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INTRODUCTION

Let T;, i = 1,...,d, be locally compact HausdorfT spaces, and let XC,(T;) denote
the Cartesian product Co(Ty) X ... x Co(Ty), where Co(T;), i =1,...,d, is the
Banach space of all scalar = K-valued continuous functions on T; tending to zero
at infinity with the sup norm. In this paper we prove the Riesz (also the Bartle-
Dunford-Schwartz) Representation Theorem type results for bounded d-linear
operators U: XCo(T;) = Y — a Banach space.

In the papers [12], [13] and [14] we already started developing an extension of
the Lebesgue type integration to integration with respect to set functions of several
variables — polymeasures. The bounded d-linear operators are represented, via this
integration, either by separately countably additive Y-valued Baire d-polymeasures,
see Theorems 2, 9 and 11, or by weak*-separately countably additive Y = Z*, or
Y**-valued Baire d-polymeasures, see Theorems 4 and 5, respectively.

The representation theorems are easily derived from a deep result of A. Pelczynski
from [32]. Not so easy was it to prove the Lebesgue bounded convergence result
of Theorem 3, and the double limit characterization of Y-valuedness of the represen-
ting d-polymeasure given by Theorem 9.

The special case d = 2 was investigated in the papers [25]—[29], [35], [36] and
[22]. The case of the Banach spaces of vector valued continuous functions Co(T;, X )
will be treated in [18]. We will freely use the notation from [12], [13] and [14],
particularly the abbreviated notation.

1. OPERATOR VALUED BAIRE AND BOREL POLYMEASURES

Let T be a locally compact Hausdorff topological space. In accordance with our
notation in [3], by %, = 6(%,) we denote the 5-ring of all relatively compact Baire
subsets of T. Similarly # = §(%) will denote the d-ring of all relatively compact
Borel subsets if T. The symbols (%,) and ¢(%) stand for the o-rings of Baire and
Borel subsets of T, respectively.

We denote by K(T) the linear space of all scalar valued continuous functions on T
with compact support. Q will denote the set of all X valued continuous functions
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on T which are of the form f = Z(pjx where ;€ K(T) and x;€X, j=1,...,r

According to Proposition 1 in § 19 in [2] Q is dense in Cy(T, X).

Let m: B, » L(X, Y) be an operator valued Baire measure countably additive
in the strong operator topology. By Theorem 1 in [3], M(E) = sup {|[zfdm],
feQ, |f|e = 1} for each set E € o(%,). Nonetheless, the proof given there needs
a correction, since it may happen that |f]; > 1 for the function f in that proof.
We have C; < E; = U;, i = 1,...,r at the top of page 16 in [3]. Since C;, i =
=1, ..., rare pairwise disjoint compacts, there are pairwise disjoint open sets U’ € B,,,
i =1,...,rsuch that C; « U; < U, for each i. By virtue of Theorem B in § 51 in
[20] there are functions @}e€ K(T),0 £ ¢; < 1,i = 1,...,r such that ¢(f) = 1 for

teC,, and ¢(t) = 0 for te T — U}. Now f' = Z(px € Q is such that |f[ <
and | L m(E;) x;| < HEf dm| + . This mequahty 1mp11es that the proved equality

holds also if M(E) =

Further let us note that if m': 6(#,) - L(X, Y) is countably additive in the strong
operator topology and m = m': B, — L(X,Y), then m'(E) = m(E) for each
E € o(%,) by Theorem 14 in [4]. It is easy to verify that the above mentioned facts
remain valid if m: 8 — L(X, Y) and m’: 6(%#) — L(X, Y) are additive Borel measures
regular in the strong operator topology, hence also countably additive in this
topology.

Now let T;, i = 1,...,d be locally compact Hausdorff spaces with Baire (Borel)
o-ring By (%), i = 1, ..., d. Let further X, ..., X, and Y be Banach spaces over the
same scalar field. By L(X; Y) = L9(X,, ..., X;; Y) we denote the Banach space
of all bounded d-linear operators V: X; X ... X X; — Y. There is a natural iso-
metric isomorphism between the spaces L?(X;; Y) and L(X; ®" ... ®" X,, Y),
where X; ®@" ... ® " X, is the completed projective tensor product, given by the
equality V(x,,...,x,) = V(x; ®@" ... @" x,). We say that Ve [V (X,; Y) is weakly
compact, unconditionally converging, compact, etc., if V has the corresponding
property, see [31].

Let Q;,i = 1,..., d be the analog of Q for T;and X;, and let I': X%, ; - L¥(X; Y)
be an operator valued d-polymeasure separately countably additive in the strong
operator topology, see [12]. From Theorem 8 in [5] and Theorem 2 in[13] we
immediately obtain that (f;)eI(I') if (f;) e XQ;. We now prove a generalization
of Theorem 1 from [3], and Theorem 6 from [6].

Theorem 1. Let I': X%, ; » L9(X;; Y) be an operator valued Baire d-polymeasure
separately countably additive in the strong operator topology. Then

P(A;) = sup {|foap () dT); (f)eXQi, |fi S 1, i=1,....d}
for each (A;) e Xo(%, ;), and

I(g:), (491 = sup {{fcan (£) AT]; (f:) € XQs, and |fi| < lgil, i = 1,...,d}
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for each A, -measurable g;: T, > X; (or g;: T; » [0, +0]), i=1,...,d, and
each (A;) € Xo(%,,;). By Theorem 4 in [13] the same equalities hold if X%, ; is
replaced by Xo(%, ;). These assertions remain valid if &, ; is replaced by &,
i=1,...,d, and T is separately additive and regular in the strong operator
topology.

