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INTRODUCTION

In a classical paper of 1963 [7], C. Miranda established some generalization of the
integral inequalities of Sobolev, Gagliardo and Nirenberg.

The starting point was the inequality described below concerning the functions of
one variable defined in I = 0,1 (see Lemma 1.1 and 1.IT of [7]).

Let «, p, po. n be real numbers such that:
(1) €z 0; pz1l; ppz0;

L<q =Pt oy g,
P+ Do

then there exists a constant K depending only on # such that:
) |0/l < KO |52 ule ™ + [lrpo] (Julss = [u

for every function u € C*(I) for which the right-hand side is finite.

Ls(J ))

In (2) the second addendum, in the right-hand side can be omitted if u’ is zero in
at least one point of I = ]0,1[.

The inequality (2), if « = 0, becomes the inequality established, at the some time,
by E. Gagliardo and L. Nirenberg in [4] and [11].

The right-hand side is always finite if we consider only functions u continuous
together with their first and second derivatives in the whole I = [0, 1].

This is the starting case for the proof of the Lemma 2.1I of [7]. Thus (2) gives
always a real information about the u’s belonging to C*(I).

The problem we deal with, in this paper is the following: how can (2) be extended
if « <0?
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The “natural” extension of (2) to the case a < 0 seems the following:
(2)' (.“E |ullqn dx)l/qx < K[(IE%’ lullap Iu"lp dx)llp(u+2) (515 Iu!ﬂo dx)llno(a+2) +
+ (fe fu dx)'e]
where: E = I = [0,1] and Ej, = {x€ E: |u'(x)| > t} ( 2 0).
Nevertheless, when a < 0, however small ]ocl is, it is always possible to find

u € C*(E) for which the right-hand side of (2)' is not finite. For example (see Remark
LIO), for « = —3/2(k + 2) (k integer 1), p = 2 and any p,, the function:

(3) u(x) = Y(x) 5 2 sen®(t %) dt
[u(0) = 0; with: Y e C3(]—1,1[), ¥ =1 for |x| = 4]

belongs to C*(E), but makes infinite the right-hand side of (2)'. We observe that the
function u(x) of {3) vanishes in 0 and in 1; so that we can say that (2)' gives an
aleatory information even if we let u vary in the class

U = {ue CHE): u(0) = u(1) = 0} .
In place of (2)’ it would be desirable an inequality where, at least for u € %, the right-
hand side is always finite even when a < 0.
To do this it is reasonable to try to estimate the left-hand side of (2)' substituting
the integral:
fpo [w [ [u'|P dx  (Ej = {x e E: [w(x)| > 0})
which appear in the right-hand side, with the integral, certainly finite:
fpew [W] |w"|Pdx  (Ej = {x € E: |[u'(x)| > 1})
with a suitable ¢ > 0 [if # & 0]. But does such a 7 exist?
Actually we succed in proving that (see Theorem 1.T):

O (Je ™ dx)t/ <
< Rt 7 "} 001754 (5 P )59 1 (f, [ufro a1
YueU
where: E = [a, b], % = {ue C¥E): u(a) = u(b) = 0},
© = B, = |u|g,,, (meas E)~"
Eft = {xeE:|u(x)| > B}, [Elr=0,if u=0],
and, in place of (1), the following conditions hold:

1
() ppe>1; 1>+ syso; 20,
) P Po

y>a>(£+—1—)(1+n)—2.

P Po
As for (2), also in (4): g, = ppo(x +.2)/(p + po) (>1 + n).
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The difference is that now « can be negative [it can approach —2]. The constant

K, which appear in (4) is given by:
,y + 2 1/9%
K, = 21+(1/n)+(1/'l2)< > .
n

If [a, b] = [0, 1] the function u(x) of (3) belongs to the class %, so that (4) —
unlike (2)' — gives a real information about u(x).

Besides (4), we prove the inequalities (see (1.6) and (1.9)):

© W le. < KT e w32 (52 + i), e,

() Wlew = Kall [l w465 ufH552 + (meas )], Vuew,
where: K = 2'/"((y + 2)[n)'/".

All these inequalities are proved by elementary procedures like those used by
E. Gagliardo in [4].

The hold also for subset of CZ(E) different from %; for example (see Lemma 1.I),
(6) holds also in

{we C(E): [w(a)l, W(b)] < 1}

It is still open the problem to see what can be obtained, in general, for u € C*(E):
to this regard see the Remark 1.II. It is also open the problem to establish the ine-
quality analogous to (4) for the functions belonging to C¥(E), for any k.

The same problems hold for the functions of several variables defined in an open
set Q = R", for which in the present paper only some inequalities are proved (section
2) in view of the applications.

For functions of several variables there are also questions concerning the necessary
regularity for 0Q.

In section 2 we assume Q convex (bounded and open), but C. Miranda’s inequalities
[7] are proved assuming only that Q verifies a cone property.

One could also investigate about “‘best constant” in all these inequalities. It would
be also desirable to improve some of the inequalities which are (see for instance
Theorem 2.IT) definitely farraginous, even if suitable for the main purpose of this
paper. The main purpose of this paper is to study an elliptic equation whose coef-
ficients are not continuous.

For this kind of equation (see section 4) we prove an existence theorem (for the
Dirichlet preblem in a cube) applying the inequalities of section 2. For those of
section 1 (concerning functions of one variable) an application is given in the same
section 1 (sec Remark LIV) where an estimate for the mean variation of order ¢
of a function f e C'(E) = C'([a, b)) is given.

The inequality we obtain is the following:

(8) ”q,E(f) = K1 +
+ K,(meas E*)"/1 {2(meas E) = (@+2)/0) M, ) M, 1(%)}1/(”2)
,E( ) LE ]f _ mE(f)ngl
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where: p, po, 1, o < 0 = y satisfy (5) and:
g=q, = PP+ 2D g B () — maf)] > 1),
P+ Do
mg(f) = (meas E)™" [z f(x)dx,
#a, (/) = [(meas E)™" fg |f(x) — mg(f)|* dx]"",
M, 5(g) = [(meas B)™" [ |g(x)|" dx]'"".
Inequality (8) comes from (7).
Let us say something about the equation we mentioned above. In the basic paper

[8] of 1963, C. Miranda established (among other things) some existence and
uniqueness theorems for the equation:

9) Y ayDe Dyt + Y bDou+cu=f, in Q ulpp=0
ik=1 i=1
where Q is a bounded open set of R", belonging to C* and:
(9)' . molélz = Zaikéiék = ”71“:‘2 , VEeR",
ik

me>0, [{P=¢8+..+&.
Precisely the results are the folowing:
(i) (see Theorem 1.V of [8]). If, besides (9)', we have:

(O) dx)=Sco<0; A) ay(x)e W(Q), B) b(x)e(Q), c(x)eLl'*(Q),
then, for each f e I*(Q), equation (9) has a unique solution u € W>*(Q).
(ii) (se Theorem 5.V of [8]). If, besides (9)', we have:

O) e(x) S co<0; A an(x)e WHA(Q), B bix)e Q) clx)e L2 (),

with 4 < A < n, then, for each fe L*(Q), equation (9) has, at least one solution
ue W»3Q)n L*(Q). When A < n, the first hypothesis of (9)” does not assure
the uniqueness any more (see the counterexample of Alexandrov, mentioned also
in [9]).

The crucial point of the proof of Theorems 1.V and 5.V of [8] is the estimate of
the integral (2.14).

For the Theorem 1.V this estimate follows essentially from Sobolev’s Theorem
which requires condition A) a; e W'

For the Theorem 5.V, instead, the estimate of the integral (2.14) is obtained using
(5.5) [8] (that is (2)) which allows the weaker hypothesis A;) a; e W'

Then one can ask whether the use of an inequality like (2), but with o < 0, could
allow even less restrictive hypotheses on the coefficients reducing the summability
of their derivatives to an exponent smaller than 4.

That was the first idea which brought us to extend the inequality (2) to the case
a < 0. '
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Once such an extension was obtained, the plan we had in mind effectively worked.

Actually we consider, in sections 3 and 4 an an elliptic equation with coefficients
belonging to W'* (A < 4) and prove for it an existence theorem.

The equation we deal with has the simplest form in order to get rid of additional
difficulties.

Similarly, to avoid complications in writing (2.11) of [8] when « < 0, we set the
problem in the cube Q = ]0,1[". But it is clear that these aspects of the problem should
also be examined.

The theorem we prove (Theorem 4.11) is the following: Let Q be ]0,1[" and a,(x), ...
..., a,(x) functions such that:

(10) a;e WH42(Q) with —4 < a<0; infa(x)>0;
then, for each f e L*(Q), there exists at least one u e Wg'““‘(g) N L*(Q) such that:
(11) Pu = —-.i a(x)Diu=f(x) in Q,

o uog =0.

The general scheme of the proof is that of C. Miranda, but the condition « < 0
creats additional difficulties so that it has been necessary to show the proof in detail.

It should be remarked that assumptions (10) do not require the coefficients to be
bounded.

A concrete example of an equatijon to which Theorem 4.1I applies (see section 6) is,
in R*, the following:

(11y _i;(l F | — %7 U@2D L 4 sen (Jx — x|~ 1@2+0)]) D2 u(x) = £(x)

where x' = (x}, ..., x}) is a fixed point of @ = ]0,1[*. Another examples is furnished,
in R®, by the equation:

(11)” —él(l + 8(x)" V@21 + sen (6,(x)" 2 D)]) D2, u(x) = f(x)

where: §,(x) = [ ) x}]"/? is the distance of x from the x; axis.
j¥i

Acknowledgement. I am very grateful to my dear colleague Filomena Pacella for
some useful talks about the subject of this paper.

1. SOME INEQUALITIES FOR FUNCTIONS OF ONE VARIABLE

From now on we will consider real numbers 1, ¥; P, Po, &, satisfying the following
conditions: '
(1.1) p>1, po>1, 20,

1 1
1>£+-1—>n>0,y>a><—+—>(1+n)—2.
P P P Po
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From (1.1) we have immediately:

(L1y PPo>p+pe>2, 0<p<1,
1 ppo _ 1 ,
np+ po 1_(1_P+Po)

PPo
2
R ) N
n P+ po
2\1/n .
(LL) >(1+’1)1/'1>2‘
n
It is useful to observe that, if «, 1, p satisfy:
(1.1),, p>1, 1>1>n>0,
: p
0>oc>1—+—"-— 5
p
then, for

P (L+n)p }
p—1 pla+2)—1-y
the numbers 1,y = 0; p, p,, a satisfy (1.1).

