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(Received January 23, 1987) 

In [3], it has been shown that the poset of all meet-irreducible tolerances in any 
finite distributive lattice Lis order-isomorphic to the set of all intervals in the poset 
of all join-irreducible elements ofLordered by inclusion. Note that in the finite case 
the poset o fa l l join-irreducible elements is order-isomorphic to the poset of all 
meet-irreducible elements. In this paper, the above result will be generalized to distri­
butive Noetherian lattices. 

Recall that a lattice Lis said to be Noetherian if it satisfiesthe Ascending Chain 
Condition (ACC): each non-empty subset (or, equivalently, subchain) in Lcontains 
a maximal element ( s e e [ l ] for details). A lattice is said to be upper bounded if it 
contains a greatest element, conditionally complete if any subset of Lwith an upper 
(lower) bound in Lhas also a least upper (greatest lower) bound in L, and compact 
if each element of L is compact, i.e. each subset X of L includes a finite subset Y 
such that V ^ = V ^ w n e n e v e r V ^ exists. 

Proposition 1. A lattice is Noetherian if and only if it is upper bounded, con­
ditionally complete and compact. 

Proof. Let L b e a Noetherian lattice. As Lcontains a maximal element, this is 
the greatest element of L. Let X be any nonempty subset of L. Define Xv = 
= {x є L\ 3neN 3 Х о Х п Є Х (x = x0 v ... v хи)}. This subset Xv contains a maximal 
element; denote it by m. Sincem v x e I v for any x eX, it follows that m is an 
upper bound of X in L. If z is also an upper bound of X in L, then we have m = 
= x0 v ... v xn <£ z for suitable elements x0, , . . , x „ e I , hence m = V ^ *п L. 
Consequently, L i s conditionally complete. We have just shown that \/XeXv, 
and so there exists a finite subset Y^ X such that yX = V^- Thus the lattice L 
is compact. Conversely, let L be an upper bounded, conditionally complete and 
compact lattice. Let X be an arbitrary non-empty subchain in L. Then V ^ є X v = X, 
therefore X contains a maximal element. Q.E.D. 

Completely ( = strictly) meet-irreducible tolerances in distributive lattices were 
recognized in [2] and [3] as tolerances formed by a proper prime ideal that is maximal 
among all ideals not containing a given element b, and by a proper dual prime ideal 
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that is maximal among all dual ideals not containing a given element a, where 
a < b. See [2] and [3] for definitions and basic properties. 

Proposition 2. For a distributive Noetherian lattice L, the set of all completely 
meetirreducible tolerances in L ordered by inclusion is order-isomorphic to the 
set ofall intervals in the poset ofall meet-irreducible elements ofLwith completely 
meet-irreducible greatest elements, which is ordered by inclusion,formally 

CM(TL(L)) s (M(L) x CM(L)) n S . 

Proof. Let Te CM(TL(L)), i.e. T = (/ x /) u (F x F), a, b є L, a < b, where / 
is a proper prime ideal which is maximal among all ideals not containing b, and F 
is a proper dual prime ideal which is maximal among all dual ideals not containing a. 
Then J = L\ F is a proper prime ideal and J £ / holds. Ideals in Noetherian 
lattices are principal, and greatest elements of prime ideals are meet-irreducible 
(cf. [ l ]) . If V^ — A% f ° r some X £ L, then V^ Ф X would imply, in view of maxi-
mality of/ with respect to b, that b ^ x for any x є X. This would yield b ^ ДХ = 
= yi, which contradicts the assumption. Therefore V^ is completely meet-irreducible. 
Define h(T) = [yj,yi]e(M(L) x CM(L))n ^ . It is obvious that h is injective 
and order-preserving. It remains to show that it has an inverse. 

For [v, w] e (M(L) x CM(L)) n й define g([v, w]) = ( (L\ (v}) x ( L \ (v})) u 
u ((w> x (vv>). It is clear that L \ (z;> is a dual prime ideal that is maximal among all 
dual ideals not containing v. Further, the element w is a lower bound of the set 
X == {x e L\ w < x}, which is not empty as it contains уЬЪу Proposition 1. Again 
by Proposition 1, the lattice Lis conditionally complete, and therefore ДХ exists. 
As w is completely meet-irreducible, w < ДХ. Denote b = ДХ. Let K be an ideal 
that includes (w> and does not contain b. Then w ^ V ^ but b % УК, and this 
implies V ^ — w- Hence (w> is maximal among all ideals not containing b. Con­
sequently, g([v, w]) is a completely meet-irreducible tolerance. The mapping g is 
obviously injective and order-preserving. It is clear that g = ft"1. Q.E.D. 
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