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CONDITIONS FOR TRANSITIVE PRINCIPAL TOLERANCES

Joser NIEDERLE, Brno

(Received November 15, 1987)

By a principal tolerance on an algebra U = (A4, F) we mean the least compatible
symmetric reflexive relation on 2 containing a given pair [a, b]e 4 x A. Such
a relation exists for any pair [a, b]e 4 x A.

An algebra U is said to have transitive (alias trivial) principal tolerances if each
principal tolerance on 2 is transitive, i.e. it is a principal congruence. A class of
algebras 7" is said to have transitive principal tolerances if any algebra in 7" has
transitive principal tolerances.

Let (*) and (*) denote the following systems of identities:

Fa(s(egy ooy x,), (X0 ooy X0)s Xg, 00, X,) =
(x) = g(u(xy, ..., x,), (x4, ..., TY")’ Xy ens Xp)

Fa(t(xgs oy Xp)y S(X 10 ooy Xp)s Xq, o0y X,) =

= g(v(Xgs oees Xp)s U(X gy oens Xp)s Xy oeny X} s

F(t(x gy oo X)s S(X g ooy Xp)s Xqs ooy X,) =
= g, (u(xy, ..o, X,), (X, oo X,), X, s X,
F(s(x gy ooy X0), 104, ey Xp)s Xgaeeny X,) =
(+4) = g1(v(x1s -oor X,)s u(Xg, ooos X,), Xqseeey X)
F((xqs oo x0), s(Xq, oo X,), Xgyeeny X)) =
= go((X1, -0y Xp)s O(Xg, ey Xp)s Xy oens X)
Fals(xgy oo X), 8(X 1 ooy X,)s Xgs ves X,) =
= go(v(Xq, ..oy Xp)s U(Xgs ooy X,)s X oens X,)

Theorem. Let ¥ be a variety of algebras. The following conditions are equivalent:
(A) ¥ has transitive principal tolerances.

(E) For every natural number n, every (n + 2)-ary ¥ -polynomials f1, g,f, and
every n-ary ¥ -polynomials s,t,u,v such that (x) holds in ¥ there exist
(n + 2)-ary ¥ "-polynomials g,, f, g, such that (x) holds in ¥".

(F) For every natural number n, every (n + 2)-ary ¥ -polynomials fi,f, and
every n-ary ¥ "-polynomials s, t there exist (n + 2)—ary ¥ -polynomials g4, f, g,
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such that (xx) holds in ", where
(#n) {u(xl, cees X) = L1580 gs oo Xg)s H(X 1y wens X)X weey Xi)
(X1 oo X)) = fo(t(0g5 ooes X,)s S(Xg5 o0y X,)s Xy oees Xa) -
Proof. For (4) < (E) see [1].
Troughout the proof, x is a concise form for xy, ..., X,.
(E) = (F): Let (E) be true in ¥". Let n be a natural number and fy, f, arbitrary
(n + 2)-ary ¥"-polynomials, s, ¢ arbitrary n-ary ¥ -polynomials. Take g(y, z, x) = y
and u,v as in (xx). Since (*) is satisfied in ¥, there exist (n + 2)-ary ¥ -poly-
nomials ¢;, f, g, such that (x*) holds in ¥". This proves statement (F ).
(F)= (E): Let (F)be true in ¥". Let n, f1, g', f3, s, t', u’, v satisfy the assumptions
of statement (E). Inasmuch as n,f; = fi,f, = f5, s =, t = also satisfy the
assumptions of statement (F), there exist (n + 2)-ary ¥ -polynomials g;, f, g, such
that (xx) holds in ¥ for u, v defined by (x*x). Put
91(y, 2, %) = 94(g'(y, 2, x), 9'(2, ¥, %), %), 95(y, 2, %) = ga(9'(v, 2, %), 9'(2, y, x), x)
and f' = f. Since
() = W) V(%) o) = g0, (). 9
are ¥ -identities, we obtain ¥ -identities
St (%), 8'(x), x) = g:(u(x), v(x), x) = g4(¢'(w(x), v'(x), %) ,
g'(v'(x), w(x), x), x) = ¢(w'(x), v'(x), ) ,
75 (3 1), ) = 0,(0x), ), %) = 00 ) ). ).
0 ((5) v(3). 3), 3) = 036 (9) w(2). %)
f1(0(x), 5'(x), x) = ga(u(x), o(x), x) = g2(g'(w'(x), v(x), %),
g'(v'(x), u'(x), x), x) = g5(u'(x), v'(%), %) »
f3(s'(x), 1(x), %) = g2(v(x), u(x), x) = g2(9'(v'(x), w'(*), ¥) ,
g'(u'(x), v'(x), x), x) = g5('(x), w'(x), x) ,
proving (E). Q.E.D.
In the case (F), (**) with (*#x) should be read

Fi(t(®), s(%), x) = g:(/(s(x), (%), %), £>(1(x), 5(x), %), %) ,
F(s(x), (%), %) = g1(J2(K(x), 8(%), %), Fi(s(), (), %), %),
1), 5(x), ) = g2(/1(s(x), (), %), f(1(x), s(x). x). %) .
Fas(x), %), ) = g2(J2(K(x), 5(x), %), 1(s(x), 1(x), %), x) -
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