Among the numbers for which (1.1)Oo is true there are, for instance, p = 2;
n=*% aeld—2,0[.

The following inequalities will be often used:

po§ﬁ>maX{

(1.2) {0<¢& <y al™ with: a;,>0=<0a; < 1} =
i=1

=>{£ < Y (q:a)"* ", ¥(qy,...,q,) € R" with ¢; >0 and Y 1_ 1};
i=1 i=14g;
{a,b,s > 0} = {(a + by’ < 2%a’ + b°)}.
If A is an open set in R” we will denote by C*(4) the set of functions u which can

be extended, together with their derivatives, up to the order k, continuously to the
closure 4 of A.

If ¢(x) is measurable in 4 and © = 0 is a real number, we set: A, = {xeA:
|@(x)] > t}. Obviously 4, = 0 if |p(x)| < t, Vx € A. For sake of simplicity we will
write A" and A4, instead of A and A}, , respectively, if there is not misunders-
standing. :

Finally we will use the notation:

I“lA,s = ”“"L'-(A) = ([ l“(x)ls dx)'”,

lD"uIA',S =Y ID“ulA,,.
la| =k
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Lemma 1.I. Let E be the interval [a, b] = R and 1,7; P Po, & real numbers

satisfying (1.1).
Then, for every u € C*(E), with |u'(a)|, |u'(b)| £ 1, we have:

(1.3) [[s.q = K| w2052 ul 50 + wled]

where:

2\1/n
_ Ppo(® +2) , K=K(y,n =2 </ ks )
D + Do n

Proof. Since: [u/(b)], |u'(a)] < 1. the set E, = {xeE: [u'(x)| > 1}, eventually
empty, is open in R (because of the continuity of u’) and can be written as the
disjoint union

=_91]ai’ bi[ < Ja, b[ .
In the generic interval Ja;, b,[ we have either u'(x) > 1Vxoru'(x) < —1Vx.

If, for example, u'(x) < —1 Vx € Ja;, by then u'(a;) = u'(b;) = —1 and, arguing
as in Gagliardo’s paper [4]:

Ji= [biu|tdx = o |w]ot (—u)dx =
—(u(b:) — u(a;) + fau D(|w'[*) dx =
—foiwdx + (g — 1) ol [w]|* P wu'udx =
bg Iurl dx + (q _ 1) b Iurla rllur!q—:i-a u’u dx
since the formula: D|f|* = B|f|*~2 ff' is true VB € R for the points x where f(x) # 0

and here f(x) = u'(x) + 0Vx € [a;, b;].
So, in the case u'(x) < —1 Vx € Ja;, b;[ we have:

(L4)  Ji=[owltdx < foiJw|dx + (g = 1) fai | [w]*w]  |w]” . Ju] dx,

where:

I

I

mg-2—a=EP =P =P) (42
P + Do

(s,a__m'o___w),
PPo — P — Do

Using the same procedure in the intervals where u’(x) > 1, we find that (1.4) holds
for any interval ]a;, b;[. Taking the sum over i and applying Holder’s inequality
to the integrals and the sums we get:

(1.4y fory |w/|*dx = Z J;i <

S 3Pl dx (0 = D F ] o] Pl ax < finy

0o~ P~ Po

(q = 1) X (e o ] ) o (1 [ty o WImTww)m < Jonus ] dx +
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PpPo—Pp—Po

+ (q . ]) [}: 2: I lulla ul/lp dx]l/P [Z Z: Iulpo dx]l/Pu [Z IZi lullq dX] 770 =

, -Ptpo
= fpo [w] dx + (q = 1) (fesr | [0 ]2 dx) 7P ([, |u]Podx) 70 ([, |w']? dx)1 7o
Now if we use the first inequality in (1.2)

[wit’h: g1 =q:=2, &= [p,|w|idx, a, =0, “2=1_P+Po<1]
PDPo

and (1.1)" we obtain:
fpra [w|"dx < 2 g, |w| dx +

+ [2(a = D) (Jen [ ] 0[P )72 (fis, [u]™ dx)tire] 0= <
y 4+ 2\
<2 jEl.,' 'u/l dx + 21/n< > (,‘.E‘u’ I Iulla uulp dx)p"/(”m)(jpuf lult’o dx)p/("“"’).
n

Moreover ¢ > 1 implies: [5_ps, [u'|?dx < [p_pi |u'] dx, from which, using again
(1.1)" we have:
(15)  Jelw|*dx = K(y, m) [fe|w] dx + | |u]* u"
with K(y, n) = 2'"((y + 2)[n)*/".

From (1.5) and the second inequality of (1.2) it follows that:

L, (1/a)+(1/nq) v+ 2 1/ne ta ,, n|1(a+2) 1/(a+2) /|1/q
']s,, =2 ) [ w5 (w02 + fw|E1]

ppo/(p+po) lu ppo/(p+ po)
E'y',p !

EY’,po 4

uw Po

Hence the assertion, remembering (1.1). q.e.d.

Lemma LIL Let 1, y; p, po, 1 satisfy (1.1). Then:
(1.6) |00 = K| | w802 [ul 6550 + [w']z/4]
Vu e C*(E), with u(a) = u(b) = 0, where:

1
q= M’ K = K(Y»"l) = len(?_'i'_?‘) u .
P+ Do ]

Proof. By the previous lemma, (1.6) is true for the functions u € C*(E) for which
u(a) = u(b) = 0 as well as |u'(a)|, |#'(b)| < 1.

Let us suppose that the last condition does not hold and that, for example,
u'(a) > 1, |w'(b)| £ 1 (the other cases can be handled similarly).

In this case the set E,. = {x e E: |[u/(x)| > 1} is not open in R, since the point
a belongs to it. But it easy to see that: Ej, = [a, B[ U Ej. = [aq, bo[ U E,., where
a < B < band') E}. = 1B, b[ is open in R.

Therefore:

By = [a.pLu (Y Jaw 5D
1y See p. 393.
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with w(x)>1 in [a, B[, w(p)=1,
and w'(x)>1 in Ja, b, w(a;)=uw'(b;)=1 or
u’(x) < —1 in ]ai, b.[ > “/(ai) = u’(bi) = -1
where the sets a;, b,[ are mutually disjoint. It is clear that (1.4) holds for the interval

Jaw bi[ (i = 1).
For the interval [a, [, where u'(x) > 1, u'(8) = 1, u(a) = 0, we have:

(1.7) Jo = [hlw]tdx = [fuweu dx =
=u(B)—u(a)— (¢ —1) B uw* 2u"udx <[8|u'|dx+(q—1) 5| |u] u'| || |u] dx,
with: 0 = q — 2 — a.
At this point, summing up (1.4) (for i = 1) and (1.7) we reach a formula analogous
®

0
(1.4), with Y J, instead of ) J;, and:
i=0 i=1
Bl = [0, B0 (U Jau i) = (& B: u(3)] > 1}
Hence, going on as in the lemma 1.I, we obtain (1.5) and the assertion. q.e.d.

Remark 1.I The proofs of the lemma 1.1 and 1.1I imply:
(L) felwl dx = Ky n) [] [w= w|Z205 7 [ulgrel 5 + [ luw'] dx],

Eu'1.po
Vu e {we C*(E): w(a) = w(b) = 0} U
v {we CHE): |w(a)], [w(b)| < 1},
i T (S
Let I be the interval [0, 1] and
C3(I) = {ue C¥(I): u®(0) = u®(1), k =0,1,2}.

The following lemma holds:

with:

Lemma LIII. Let 1, 7; D, Do, O satisfy (1.1). Then:

(18)  [wlue s RO W @i s + (Wl vue ci(0)
where:
= B.h_(aLz), K= K(’y, ,1) - 21/:1(7 + 2)1/'1
P+ Ppo n

1) For this u(x), EL = 0. ‘}

-
_‘}

Q
=
o
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Proof. For any u e Ci(l). we consider the function
U(x) = {u(x) in [0, 1]

u(x — 1) in [1,2]
which belongs to C*([0, 2]).
Moreover, because u(0) = u(1), there exists a € |0, 1[ such that u’(a) = 0. Con-

sequently, %'(a) = %'(a + 1) = 0. Thus, applying lemma 1.1 to the interval E =
= [a,a + 1], we get the assertion. q.e.d.

Theorem 1.I. Let 1, y; p, po, & satisfy (1.1). Then:

(19) |w'|g,q = Kal] Ju'[* w'[E557 |u|s552 + (meas E)Y],
Vue CE), with u(a) = u(b)=0,
(1.10) 0g.q < K| || w"|£55205) [uls™™ + [ulepol »

Vue CHE), with u(a) = u(b) =0,
where:

Ez[a,b], q:gg‘)‘(w ,
P+ Do

Bu = |u|E,p (meas E)™14, " Ely = {x e E: [u'(x)| > B},

K, = K,(y, ) = 21 ¥R = gt+m+(iim) (V + 2)”"2 .
' n
Proof. From (1.5)' of Remark 1.I, and the Holder inequality we deduce:

1/
(1.11) [ lurlq dx < 21/ <7___.2) ! | |u'|a “"I"Efl"’f(’f"") lulgp:;{(g;—po) +
n , u'l,

1/n
42t (}":—2) (meas B)e~ 4 ([ |u/jt )t

Hence, using the first inequality of (1.2) [With: a, = 0, a, = 1/g, ¢, = ¢, = 2] and
(1.1), we have:

111y 5 l Ilq dx < 21+0a/m v+ 2 v ‘ "\® y""|ppo/(p+ po) |, |PP0/(P+ PO)
( . ) E|U X = " I ul u lEu",n lulEu"’Po +

1/n _
+ [21 +(1/m) (7 + 2) (meas E)(q_l)/q]ll(1 (1/9)) <
n

< [pream (r 2\ ' o+ /(p+ o)
= —_— {(meas E) + | |u lu u"l%ﬁ?{.i po) Iu‘”?l p+po))

n Eu'l,po

From this, (1.1)" and the second inequality of (1.2), the estimate (1.9) follows.
From (1.9) we trivially get:
ll(a;kl) 1/(a+2

(r.9y |ew'|z,q < Kuf| Jew'|* cu”|Z307 |eul/c | (meas E)'/1],
Vue C*E), with u(a)=u(b)=0, VceR,
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‘where, clearly:
El, = {x€E:|cu(x)| > 1}.
Moreover, since:
VeeR, VASE, ||| cu|,,=
= (“.A lcu/(x)lap Icu//(x)lp dx)llp — ‘C‘JH-I l Iulla u"lA,p ,
(1.9) implies:
oy el [wleg = Kafllef - | '] w] i3 ) |ulelp > + (meas E)'/7]
Vue CHE) with u(a) =u(b)=0, VceR
by remarking that:
El = {xeE:|a'(x)| > 1} = {er: lu'(x)] > ﬁ} = Elte
c
Regarding (1.10) we observe that it is certainly true for the function u = 0. So, we
suppose I“IE,po > 0, and take:
¢ =B;" = |u|zp (meas E)'/ > 0.

