (1v) should be
clear. Moreover, Propositions 4 and 5 (rather, their proofs) are easily adapted to
obtain (4v) = (5v). Finally, a vector lattice U is hyper-archimedean if and only if
U € &; (refer to [C3]). It then follows that (5) = (1). O ‘

In addition, the following remarks are in order at this point. Suppose G a finitely
generated abelian I-group. According to Theorem 2, G = Z(F R Ty), where I is a finite
root system and each T, is a finitely generated, real o-group. Then V = X(I', R,)
(each R, = R) is at one the v-hull and the a-closure of G. (For definitions of these
concepts we refer the reader to [BKW], [B1] and [C2].)

To close this article we shall give some reasonably detaiied descriptions of finitely
I-generated abelian I-groups. We shall only sketch out proofs, or else state the
appropriate helpful lemmas. First, some notation: say that G is n [-generated if it
can be [-generated by n elements. G is positively n I-generated if it can be I-generated
by n positive elements. Notice straightaway that “‘n I-generated” need not imply
“positively n I-generated: Z @ Z is 1 I-generated but not positively. We shall also
say that G is exactly n I-generated if it can be n I-generated but not n — 1 l-generated.
The next two lemmas are quite easy; we leave the proofs to the reader. For the
remainder of this article — unless the contrary is expressly stated — every l-group
is abelian and finite-valued.

Lemma 12. Suppose G is positive n I-generated. Then G = {ay, a,, ..., a,», with
eacha; > 0and 2a; < a;44.

Lemma 13. If G, and G, are positively n-generated then so is G; ® G,.
We’re aiming for the following theorem. Its proof is by induction on the number
of generators, so we settle the initial case separately.

Theorem 14. For n = 2, if G is n l-generated then it is also positively n-generated.
First, let us dispose of 2 l-generated I-groups; we characterize them completely
in the proposition below. Note that it also proves Theorem 14 for n = 2.

Proposition 15. Suppose G is 2 l-generated. Then it is positively 2 l-generated
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and, in fact, a finite cardinal sum of copies of (a) Z x = Z,(b)(Z ® Z)x ~ Z or (c)
any 2 generated real o-group.

Sketch of the proof. The trick is to verify the following four facts: if I" is the
root system of values of G then '

(i) the length of every root of I' is at most 2;

(ii) if y; < 9, in I then the real components at y, and y, are both cyclic;

(iii) if ye I is both maximal and minimal then y’s component has rank not

exceeding 2;

(iv) no y e I' exceeds more than two incomparable elements of I".

(i), (ii) and (iii) are easy to establish. As for (iv), if it fails then G has an I-homo-
morphic image whose root system is

Az X

G5
2
We identify G with the [-homomorphic image; so G = Z(F o, T,) with each T, cyclic.
G = {(x, y),; and without loss of generality x “lives” at J, so take x > 0. There are
two cases to check: (I) |y| € x — in whichcase G @ Z x“ Zor (Z@® Z)x ~ Zand
neither of which can occur — or (II) y > Oalso lives at 8. A bit of patient computation
rules this out as well.

Now invoke Lemma 13 and the proof is done, because it is clear that Z x © Z,
(Z® Z) x~ Z and all 2 generated, real o-groups are positively 2 [-generated. [

(Note. Zis among the 2 generated, real o-groups.)
In order to complete the proof of Theorem 14 we need one more lemma.

Lemma 16. Suppose G is finitely generated and P is a prime subgroup so that
G = lex (P) and G|P has rank k. If P is exactly m l-generated then G is exactly
m + k I-generated.

Sketch of a proof. Let G = {yy, ..., y,>;- As in the proof of Proposition 15,
some of the y; must live outside P, so that we may assume, without loss of generality
that y; > ... > y, > 0 (¢ £ g) and all fail to be in P. What as to be established —
and it is not hard — is that

(i) t — k, if we also insist that the cosets y; + P (1 < i < t) be maximally

independent, and

(ii) P = i1 Y1

Then itis clearwhyg 2 m + k. O

Now use Lemmas 13 and 16 and Proposition 15 to prove Theorem 14 ty induction
on n. With a little more effort one can get the next result, which calculates via the
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“weights”” of roots the size of the least /-generating set. Suppose G has a firiite root
system I" and that each y € I has a finitely generated component T,. If y; > ... > y,
is a root of I' and ¢; is the rank if T; we call the weight of y, ..., Pm

wil ) ty + ...+ t,, if y,,—; does not exceed three or more copies of Z,
VHY1s oo os Pm) = .
LR ty+ ...+t + 1, otherwise.