From (1.9)", written with such @ < ¢, we get (1.10) and the assertion. q.e.d.

Remark 1. IL It is not clear yet if (1.10) holds, in general, (in the case « < 0)
for any function u € C*(E) regardless of the conditions in a and b.

The fact that inequality (1.3) is not true for some u € C*(E) seems to give rise to
a negative answer.

In fact, for the function u(x) = nx (n € N), we have:

|| u"|eys,, =0, |w|f4 = n'/%(meas E)'/*, |u'|p, = n(meas E)!/1.
Remark 1.IL In C. Miranda’s paper, [7], the starting point is the following:

Lemma 2.I1. Let «, p, p,, n be real numbers satisfying:

(1.3)y (LA4)y «z0, p21l, ppz0,
léqlzwén(a_{_z)‘
P+ Do

Then, for every u € C*(]0, 1[) such that u'(x) = 0 for at least one x € |0, 1[ we have:
@2 (3 |/} dx) /o < K5 |u'|2 [u[P dxCt/ UG +20) ([ [y[po d)(trod 1/ 20)
whenever the right-hand side is finite, with K, depending only on 1.

When, in particular, u € C*([0, 1]) (which is the starting point in the proof of the
lemma 2.1I), formula (2.2)y is always meaningful, since the right-hand side of (2.2)y
is always finite.

If we try to extend lemma 2.II to the case « < 0, even remaining in the class
C*([0, 1]), it is necessary to substitute (2.2)y with:

(2.2)
(18101 dx)8 < Ko frenrceysop |87 [7]P dx) (12 1420 ([ [P0 )1 /p0d (1t 20
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Vu € C*([0, 1]) such that «’ = 0 in at least one point of [0, 1]. Immediately we find
out that o (<0) cannot be arbitrary, if we want to make finite the right-hand side.

For instance, if p = 1, u(x) = x*, p = 2 (= u/(0) = 0) the right-hand side will
be finite only if @ > —1. On the other side, the condition o > —1 is essential if we
want to write (with « < 0) the formula (2.4) in the proof of the lemma 2.IT ([7],

page 4).
Actually there exist negative o’s, arbitrarily close to zero and functions u e C*([0,1])
(with " = 0 in a point of [0, 1]) such that the right-hand side of (2.2)' is not finite,

so that (2.2)’ does not give any information. It is enough to consider, for example:
(1) p=2, ulx)=y(x)f5* 2sen’(t7")dr, a=—" "
. k integer = 1
with {.//ecg’(]—], i), y=1 for |x|<1.
In fact, it is clear that;

ey — k+2 2 -k
(i) vxe]o 4l {Z”((i)) _ ; sens(e;l"‘gx[(k)—k 2) x*sen (x7*) — 2k cos (x7H)]
w(0) = lim u/(x) = 0,
u"(0) = lim+u”(x) =0,
which implies: u e c¥([o, 1]). e
Then,Vne N, n > 0andYke N, k = 1, we have:
(iii) vxel, = ]Gn + 2nm)~ 1k, (én + 2nm) VA,
5 < sen (x| £ V22 £ 2k|cos (x7%)| = (k + 2) x¥|sen =™
From (i), (ii), (iii) we obtain:
(iv) vxel,, |w(x)?”u(x)r=
= WG9 () = (3 en (-] 014+
. (x?[sen (x %) |(k + 2) x* sen (x %) — 2k cos (x7¥)|2) = 1/8x

for every integer k = 1 and n > 2*7!/x.

Consequently:

o= [r W]

. 2
u”|"’dx_2_1 (-iileog3+“4n,

8J), x 8k 2+ 24n

from which we get:

1 3+ 24n

V P 7 op ”’Pdv_>_ J"g _‘1
( ) jlx.“ (J‘)*O)Iu (X)l |u (l)l X - n>22"/21z n>22"/21r 8k Og 2 + 24n

1 1
=—1lo 1+ = 4oL,
8k g">12_;[/2"( 2 + 24")
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Therefore, with this choice of u(x), « and p = 2, the right-hand side of (2.2)" is not
finite, whatever p, is. Thus, if we an estimate similar to (2 2)y for o < 0, which is
meaningful for a reasonably large class of functions u € C*([0, 1]), it is necessary
to restrict the set I over which the integral of |u’|* |u”|? is taken. In doing this we
should be careful to restrict I so much that:
Jrlw]™ ju"]P dx < 4+ o0

but so little that it would still be possible to estimate the left-hand side of (2.2)'
by the above integral. This is exactly what we manage to do in Theorem 1.1, even if
under hypotheses (1.1) and for the u’s in C*([a, b]) which are zero in a and b.

For example, the function u(x) defined in (i) satisfies this condition in [a, b] =
= [0. 1]. Moreover, since for k = 1, the numbers:

p=2, n=1%, a= =32k +4)e]i-2,0[
verify (1.1),,, we know that the numbers n =4,y =0, p =2, « = —3/(2k + 4) and
Po = P > max 2,—-—(L+—M~— =2
pla+2)—1—y

satisfy (1.1); therefore (1.10) and (1.9) holds for the function u{x) of (i).
Consequently these formula’s give real information on u(x) whereas (2.2)’ cannot
say anything since the right-hand side is not finite.

Remark LIV. Let f be a continuous function in E = [a, b]. Then for any mea-
surable subset B < E, the following mean values are defined by:

my(f) = ~ ! f(x)dx, M,(f) = L |f]r dx v
0 meas B J; ) ’ " (meas BJ ) ) ’
oslf) = ( J If = m(f)l dx) ,

where r is a positive real number.
For any f e C'(E), we define the following function:

u(x) = J' £()di —

which satisfies the hypotheses of Theorem 1.1 (u € C*(E)) since u(a) = u(b) = 0 and
w'(x) = f(x) — mg(f), u"(x) = f'(x) e C°(E).

Then, if o < 0, p, po. n verify (together with y = 0) condition (1.1), writing (1.9)
for this u, we have:

(1.12) (§e|f = mg(f)|e dx)V/e <
< Kl[(meas E)llq + (jE.,’l Iu'lpa ‘u/'lp dx)llp(a+2) (L-:u’i lulpo dx)li(po(ﬁ 2))] )

meas B

xeE = [a,b],

where, obviously, E,. = E' = {x e E: |f(x) — mg(f)| > 1}. Considering the expres-
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sion of u(x) we get:

(jEl \ulm dx)l/po < Z(b _ a)(mrl)/po (meas EX)Hpo (Lz le“
From (1.12) it follows:
(t.azy (fe[/(x) = mu(f)| dx)lt <

< Ky[(meas E)'/4 + 2% (meas E)Po~ D/Pol* ) (o E1)Upoa+2)

(e P dx) 0o (g |2 | = a1 dyitres g

Finally, dividing by (meas E)'/? and remembering that

dx)l/l’o .

1 p+p 1 1

g ppole+2)  ple+2) po(a +2)

(1.12)" implies:

(1.13) nodf) S K, +

+ K, 2"/¢* 2 (meas E')! /1 (meas E)/@+ 2= (/0 pLIGe2)(f) M;{f@‘%( Ay
o= mdn)

for every fe C(E).

2. INEQUALITIES FOR FUNCTIONS OF SEVERAL VARIABLES

For each i e {1, ..., n} we consider the one-to-one map:
@it (ya t) = (()’1, L) yn-—1>’ I)E Rn_l XR—x= (xl',- e X")E R"
defined by the equations:
x;=y; for j<i, x;=1t, x;=y;04 for j>i,.
We write: x = @y, 1) = (y; t);, or x = (y; t) whenever i is fixed. Obviously we have:
.__a(-x)_ = a(y’ t)l — (_l)tl—f .
.1y Ay.1)
Let Q be a bounded convex open set of R” and set:
VyeR™', Qy)={teR:x = ¢(y,1)eQ} = [a'(y). b'(y)] if Q(y)=+0,
: Q' = {yeR"": Q(y) + 0}.
If u(x) is a summable function in &, evidently:

n ((,1):0:(y, D) 6(y, t) oi 2

Theorem 2.I. Let 1, y; p, po, « satisfy (1.1) and Q be a bounded convex open set
in R". Ther. we have:

(21) 1Dx1u‘ﬁ,q é K[l leiula D:Zr u‘l/(a-}-l) ‘u*l/(u+2) + ID u\l/‘l

Qul,p iul,po

Vue CHQ) with ul,,=0,
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where: i = 1, ;g = ppo(e + 2}[(p + po)s
1/n
K = K(y, ’1) — 21/'1 (M) ;
Ui
Qf,={xeQ: leiu(x)| > 1}.

Moreover:

Q1Y [Dalog = KoLl Dol DZafs3? 552 + (meas 2]
Vue CHQ) with ul,g=0,

where:

1/9?
K, = Kl(y N = 21+ +(1/n%) (Z+_2> /n ‘
n

Proof. Fix ie {1, ..., n}. Since Vy € Q' and Vu € C*(Q) with u|,q = 0, the function
u(y; -y e CHQ(y)), u(y; a'(y)) = u(y; b'(y)) = 0, we can write for it formula (1.5} of
Remark 1.I (with E = Q'(y) = [a'(y), b'(y)] and E}. = {re Qi(y): |D u(y; )] > 1})
and then take the integral, with respect to y, over @'. Applying Holder’s inequality,
we obtain:

(2.2) Jo |D u(x)|*dx = [oi dy o) |D.u(y; 1) dt <
K foi (fueaio:peutssor> 1 | Dxtt(y: 6™ | DZu(y; |7 deyro/ e
(Jieatyipentin> 1y [uys ] @) P*r0 dy +
+ K [oi (Jaic | Deu(y; 1) di) dy < K [o | D, u{x)] dx +
+ K(for 4y ficoiyiipauoson> 1y [Detlys 17 | D3 u(y; 1)]P dejre/ o,
(Jor dY Jitipemirinn> 1y [ulys D] do)?Prro =
= K[|Dyulo,x + | |Deul* DEulgol v Julgreleyr] .

II/\

From this the estimate (2.1) follows taking the power with exponent 1/q and re-
membering the second inequality of (1.2) and (1.1). In order to have (2.1, first
of all we write (1.11)' for u(y; -} and then take the integral over Q' with respect to y:

02y o Dol 5 = Tor A Ta Doy O 1 5
veam (7 + 2 1/m\ 1+(1/m) N
<(2 —n_ [Jqo: (meas Q(y))dy +

+ foi (Jueotoy:ipamiinr> 1y [Pett(ys 1) | DX u(y; 0 dryrelerre,

'(.‘.(“]D’ﬁ"()’ﬂ)|>1) i“(ﬂ ’)lm d‘)p°/(p+p°) dy] =

1/m\ 1+(1/n)
< <21+(1/r1) (Li%) ) [meas Q + (IQ;’Ml

n
(Lz 1 iu"’“ dx}l)/(p+po)] '

Here we have alsc applied Holder’s inequality.

Dx_ulpa ID;zc-“‘P dx)”"'("“’") .
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Hence, taking the power with exponent 1/q and using the second inequality of
(1.2) and (1.1)" we get (2.1)" and the assertion. q.e.d.

Corollary 2.1. Let 1, 7; p, p,. a satisfy (1.1) withy = 0, « < 0. Let Q be a bounded

convex open set in R". Then we have:

(23)  |Datla, £ Ka[l(1 + [Deul)* Doulall 3 [ulall50 + [Deuld] s
Vue CHQ), with ula=0;

(23) |Dyt]o,g, = K[| + (D))" DI ulgl 2 [ulol 00 + | Duldl]

Vue C*Q) with u|p=0,
where:
_ppola+2) _ 2py(a +2)
- b qZ P
P+ Do 2+ po
Q.= {xeQ:|Du(x)| > 1} ;
R, = K1) = 220+ R(0, ) = 20 +m+ (g pyiin

Proof. Since 0 > « > —2, |D, u(x)| > 1 in Q] ,, we have:

iu>

(2.4) l lD "l D2u|1/(a+2) _ (" |_D:2n_|p_d§ 1/p(a+2) _
J_Q u ,Dxiulplal

= plal/(a+2) (J‘Q”‘ (2IDx(uD—p|al |D§iulp dxl/r=+2) <
< 2 (1 + Dl |2 03,
2
a+2  n(l+n)
because, by (1.1): = |a| = « > »(1 + 1) — 2 and hence:
) <2, a+2>n(1+n).
From (2.4) and (2.1) we obtain (2.3), from which, for p = 2, (2.3)' follows. q.e.d.
Corollary 2.11. Let n, y; p, po, & satisfy (1.1) withy = 0,0 < 0. Let Q be a bounded
convex open set in R". Then we have:
(23)  [Dunlo S Kl + (Do) D282 a3 2) + (meas 2147
Vue CHRQ) with ulyg =0,
) 1Daitln e S Kall(1 + (Do) D2afet2 [uly 52 + (meas )+,
Yue CQ) with “lm =0,
where: i = 1,...,n; q, q,, Qil,,, as in the previous corollary and:
K, = Ry(n) = 22" R (0, 1) = 2R+ LA+ (W) (9] )1/n1

Proof. The inequality (2. 5) follows immediately from (2 4) and (2. 1) From it,
for p = 2, we get (2.5). q.ed.-
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Corollary 2.IIL Let o, 11, p be three real numbers verifying (1~1)m and Q a bounded
convex open set in R". Then we have:

(26) leiulQ,p(z+2) é KZ[I(l + IDxiuDa D:‘ulll(a-ll-l) (S;‘;p lul‘)l/(r}—Z) + leiu‘Sli:({z+2)] >

Qiulsp
Yue C¥Q) with ulog =0,
(2 Dot 2o S Koll(1 (D2 D2afyet2 Gup )" + D27,
Vue CHQ) with ul, =0,
i=L.,n; O, ={xeQ:|Du(x)|>1};
Kz = 2@ +m)+(1/n) (2[’1)1/4 .

where:

Moreover we have:
(2.7)
|D, o paray S Ka[|(L + | Do) DI ulgCE 2 (sup |u])/e*? + (meas Q)\retn]
o
Vue CHQ) with u|n =0,
(2.7y

D la,020 S K[|(1 + (De )2 DLulgrD (sup |uf)/**2 + (meas @)t/ +20]
Q
Vue CHQ) with u|pq =0,
where: i=1,...n; Ky=2@m0emrtsdmsam (ot

Proof. As we know, for
p0£ﬁ>max{ P ,M(}_Ji)l’__
p—1 pla+2)—1-n
the numbers a, 1, p, po- ¥ = 0 satisfy (1.1) (with « < 0). So we can write (2.3) for
Po = P. _ _
Since the number K, = K,(1) does not depend on p,, and

lim ¢ '=lim £FXP _ 1 1
po— + po~+ pp()(ol + 2) p((x + 2) 1 + n

taking the limit in (2.3) for po - + 0, we get (2.6). In the same way (2.6) follows
from (2.3).

But also K does not depend on po; 50 (2.7) follows from (2:5)

and (2.7) from
(2.5), for po — +o0. q.e.d.

Theorem 2.11. Let o, 1, p satisfy (1.1)m withp = 2, e ]_ 1, 0[. Let Q be a bounded
convex open set in R". Then we have:

(08 falD2u*dx S 25 (1 4 (0, (b2 g
-{(meas Q)" + K§* 9 [(meas Q)1/@+22)
+ (sup [u]) /D (Jo (1 + (Deu)?) (D2 u)? dx) !/ + 202 +0lo1)
Q
Vue CQ) with u|,, =0,

)
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where:
i=1,..,n K = 2@/m(1+m)+1+(1/m)+(1/n?) (2,,,)1/"1 .

Proof. Set:
e=2+ae]l,2[, B =1 :—:(1 +§>|“l >0,

from which:

Z_ﬂ,—_lalz—a, ﬂ—=4+2a(:2—ﬁ>1).
0 2—-9 2-¢

Thus using Holder and Minkowski’s inequalities and the second inequality of (1.2),
we obtain:

(2.9) Jo|DiulPt*dx £ (Jo (1 + (Du)?) =2/ (D7 u)? dx)??.
(fa (1 + (D u)?)?P1C-0 dx) 202 < (o (1 + (Deu)*)* (D7 u)? dx)' @2

. [(meas Q)@=0/28 4 ([, (| D, u])*/?- dx)@-0/20F <
< 2(fa (1 + (Do) (Dzu)? dx)** /2. [(meas Q)1 + D, u|G3 7L -

From (2.9) and (2.7)' the assertion follows immeadiately. g.e.d.

3. AN A PRIORI ESTIMATE FOR REGULAR FUNCTIONS

Let Q be the set |0, 1[* = R” and « a real number such that: —% < a < 0.
We consider the following spaces of real functions:

o = {a(x) real valued: a e C'(Q)}
U = {u(x) real valued: u € C}(@), uloq = 0} .
Let a,(x), ..., a,(x) be functions such that:

(3.1). a;ed, afx)=21 VxeQ (i=1,...,n)
and set: v
3.2y A=Y [Dyailoar2. = ) [fo|Dea "2 dx]VET20
ik=1 ik
We introduce the elliptic operator: & = — 3 a,(x) D2, which, in this section, will
i=1

be regarded only as operator &: % — <.

Since Q lies between the hyperplanes {x; = 0} and {x, = 1} and the ellipticity
constant of & is A = 1, the classical maximum principle (see G. T. Theorem 3.7
page 35 [5])’ allows us to say that:

(3.2) sup |u| < (e — 1)sup |Lu|, Vueu.
o o

The aim of this section is to establish some estimates of the second derivatives
of u € % which involve, in the right-hand side, only A and sup |Zul.
2
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In spite of the rather unusual form of these estimates, the technique employed
is that, by now classical, of the paper [8] of C. Miranda.

Nevertheless we feel that it is better to expose the proofs in details because of certain
situations which are caused by the parameter o that here is negative, while in [8] is
positive. First of all we introduce some notations, by putting [all the u are real]:

(3.3) Vue CY(Q), Uyx)=[1+ (D;u(x)*], i=1...n.
It is evident that:

(34) Vue CY(Q), |D.u|=UY?.

We also define:

(3.5) Vue C(Q), |||l = [ kZ_lL; Ui(Dy,Dyu)? dx]'2,

where ae[—1/6,0[.

We remark that in the right-hand side of (3.5) there are not addenda like Uj( D7 u)?
with i # k.

We observe that Hlul“ substitutes the integral P, in the proof of C.Miranda [8],
whereas the function 6, of that proof ,,breaks” into the functions Uy;.

It is evident that the first factor of the first addendum in the right-hand side of
(2.7 is estimated by:

(3.6) (1 + (De)?)"> DL ulo,2 = (fo Ui(DZu) dx)' < ||[ull|,
Yu e C¥(Q) (i{: 1,...,n).