Proi)osition 17. Suppose G is exactly n I-generated. Then n = max {wi(y,, ...
e Pm) | 71 > oo > Y is a root of T'}, where G = X(I', T).

Sketch of a proof. Induction on n. If n = 1 then G = Z or Z @ Z, and the
result is obvious. For the rest use Lemmas 13 and 16. [

If the reader will return for a moment to the proof of sufficiency in Proposition 4,
it will be fairly evident upon inspection that in that argument we have in fact proved:
if Gis archimedean and each 2 l-generated l-subgroup of G has finite rank then
G € Loc (¥). Carrying this idea through the argument for Proposition 5 we obtain —
observe: G is not necessarily abelian:

Proposition 5°.- Suppose every 2 I-generated l-subgroup of G is finite-valued.
Then G is normal-valued and lies in Loc (&).

All of which gives, for nilpotent groups, a little appendix to Theorem 6:

Theorem 6% For a nilpotent I-group G conditions (1) through (7) are equivalent
to: every 2 I-generated I-subgroup of G is finite-valued.

It seems reasonable to ask whether condition (6): G is locally finite-valued, is
equivalent to (n € N):

(6n) every n I-generated I-subgroup of G is finite-valued.

Theorem 6 says that this is true for every n € N for nilpotent groups. We do not
know what happens in general; as stated before, we do not know whether (7) implies
(6) under some reasonable assumption or other, (such as representability). In ad-
dition — and we end the article with these remarks — there are the following curious
facts.

Proposition 18. Suppose G is an abelian l-group and G = {x, y>;. If x and y are
Jinite-valued then G is finite-valued.

Sketchofproof.Leta = x* + x~ + y* + y~, and by decomposing a — which
must be finite valued — into its special components, argue that it’s sufficient to
assume a is special (i.e. G has a connected root system) and G = lex (N), where N is
the maximal convex I-subgroup of G, and G = G(a). Then, as in the proofs of Pro-
position 15 and Lemma 16, one of the generators must ““live” outside N and be posi-
tive:say 0 < xe G\NN. If |y| < x we’re happy. If, on the other hand, y ¢ N then x
and y must be dependent mod N, and we can replace y by another generator y,
such that |y;| < x. In any event, this happily leads us to conclude that G = Z x ~ Z
orelse (Z@® Z) x“ Z, either one finite-valued. []
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For contrast, here are two examples to indicate the limitations of Proposition 18.
The first one shows that it is false for n I-generated abelian I-groups, with n > 3;
the second that it is false for 2 [-generated I-groups if G is not abelian.

I In [, R, (With R, = R) we let H be the I-subgroup I-generated by a =
=(1,1.1,...) and b=(1,2,3,..). Let G=H x" Z, and take x, = (0, 1),
X, = (a,1) and x; = (b. 1); then G = {x, x5, x5, and all three are finite-valued.
However G is not a finite-valued /-group.

II. Let W= ZWr Z, the full wreath product of Z with itself. Let f(n) = 1,
neZ, and g(n) = n, if n 2 0, and g(n) = 0, if n < 0. Now set a(f, 1) and b =
= (b,1); G = {a, by,. First, it is clear that a and b are special in G. However,
a straightforward calculation shows that: [a, b] = (h, 0), where h(n) = 1if n = 0,
0if n <0, and [a b]™ = (h(n + m), 0). It should now be clear that G is not
finite-valued.

By way of recapitulation, we shall leave the reader with a short list of those
questions which we could not answer and seemed (to us) worth pursuing.

A. If G has locally a finite root system, then is it locally finitely generated? If not
so in general, then under what reasonable hypotheses?

B. If G is representable and in Loc (5”), is it locally finite-valued?

C. If G is representable and locally finite-valued does it have locally a finite basis?

D. If G is locally finitely generated is it normal-valued? (That is, does condition (3)
imply normal-valuedness. All the other do.)

E. If G is a finitely generated o-group which satisfies the ACC on all subgroups,
must its chain of convex subgroups be finite?

F. Under what conditions is an [-group G = {a, b),, with a > b > 0, finite-
valued? (Certainly if G is abelian, but as the last example shows, not in general.)
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