It is obvious that, in particular, (3.3), (3.4), (3.5) and (3.6) hold for u € %. For any
ue€ U, we define: f=Lu = —ZaiDiiu. Then, multiplying both sides by — UZkau

and taking the integral over Q, we obtain:
1<i<n
(37)  JoaUiDiuydx + Y [oaUiDiuD2udx = —[ofUiDZudx.
i%k
Integrating by parts, in virtue of the conditions: u € %, a;€ o (see (?1)) we easily
have:
foaUiDiuD2udx = —[o D, a,UiD2uD, udx —
- 2¢ [ga Uy~ (D uD2%u) D} uD, udx +
+ [oaUy(D,, D, u)*dx + (o D, ,aUiD, D, uD, udx +
+ 20 [g a Uz (D uD, D, u)* dx .

After this, by (3.7) (being: — Y a;DZu = a,D}u + f) it follows:
ik

(3.8) g‘{[g a,Ug(D,,Dyu)? dx = — o fURDZudx +
1gign 1<izn
+ Y feD,aUiD uDludx — Y (oD, aUiD uD, D udx —
i*k i*k
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1sisn
- 2o Z jﬂ a Ua—l(kau)z (ngkau)2 dx —
i*k
— 20 o U~ Y(D,u)? a(DAu)* dx — 20 fq Uy Y(Dyu)? D2u . fdx.
From here, remembering (3.3) and (3.4), and taking the sum over k = 1,...,n,
we get: "
Z jgaiU D D u)zd.x<jg Z'fUZ uldx+
ik=1
+ Z fo |DyaiDxuUEDZ u| dx +
e
+ z jﬂ le,-alikuUZDxliku’ dx +

i,k=n
ik

+ 2|o] { . Z fo aUy(D,,D,u)* dx + Z fo aUi(Dz,u)* dx} +

+20o] ¥ fo UILH(DE0)* + /7] dx.
k=1
Moreover, since a, = 1 (see (3.1)) we have:

n
HD2) £ Y 0D Do)’

and hence: )
(39) Y foaUi(Dy Do) dx = fa 3 [fUiDZu| dx +
ik=1" k=1
i*k ik
+ Y fo|Dya;:DuUiD2u|dx + 3, fo|Dya:DyuUiD, D, u|dx +
i,ksn ik<n

+ 3M.~ ,;119 a,Uy(D;, Dy u)* dx + [of % JaUif?dx.

On the basis of (3.9) and (3.2) we prove the following:

Theorem 3.I. Let ¢ = — Y a,D}, be an elliptic operator satisfying (3.1). If:
i=1
—1/6 < o < 0, then there exists a constant c(n) depending only on n such that,
foreveryi=1,...,n:
(3.10) (o |D2ul?*dx < o(n) H(¥, @) =

= c(n){[‘l’z + %+ 'P4+2¢¢2+21]1+(a/2) +
+oll[W 4 @7 4 WEF2ag2 )
Yu € %, whatever the numbers: ¥ = A, ¢ 2 51!12p |Lu| = sup /] are.
Proof. First of all we fix # = 1/4 so that the numbers p = é,n = 1[4, ae[-1/6,0]
satisfy (1.1),,. Consequently we can use (2.7)’ of Corollary 2.IIT written for (p, , o) =

= (2.4 %). In particular K; = K5(1/4) = 27°"*/% is now an absolute constant.
All this understood we start the proof. Since a < 0, we have: [1 + (D, u)’]* =
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= Uj £ U3¥? < 1. Moreover, being |#] < 1/6 and a; = 1, from (3.9) we get:
n

(3.11) lll* = 2% Ja l7] [UA"* [DZ] dx + 3 (sup |])* +
k=1
ik
+2 Y [o|DyaiD, uUiDZu| dx +
ik<n
i’;k
+2 Y [o|DyaiD, uUiD, D, u|dx .
ik=n
Applying Holder’s inequality with the exponents 4 + 2o, (4 + 2a)/(1 + ), 2, we
obtain:
(3.12) §o|Dya:D uUiD, D u| dx <
.‘9 |szail |kaul1+a IU:/ZDxiDXkul dx = (fn leiai.-

[(Jo D22 )21 (1 U3(D, D) ) =

= le,ailn,4+2a |kaulsl2jr4a+2a m“

In estimating the third addendum in the right-hand side of (3.11) a question im-
mediately arises: here there are the terms UZ/2DZu (i # k) whose squares (as already
noticed) do not appear in the expression of |||u]|| (se¢(3.5)). But the problem is solved
multiplying and dividing by a suitable factor and applying Holder’s inequality with
the exponents:

IIA

4+ 2a dx)l/(4 +2a)

_ 4 + 20 - = 4 4+ 20
1+ 24 |t
(3.13) Jo |DwaiD,uUD2 u| dx =
= [g|Dqa:D,uUi[1 + (D, u)*]"V?> UY* D2 u| dx <
) r " 1s
Cinareo([ 2385 )
(Ja[1 + (D)1 dx)'7 (fo UY(DZ u)* dx)'/* <
< (,"n lek "r dx)llr [(Iﬂ ‘kau‘“ +2a)s dx)l/(1+21)s]1+2u ]
2117 g, 1 | D] dx + 217192 meas {x € @: |D, u| < 1}]1°.

(Jo UXD20 472 £ 29D, il a2 | Dot (1D, Bl + 1} ]
To obtain (3.13) we have also used the second 1nequality of (1.2) and the fact that:
ocg——!:a=4+2“ H H
6 | |oc| a 2
From (2.7), Corollary 2.111 (where K5 = 275*%/%), (3.5), (3.6), (3.2), (3.12), (3.13)

we get:
(312), sﬂ leialD.x,uU:DxiDXkul dx é 'K3!Dx1‘ai‘ﬂ,4+2a .

Llflfee*® @ sup [+ + 1] {[Ju]
2

r=4+ 20, 2:

>
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(3.13y fa lek“skauUzD,flul dx £ 21+11|K3|kaai|rz,4+za .
[l 2 sup e 4+ 130 fu)
. 2
where: f = Pu = — Z a,-D,fiu.
i=1
From (3.11), (3.12) and (3.13) it follows easily [with the constant A of (3.1)]:
O19) [ 5 (3) 699 17 + 2nsup ) [l + 20 + 2009 Re2 4.
2
LIl 27249 (2 qup | s g a5
o]

writing, for sake of brevity ¢ = HI““IZ and putting:

K(n) = (4n + 8) 275+2/5[ 2 (2 4 22+l 21+ ],
from (3.14) we have:

(3.14y S &=n (s%p If1)* + [2n(sup | f]) + K(n) 4] &2 +
Q
+ 2 K(n) A(sup lfl)(l +@/Q2+a) F3+2a0)/(4+20)
Q

From (3.14), applying the first inequality of (1.2), with q, = ¢, = q5 = 3, we
deduce:

(313) ’ ¢= kZ_ fo Ui(Ds,Dou)? dx <
= n(Sgp ]flf)’zi 9[2n(sgp If]) + K(n) A +
+ [6 K(n) A]**2* (sup | f])>*2* <
= Ky(n) [(SL;P If])? + 42 +QA4+2a(sgp 7242,

where: Ki(n) = (n + 72n%) + 18K(n)* + 1296K(n)*. Finally by (2.8) of theorem
2.11, (3.2), (3.6) and (3.15) we get [using that: Ky(n)>1,K3; > 1, —1/6 <o < 0]:

(3.10)’ j’n IDiiu‘th dx < 2K1(n) .
. [(sup lfl)Z 1 42 + A4+2a(sup ‘f‘)2+2a 1+a/2 .
2 Q

AL+ Ka[1 + (2sup [f))/e+2 K, (n).
'((Sl:zp 17])? + 42 +A4+za(:gp |f])2 2y + 2@ emlel), <
SR, Ki(n)" H(A4,sup |f) =
= () H(d,sup 1) = o) H, sup |24

From (3.10) the assertion follows once we observe that the function H(¥, ®) of
(3.10) is increasing in ¥, for every fixed @, and increasin in @ for every fixed ¥. g.e.d.
Using Theorem 3.1 we estimate the norms I2+* of the pure second derivatives of
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u €%, by means of the sup .?Iu‘ and 4 = ) |kaa,-‘g,4+2¢. To estimate the mixed
2 ik
second derivatives of u, as well as the first derivatives, we proceed in the usual way.
Actually the following theorem holds:

Theorem 3.II. Under the same hypotheses of Theorem 3.1 we have:
(3.16) |D?ug,5 42 + | D'tt|g4424 + sup lu| =

< ¢y(n, o) [{c(n) H(¥, D)}/ + @], Vueu,

whatever the numbers ¥ 2 A=), |kaa,-|g,4+z¢, ® = sup I‘Sful are and with
ik Q

cy(n, &) a constant which depends only on n and a.

Proof. To estimate the seminorm lDzulﬂ,“a, we can, for example, utilize Theorem
4.3 (second part) of M. Troisi [15] (,,Teoremi di inclusione per Spazi di Sobolev
non isotropi” — Ric. Mat. vol. XVIII — 1969) in the case: r = n; Q; = 0, 1] for
i=1lL.,r;,m=my=...=m,=2;, py=..=p,=2+a.

Then in the formula (4.7) of [15] [and in (2.2)] we have: s = 2 + « in the left-
hand side, while the right-hand side (see (4.3) and (4.4)) is estimated by:

Y |D2 g4 + 20 sup |2ul,
i=1

in virtue of (3.2) of the present paper. ~

Thus (3.10) of the previous Theorem gives the required estimate for |D?ulq , 4,
Finally, to estimate the first derivatives (that is |D'u|g 4+,,) it is enough to apply
Gagliardo-Nirenberg’s inequality [11]. q.e.d.

4. AN EXISTENCE THEOREM

The estimate (3.16) has been obtained for functions u € C*(Q) which vanish on 9Q
and for an operator & = —Y a,D2, with coefficients belonging to C'(2). Nevertheless

in (3.16) only the norms I?** of the second derivatives of u and the [**2% norms of
the first derivatives of the a;’s (as well as the L norm of Zu) appear.

This will allow us to establish an existence Theorem for the equation Lu = f
in Q = 0, 1[", under the only hypothesis:

(4.1) a;e WH2(Q) with: —1/6 S <0;

afx) real 2A>0,VxeQ, i=1,...,n, n=4 [for n =3 it is enough to apply
Shauder’s theory].") To this aim it will be necessary to use some existence and
uniqueness theorems with much stronger assumptions on the coefficients. Let us
start by introducing some classes of functions. We denote by v the outer normal to

1) Remark that (4.1) does not require the coefficients to be bounded.
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99 (in the regular points of 0Q) and set:
C5*"(Q) = {u real: ue C*(Q), D'uloq = 0 VreN},
Q=10,1[", where: N ={0,1,2,...} (while Ny ={1,2,...}).
Clearly we have:
(42) Vk = (ky, ... k) e NG,

n

w(x) = ~];[114,,i(xi) = I;[lsen Knx; e Cy*Y(Q).

Let g = (py, ..., u,) be n real numbers greater then 1 and L, the elliptic operator
with constant coefficients:

L, = __i ”iD:zci .

It is obvious that: i

(4.3) ‘ Yue Cy*(Q), LueCy™(Q).

On the other hand, using the classical method of Fourier, we have:
(4.9) VfeCy™(Q), I|ueCy™Q):Lu=f

(obviously us = 0) [from now on the symbol 3 | means “there exists a unique™].
Such a u (unique) is given by (see (4.2)):

@8 )= 3 (S KD (270 m(©) 4] 27 )

[ Y means: lim Y (lim in I*Q)) where 4,, = ¢~ '({1,...,m}), and y: N — N,
i:e: o1:ijectionfrﬁc*:(:l'::'f':', for each r € N, we have:

(4.4)" Yue Cy*"(2),

|#llwar+2i20) £ enrl| Lt wariacay

where C, , is a constant which depends only n and r. For each re N we denote

by 2#%"%(Q) the closure of Cy"*"(£2) in the Sobolev space W?"*(Q). Since Co'*(€2) is
dense in 22%(Q), on the basis of (4.4) and (4.4)" we prove the following:

Proposition 4.I. Let pg,...,p, be real numbers 21 and m =2r > 1+ nf2
(reN). Then we have:

(45) Vie?™X(Q), I|ueP""22(Q):
CLu=-Y wDiu=1f.
i=1
Moreover:
(4.5)’ Yue .@"‘”’2(9) s

]l g+ 2,20y = Cn ol Lutt ey -
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Finally (obviously):
(4.5)" Yu e PmH22(Q),

ueC Q) and ulyo=0.
Now we consider an elliptic operator &; = — _ilai(x) D?, satisfying the conditions:
(4.6) a;eC*(Q); afx)21 VxeQ;
Ie]o, i[: V(x1,....x,) e, Vie{l,...,n},
x;e[0,n] U [l —n, 1] = D, afxy,....x,) = 0);
which, in particular, imply that a,(x) is constant in the set [0, n]". We also consider,
for ¢ € [0, 1] the operator:
£, =i§1a',-’(x) Dl = - él[a af(x) + 1 — o] Di,
whose coefficients satisfy (like the a;’s) (4.6). We easily see (from (4.6)) that:
(4.7) Vue Cy(Q), ZL,ueCy(Q).
From (4.7) it follows, for each r € N:
4.7y Voe[0,1], £,e2(2¥+2(Q), 2*(Q)).
Moreover, if m = 2r > 1 + n/2, using (4.5)', the classical ,,Korn’s device” and the
Maximum principle (see, for example, G.T. [5]) we prove that:
(4.7y" Vue P"22Q) . Voelo,1],
[tlwms2i0) S K[| Pott[wmzay

with K idependent of u and ¢, but depending on n, m and the norms ||a; om-

From (4.7)" and proposition 4.1, in virtue of the ,,continuation method” we get
the following:

Theorem 4.I. Let & = —) a,D;, be an operator satisfying (4.6) and m =
=2r > 1 + nf2. Then: !
(4.8) Ve ™ Q), I|ueP">HQ): Lu=f;
obviously: uloq = 0; ue C¥(Q).

Now we are able to prove the following:

n
Theorem 4.I1. Let Q be 0, 1[" (with n 2 4) and & = — ) a(x) D2 an operator
satisfying the conditions: i=1

(4.1) a, e WH42(Q), —1<a<0
32 > 0: VxeQ, afx)real = 4,
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i=1,2,...,n. Then we have:

(4.9) Vfe L*(Q), JueW22+5Q)n L*(Q):
Lu=finQ, ylp=0
sup [u] < (e - 1) sup /]

Proof. Without loss of generality, we suppose that: A = 1. Fixed arbitratily ¢ > 0,
we determine a function f, such that:

(4.10) f,eCR(Q) = Q) ;
”fs - fHLZ(n) < &; Sup lf;l =< sup ]fl .
Q 0

Let us try to approximate the coefficients a; with some functions satistying (4.6).
Let g; be a function such that:

(4.11) ; 9:€C*(Q); gfx)=1 YVxeQ;
) lai = gillwiasaeg < €/3.
We set, for each n e 10, 1/2[:
Q"= {xeQ:dist(x,0Q9) = n} = [n,1 —n]",

and denote, for x € R", by x" € Q" the point of minimum distance of Q" from x.

Then we intrdduce the function: §{(x) = g,(x"), x € R". It is soon verified that:
gie CO(R"), gx) = 1 Vx € R". Moreover, for each straight line r parallel to the x;
axis (j = 1....,n), g, is constant on both the half-lines

{(xpocx)erix; 2n), {(xq,..ox)erix; =21 —n}.

Denoting by R}, = {xe R": x; £ 5 and x; + 1 — n}, g, is also differentiable (in
the classical meaning) with respect to x; in R}, (j =1,..., n). Moreover if, as in
[10], [ D,,¥] represents the classical derivative and D, \ the derivative in the sense
of distributions, we have:

[Dydi](x) =0 for x;<n andfor x;>1—1;
[D,d:](x) =[D,9:](x") for n<x;<1—7.
Consequently:
sup |[D,,§;]| = max [[ijg,-]l < 4+,
Rjy" o
and hence (since §; € C%(R"): see, for example, J. Nedas [10] Theorem 2.2 page 61):
Vp', ¥ open bounded @' < R, §;e WP (Q');
D, d; = [D;,3;] in Q and even in the whole R" (j = 1,...,n);

sup |D, d;| £ max|[D,9;]] < +0 (j=1,...,n).
Ry Q

Therefore, choosing 1 = #, small enough, we obtain:

(4.11) Hgi - ginwi»ﬂzzm) = ”gi - g~i”W1'4+2~(n—m) <ef3.
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After this (fixed §; [that is #] in such a way that (4.11)" holds) we take Q' 5> Q =
= 0, 1["and p’ = 4 + 20. Then if choose ¢ = ¢, sufficiently small (see Lemma 3.15
Adams [1] page 52) we can manage to have, with a mollifier y(x):

(4.11y a8 — Gillwi.aszeca) < €3,
af(x) = a"‘J X (x___; y) gly)dyeC*(R").
Rn

Finally if we take also ¢ < 5/2, we have that aj is constant on both the half-lines
{(xgo o x)erx; < nf2), {(x%y.....,x,)er:x; > 1 — n/2} whatever the line r,
parallel to x; axis (j = 1,..., n) is.

In this way (see (4.11),(4.11) and (4.11)") we have determined, for every arbitrary
& > 0, some functions a$(x), ..., a(x) such that:
(4.12) la; = a8lwiaseey < &

;e C?(Q); ai{x)=1, Vx;
V(xg,...,x,)eQ, Vie{l,..,n},
(x;€[0,n2] U [t = n/2,1] = D, a¥xy, ..., x,) = 0).

If ¢ is ,,sufficiently small” (¢ < ¢, appropriately chosen), from (4.12) it follows that:
(4.12y A = kZ 11kaa?\n,4+2a <24=2} 1|kaailﬂ,4+21 >
= ih=

unless a; is constant Vi (in which case we apply Proposition (4.1)).
Once (4.10), (4.12) and (4.12)" are achieved, set ¢ = 1]k (k = 1,2, ...), we consider
the Dirichlet problem:

(4.13) Fru=— iaé”‘(x) DI u(x) = fi(x)
=1
[fl/k € CSO(Q) = Cf)ven(Q)Q Sgp lfl/k‘ = Sgp lfl]
Ul =0.

Since the coefficients a}’* verify (4.6) [because of (4.12)], and fy, € CF(Q) =
c CF*(Q) = #**(Q),Vre N [because of (4.10)] (and, in particular, for 2r > 1 +
+ n/2) by Theorem 4.1, we have:
(4.14) 3| u e 224Q) = C3(Q):

n

K 1k 2 .
P, = —Zai/ Diu, = fy in Q
1

i=
1
Ulog = 0.

But the coefficients a;’* satisfy (ad abundantiam) the hypothesis of Theorem 3.1

and 3.1IL.
Moreover, if & = 1]k is ,sufficiently small” (k > 1]g,), the number ¥ = 24
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(see (4.12)) satisfies the condition:
24=Y¥ g Al/k = Z lejal!!klﬂ,4+21;
ij=1

finally, the number & = sup |f| (see (4.10)) satisfies the condition:
2

sup |f| = @ Z sup |f,,| = sup |Lu,].
2 2 2

Thus, writing (3.16) of theorem 3.1 (this is allowed because u; € #, by (4.14)),
we have:

(4.15) ‘Dzuklﬂ,2+a + lDI“k19,4+2a + sup |u| £
2
< c(n.0) [sup |f] + o) H@4, sup [/} 2+, Ve N,
o 0

Since, in general, the coefficients a; are not bounded, there are further remarks to
make before reaching the assertion. The right-hand side of (4.15) is a constant which
does not depend on k. Then we can consider a subsequence of {u,} weakly convergent,
in W*2*%Q), towards a function u e W22*% Q) which has zero trace on éQ (like
the u,’s). Without loss of generality, we can assume that this subsequence, still
denoted by {u,}, strongly converges, in W'2%%Q), and even almost everywhere
in Q, towards u.

Writing for these u,’s (belonging to %) formula (3.2) and taking the limit for
k - + o0, we get:

Vi Sl{;p ‘“kl S(e-1) Sl:?P |f1/kl S(e-1) S!L:p ‘f)

= sup [u| < (e — 1)sup |f].
o o
Moreover, set:
_ _n(4 + 20) b= n(4 + 2x) )
n—4+2]a" n(1+20()+(4+2a)’
' 442
po= P nd+2)

p—1 3n—4+2’

by (4.12) we have: a;* -, a,€I(Q), in I{Q) and hence: Yo € I?, ¢a;e
€ L2000 = (%) Besides: D2 u, -, D2u weakly in I>*%; so we obtain:

(4.16) lim o pa(DZu, — DZu)dx =0, Voel’.
k=

On the other side, being: 1/p + 1/(2 + ) + 1/g = 1 and remembering (4.15) and
the covergence of {a;”*} to a; in I5(Q), we also have:

(4.16) o o(ci™ — a;) Diudx| <

= "Di«uk“Lz“‘ “03“‘ - ai“Lc ”(p”LP ke 0, Voel’.
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From (4.16) and (4.16)" we deduce:
Vo e /()

lim [ (a;*D}uy) ¢ dx = [q (a;D3u) @ dx .

k= o

After taking the weak limit in I (Q) in both sides of the equation:
Lhu, = — ) a/*Diuy = fip (see (4.14))
i=1

we get the assertion since [y, = f in [*(Q) (see (4.10)) and p’ < 2 (because n = 4).
q.e.d.

5. SOME PRELIMINARY

In order to study some particular equations we shall recall some definitions.

Definition 5.1. (see [6], [13]). Let u(x) be a measurable real function in the bounded
open set G of R". We define as distribution function of u and spherically sym-
metric rearrangement of u, respectively, the following functions:

u(t) = meas {x € G: |u(x)| > t} = measG,, =0
u*(x) = inf {t 2 0: p() < C,,[x["} , xe G*,
where: C, = n"/?/T(1 + n/2) is the measure of the unitary ball in R” and G* is the

ball in R"” which has the origin as center and the same measure as G.
The Lorenz Spaces L{p, q, G) and L(p, o, G) are defined by:

(5.1) ueL(p,q,G)< |u], .6 =
= e [0 71 | ] <
(l<p<+w, 1£4g<+o0)
G uetlp ,0) = oo = sp [ (] < +o0
(1<p<+o).
It is well known that the following properties hold (see [13]):
(5.2) fo u(x) v(x)dx £ fguu*(x) v*(x) dx,
f6 [u(x)]? dx = [go |u*(x)|*dx, Vp >0
where u, v are measurable real functions in G.
Let Q be the unitary ball in R" with center in the origin [so that Q* = Q] and b(x)
the function:
(5.3) b(x) = by(x) = —2p(cos |x| ) x,|x| 2" xeQ - {0},
b(0) = 0,
where: 0 < B < 1. x> =x] + x] + ... + x7, h = 1,..,n. For 0¢]0,n/2[, we
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consider the circular cones:
(5.4) Ay = {xep. X, > |x| cos 0 > 0},

X Q=Qn Ag .
Evidently we have:

Vi20, {xeq |b(x)| > 1} 2

1

Cos —
N

2 {x\é Qp:

xh > _t_ >
Ixiz+2/3 28 =
:—’{xege3<cosL_ﬂ>i >
lxlzﬁ ]Xl1+2p 28 =
1 1
DdxeQycos — > - ] 4
) { o |x[22 Z}N{ero. P >/30059}‘
ence:

(55) ; V120, {xeq:|p(x)|>1} 2

:_D[Uer,,:an—E< 1 < 2kn + ZU A
keN 3 'xlzﬁ 3

1
[ 1+2
la) {x € Qp: le > )’pat”( + ﬂ)} ,

where: N = {0, 1,2,...}; v0 = (B cos 0)~1/(1+28 e shall use the following:

Lemma 5.1 There exist three positive numbers: r € 10, 1], Az, & = 2B(n — 1) :
t(n + 2B), such that, in the ball S ,(n = 2), with center in the origin and radius r,
the function b(x) of (5.3) satisfies the inequality:

(53" VxeSo, ~ {0}, b(x) 2 Lo

= + .
'xll €

Proof. Denoting by w, the measure of Q,, from (5.5) it follows that:
(5.5y vz 0, ult)

keNo 7\ 128 n\ ~1/28
> meas U {xeAD: (an—— §> > [x| > (an + —3—) } =

(2kn—mn/3)1/28 >yp921/(1+2B)

: keNo n‘ —n/2p 7\ 28 1)
= Wy > 2kn — — — | 2kn + = ,
(2kn—n/3)1/28>ypq11/(1+28) 3 3

because the points x € Ay. which belong to the set in the right-hand side trivially

satisfy:

meas {x € Q: [b(x)| > 1} =

[l

i r\ 12
— > ( 2kn — -‘) > 7ﬂ9t1/(1+2m s
x| 3

1) We explicitely remark that the union is taken over mutually disjoint sets.
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as well as: x € Q, (since ke Ng = {1,2,...}). From (5.5)" it follows:

nmew P —-1—(n/2B)
(55 vizo0. un)z—" <2k7f + :) z
3B k>(1/6)+(rpo?Bl2mys2nsc1 +20) 3

—(n+2p)/28
g aﬂs k @
k2 1+c'ge128/(1+26)
where:
NIy

cpgg = max{l, L yf,g s g0 = e
2n 3ﬂ(47‘t) "
We observe that, since cgy > 0, in particular we have:

_ —n+28)2B ~
(5.6) 0=t<1=ag X k= 42828 > age Z o~ n+20)/2P po
kZ1+c’got2B/(1+28) kz1l+c'pe

From (5.5)” and (5.6) we deduce:
(5.7) Viz20, {ut)<s<jop=1>1}.
On the other hand, being ¢z 2 1, (5.5)" also implies:

- —(n+2B/(1+2
(5.8) Vi>1, ,u(t)> ago k ("+2’”/2">a;wt (n+2B)/(1+ ﬂ)’
2c’getlﬂ/(1+Zﬁ)§k§4c'”t2p/(1+zﬂ)

gy = ago(4chy)=+202

x| £ 7 = min {l, [g—i"]”n} = ¢ x|" < 3oy -
n

Thus, in virtue of (5.7) and (5.8) we have:

(5.9) VxeS,, — {0}, {r>o0: u(t) < ¢|x|"} =
< {t > 1:apt=C+2mpa+2p) olx"} =

where:

Moreover:

. ’ —-( +2 2
< {t > 0 aﬁet TTEB/(1+28) < cnixlu} B
and hence:

(5.10) VxeS,, - {0},
b*(x) = inf {1 > 0. W) < e ¥y =
Z inf {t > 0: apet ™ "F2DIATID <oy (apgfcy)d +2P1+20); ||+ 20Dt 2)
n * N
From (5.10) the assertion follows taking:

Agy = (a,;‘,/c,,)(1+2ﬂ’/<"+21“ ,

1/n
y = min {1, Bﬂ] } g 2B —1) qe.d.
Cp n + 2ﬁ

Now we consider the Dirichlet problem:

n

(5.11) Lou E'Z a;(x) ijDxl u(x) =f(x) in G

i.Jj=1

“|aG§0.
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where:
(5.11) mol|é]* < Yaix) &g < m1|§|2 , VxV&; mg>0.
ij

Recently, for the problem (5.11) an existence and uniqueness theorem has been
established by A. Alvino and G. Trombetti in [2], under the hypothesis:

(5.12) D.a;;€ L(n, o0, G)
[+ [ Doaislnm.6 = SgP [x[ (Daaiy)* (x)] < +90] .
Also P. Buonocore has obtained a similar theorem under the assumption (see [3]):

(5.12) D,a;eL(n,q,G); n<gq

xpij
[ (Jor [(Dai)* () <[] x| dx)'70 < 4005 n < q].
In both theorems the authors suppose 9G e C3. We also recall the well known

existence and uniqueness Theorem for (5.11) [in W2(G) = {u e W*?2: |6 = 0}]
of G. Talenti (see [ 14], Theorem 1.1) obtained under the assumptions:

(5-13) a) 0G belongs to C*; considered the outher normal to dG, the mean curva-
g
ture of G has non positive constant sign;

n n

b) Zakk(x) =1, Z ":'k(x) = 1/(" —1+¢,0<e<]
[« - (Z“m (Ya,) < k* < 1 (Cordes)];
c) fe I*G).

Finally, we recall the basic existence Theorem of C. Miranda (Theor. 5.V of [8])
[Theorem 4.11 of this paper is an extension of it] obtained for the equation:

(5.14) Lu = "1 i(x) DD xu+Zb(x) D.u+cx)u=f,
N fel(Q), ue W2 Q) n L7(Q),
under the hypotheses:
(5.15) a; e W Q), beIXQ), ceI’*(Q) with 4<i<n;
mo|¢|* < Za,-j(x) E& S myE, VxVE (mg>0), ofx)Sco<0;
! dG belongs to C*.

Moreover, if n = 4, an existence and uniqueness Theorem is established in [8] 1.V
under the assumptions (5.15) written for 4 = n = 4.

In this case the function f of (5.14) can be taken in I# {g¢ = 2) and the unique
solution of the equation Lu = f belongs to W*(2).

A ,,sharp” procedure to test a theory is the following: we ,,force”z) it to ..decode”
the information hidden in a certain equation of ,,reserved character”.

This is what we will try to do in the next section.

2) ““to force’” = ‘‘astringere” (in italian).
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6. A TEST EQUATION

We study the Dirichlet problem for a particular elliptic equation whose coef-
ficients are not continuous:

(6.1) —Yafx)Diu + lu=
i1

= - YK +K " +sen[|x — x| ) Dlu+lu=f in Q,
i=1
ulﬁﬂ =0 s
where: n = 4; Q is a bounded open set in R"; k; and B; are positive constants; [ is
a non negative constant and x* = (x§, ..., xj) € Q.

Our aim is to analyse the information about (6.1) that we can deduce from the
theories mentioned at the end of the previous section varying the parameters k; and f;.

Proposition 6.1. (1) If 0Qe C3, | =0, considered the outer normal to 0, the
mean curvature of dQ has non positive constant sign and the coefficients a; of (6.1)

satisfy Cordes’s condition [ for example, if ) (1 + 2K;)* < (n* — n)f(n — 1 — k?)
i=1

with k* < 1, whatever B; are], then according to theorem 1.1 of [14], problem
(6.1) has a unique solution u € W>*(Q), for any fixed f € I*(Q).

(il) If Cordes’s condition does not hold [that is if the k;’s are arbitrary positive
numbers), if Qe C* and:
(6.2) I>0; n>4; 0<p,<(n—4)8,
then, by theorem 5.V of [8], problem (6.1) has at least one solution u € W**(Q) n
N L*(Q), for any fixed f e L*(Q).

If, instead, n = 4 and B; > 0 nothing can be said according to theorem 1.V
of [8].

(i) If the k;'s are arbitrary, Q@ = 10, 1[" and:

n—4+ 2

(63) I=0; nz4; 0<p <2220
) 8 + 4a

with: —1[/6 < a <0, then, by theorem 4.1 of this paper, problem (6.1) has at
least one solution u e W22*%(Q) n L*(Q), for any fixed f e L*(Q).

Finally, if @ = {xe R": |x| < 1}, x' = 0 Vi, B;> 0, nothing can be said about
problem (6.1) according to the results of [2] and [3] (unless k, = ... = k, and
By =...=B,).

Proof. It is obvious that in the case (i) the conditions (5.13) hold, so that Theorem
1.1 of [14] applies.

We also observe that, for the equation (6.1) we have:

Vx Vi, 1= ayx) =1+ 2k,
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so that:

n 2
142k <~ 7" (with K2 < 1
i;l( ) n_1_ K2 (Wl < )2

(Zai)z ISH:ana.a- n? —n i
= S TS B ek > K

i i

which is precisely Cordes’s condition.
In (i) case, to apply Theorem 5.V (or theorem 1.V if n = 4) of [8] [see (5.15)]
it is sufficient to have:

(6.2) Da; = —2k;Bicos [|x — x'|~?])

xn*i

- X
l l2+zp‘

c I4Q) .

But, if n > 4, (6.2) implies certainly (6.2)' [= (5.15)] and problem (6.1) has at least
one solution u € W»*(Q) n L*(Q) for any fixed f € L”(Q). If, instead, n = 4, B; > 0,
and, for sake of simplicity, @ = {xe R": |x| < 1} = @* and x' =0 V,, we will
show that the fitst of the conditions (5.15), written with A = 4, cannot hold, so that
Theorem 1.V of [8] cannot be applied.

Actually, for x* = 0 and B; > 0, D,, a(x) coincides (up to the factor k;) with the
function b(x) = b,(x) of (5.3) [with = B;]. Consequently, by (5.3)* of Lemma 5.1
and the second of (5.2), we have:

fo Dy, alx)|* dx = Jo. |(Dy,a0)* (x)|* dx 2

—am 6p;
> k,A 4 X 4 48dx=+oo, 8:--'_),
= ( ﬂxa) .[So,r I 4+ zﬁ,
so that: a; ¢ W'*(Q) and Theorem 1.V of [8] cannot be applied.
Let us consider the (iii) case. In order to apply Theorem 4.II, we should have:

(63)  Dya;eX*%(Q), with: —1/6<a<0, @=710,1[", n=4.

But (6.3) implies, evidently, (6.3)". Thus, by Theorem 4.II, problem (6.1) has at
least one solution u € W2:2*%Q) n L*(Q), for any fixed f e L*(2Q).

In the (iv) case we have: D, a(x} = k; b,(x) [that is the function (5.3) with § = B,].
Therefore by (5.3)* of Lemma 5.1 we get:

W0, ¥a >, (fae [(Daa)® () 1 x| a1 =
2> ([s,, (kiAgo) M—rqe ’xlq'n dx)1 = 400, (e Zi :;ﬂj)) ]

Consequently, since (5.12) does not hold, the results of [3] cannot be applied. In
the same way, since (5.12) does not hold, the results of [2] cannot be applied. In
fact, by (5.3)* we have:

|x| (D,,a)* (x) = k|| bi(x) = kiApelx|™®, in So,. qed
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Remark 6.I. In [12] Christian G. Simader develops a I? theory for the (varia-
tional) Dirichlet problem based on a generalization of Garding’s inequality.
Let G be a bounded open set in R" with boundary 4G € C™ (m 2 1), and:

Blo,y] = | Y. ¢ auD*@D Y dx

a regular uniformly elliptic bilinear form of Dirichlet type. Then B[¢, y/] is con-
tinuous and coercive:

(6.4) |B[“: "]| = c"““wmm(c) “”“Wm-q(c)
Y(u, v) e W™?(G) x wm(G), 1 + 1_ 1,
P q
(6:5) sup  [B[u, 0] 2 esullwmsce) = oo
PeW™:9(G)
ol g m,g=1

Yue W™P(G), L
P q
(see Definition (5.1), Definition 6.2 and Theorem 6.3 of [12]). Let & be an elliptic
operator (of order 2m) and B[u, v] a bilinear form ““equivalent” to & in the following
meaning:
(6.6) fe Loy dx = Blo,y], Vo,yeCy(G).
The homogeneous “weak” Dirichlet problem is the following:
(6.7)  Blu,¢] = [cfodx VoeCF(G), with feIX(G), ueW™*(G).

For such a problem, if B jis regular and uniformly elliptic, some regularization
theorems (Theorem 9.11 and 11.2 of [12]) and an existence theorem (Theorem 10.7)
are established.

We wonder if it would be possible a variational approach (in the sense above
precised) for an operator & = —Y a,(x) D3, satisfying (4.1) in a bounded open

set 2 with 0Q e C'. First of all we need a bilinear form equivalent to & (see (6.6)).
This can be done, in the most natural way, multiplying Lu by v (u, ve C5(2)) and
integrating by parts:

(6.8) fo Lu.vdx = By[u,v] =) [pa;,D uD,vdx +
=1

+ Y fe DD u.vdx, VYu,ve CH(Q).
=1

But here By is not a regular form in the sense of Definition 6.2 of [12], because,
in general, being, for (4.1):

a, e WH(Q), —1<a<0, QcR", nx4,
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we only have:
Dxiai = L4+2a(Q) , a;€ 74 +2a)/(n—4+2]a]) (Q) ,
and not:
D,a;e L(Q), a;eC%Q)
(as required in Definition 6.2).

Therefore for the problem (6.7) relative to By it is not possible to use the Theorem
10.7 of [12]. .

More than that, this is true for any bilinear form equivalent to & (in the sense
of (6.6)), since it would be easy to show that for such a form it should necessarily be:
aggelay, ..., a,} for |B| = 1, while the coefficients a; of & belong to W'++2%(()
[and not to C°(Q) or L*(Q)] so that B[u, v] is even meaningless for (u, v) e W' x
x Wha(1fp + /g = 1).

From all this we deduce that the variational approach (either in I or in L2) is not
possible for an operator £ satisfying (4.1). Obviously the variational methods (of
Simader-Agmon type) can be applied (in place of the continuation method) to the
approximating problems:

(4'13) gli“k = fixs uk‘i‘ﬂ =0,
considered in the proof of theorem 4.1I, where f,,, converges to f and the coefficients
of Z% to those of & [in W'**2].

This is possible (except for the problems concerning 09, if Q = 10, i[") because
the coefficients of #* are regular, unlike those of 2. But after this, to reach a solution
of the limit problem: Lu = f, u\m = 0, we cannot usc the estimates for the u,’s
furnished by Simader’s theory, where the constants depend on the moduli of con-
tinuity of the coefficients (see Lemma 9.2 page 138 of [12] as well as Lemma 9.11
and Theorem 10.10).

Instead we need to use the new estimates introduced in the section 3 of this paper,
as we do in the proof of theorem 4.11.

Remark 6.I1. Equation (6.1) has the coefficients a; bounded. But the boundedness
of the coefficients is not necessary to verify the hypotheses of (4.1).
For instance the Existence Theorem 4.1I can be applied to the equation:

6.9) =Y (1+]x=x|"?[1 +sen(]x — x|7**)]) D, u(x) = f(x), in @,
is1

where: @ = 10,1[";n 2 4;x" = (x|, ..., x}) e ;0 < B, < (n — 4 + 2|a|)/(16 + 8a).

with: —1/6 < o < 0. In particular, for n = 4 and o = —1/6, we can take 28; €

€10, 55[-

Another equation to which to apply Theorem 4.11 is the following:

! [1 jw [+ sen (jx — x"fl‘”’”‘)] D2, u(x) = f(x),

6.10 -3 {1+ - =
( ) = '21 k;; 2’|x — x”lzﬁ""
in Q= ]0, 1[" s
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where: n = 4; {x} jon, = {(x¥, ..., X))} jen, is a dense sequence in Q;

n—4+ 2|oc’
0<pB;; < —— 1,
B 16 + 8o
with:
1+ sen (|x — x¥|7*F)

]x — x”‘zﬁ”

—1/6<a<0; k,.,.=“

W1,4+2¢(Q)

Each coefficient of the equation (6.10) has infinitely many singular points in any
neighborhood contained in Q.

It is also possible to build examples of equations (to which to apply Theorem 4.1T)
where, unlike for (6.1), (6.9) and (6.10), the singular points of the coefficients fill in
whole manifolds of positive dimension.

If n = 5, we consider (for i =1, ..., n) the straight line r; parallel to the x; axis
and passing through the point (xi,...,xi_;,0,xi,,,...,x})e 22 and denote by

1Zjsn
A= % (5= X1
Jj¥i
the distance, from r;, of the generic x € Q = 0, 1[*. The theorem 4.1I can be applied
to the equation:

(6.11) ;—ii(l+di(x)_2”i[1+sen(di(x)_2’3")]) D? u(x) = f(x), in @,

if: 0 < By <(n—5+2|))(16 + 8a), - < a < 0.
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