Proof. Let (4;)e Xo(%, ;) and let ¢ > 0. By Definition 3 in [12] [(4,) =
= sup {|[4n (9:) dI'|; (9:) € XS(By,1, X <1,i =1,...,d}, where S(%, ;, X)
denotes the linear space of all %, simple X; valued functions on 7;. Take (g,) €
€ XS(%,,:, X;) with ||g;] 4, < 1 foreachi=1,....d.

For E, € %, , and x;€ X, put m(E,)x; = [, as.... a0 (X1-XE0> 925 .-, 9a) dT.
Then m;: %, , — L(X,, Y) is countably additive in the strong operator topology, and
Joan (g )dF = (4, g1 dm,. According to the proof of Theorem 1 in [3], see also the
beginning of our proof above, there is an f, € Q, with |f,]4 such that
|fa1 g1 dmy| £ |f4, f1 dm,y| + ¢/d. It is casy to verify that [, f, dm, =
= I(A.-) (fn g2s es gd) dr.

ForE, € #,,, and x, € X, put mz(Ez) Xy = _[(A,,El,Aj ..... Aa) (f1, %2 XEy 935 -5 9a)
.dI'. Then there is again an f, e Q, with ||f,], 1 such that |f,, g, dm,| <
< |f4, /2 dmy| + ¢/d. Continuing in this way we obtain a d-tuple (f;) € XQ; such
that ||f;]|,, < 1 for each i = 1,...,d, and

”(m) (gi) dFl = ”(Az)(fi) dfl + €.

From this inequality the equation with the semivariation I(4;) is evident for both
cases I'(4;) < +o0 and [(4;) = 0. Since (4;) € Xa(#, ;) was arbitrary, the first
assertion of the theorem is proved. The other assertions may be proved similarly.
As we mentioned above, Theorem 1 from [3] is valid if %, is replaced by 2%, hence
the last assertion of the theorem is evident. The theorem is proved.

2. REPRESENTATION THEOREMS

In accordance with [32] let B“(T;), i = 1, ..., d denote the Banach space of all
bounded scalar valued Baire measurable functions on T; with the sup-norm. As this
notation suggests, B®’(T}) is the smallest class of bounded functions on T; which
contains K(Ti) and is closed with respect to the pointwise convergence of bounded
sequences of functions, see § 51 in [20] and Theorem 15 in [17]. In accordance with
Definition on page 381 in [32] a sequence f;,€ B*(T;), n = 1,2,...,ie{l,...,d}
fixed, is said to be w*-convergent to a function f;€ B)(T;) provxded sup £ ,,HT‘
< +oo and lim f; (t;) = fi(t;) for any t,€ T..

n—o

Our representation theorems are derived from the following basic result of A.
Pelczynski, see Theorem 2 in [32] which obviously holds also for locally compact
Hausdorff spaces T;, i = 1,...,d.
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Theorem of A. Pelczyniski. Let U: XC(T;) - Y be a bounded d-linear operator and
let us suppose that one of the following conditions is satisfied:

(A) no subspace of Y is isomorphic to the space cy;

(B) U is weakly compact.

Then there is a unique d-linear bounded operator U**: XB)(T;) — Y such that

1) U** is an extension of U, i.e., U**(f;) = U(f,) for (f;) € XCy(T;), and

2)ifgimn=12,...,d,i=1,...,d, are w*-convergent to g, sequences of elements
of BT;), then

lim U**(g; ,) = U**(g,) .

n— o

Moreover, in the case (B) the operator U** is weakly compact.
As a consequence we easily obtain

Theorem 2. Let U: XCo(T;) > Y be a bounded d-linear operator and suppose
either ¢q & Y, or U is weakly compact. For (A;) € Xo(%, ;) put y(A4;) = U**(x4).
Then y: Xo(%,,;) = Y is a separately countably additive vector Baire d-poly-
measure. Further (g;)eI,(y) = I(y), and

U**(g;) = [z, (9:) dy
for each (g;) € XB(T,), in particular

U(fs) = fero (fi) dy
for each (f;) € XCo(T;). At the same time

[ = o= = [ (1) = sup [y} (T).

Moreover, the range of y is relatively weakly compact if and only if U is weakly
compact.

Proof. The separate countably additivity of y is an easy consequence of assertion
2) of Theorem of A. Pelczyfiski.

Now let (g;) € XB)(T;) = XS(0(%, ), K), and for each i = 1,...,d take a se-
quence g;,¢€ S(o(%,,),K), n=1,2,... such that |g;, — g|r, > 0. According
to the Nikodym uniform boundedness theorem for polymeasures, see [12], we have
[7]l (T;) < + 0. Hence by Theorem 1 and Definition 1 in [13], and assertion 2) of
Theorem of A. Pelczynski we obtain

fero(g:) dy = 1im fir,(9:0) dy = lim U*¥(g;,) = U**(g;) .
By Corollary of Theorem 5 in [14] we conclude that I(y) = I,(y).
The equality with norms follows from Theorem 1.
If U is weakly compact, then U**: XB®(T;) - Y is weakly compact by Theorem
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of A. Pelczynski, hence the range of y is relatively weakly compact. Conversely, if
the range of y is relatively weakly compact, then using Krein-Smuljan Theorem,
see Theorem I1.2.11 in [1], similarly as in the proof of Theorem VI.1.1 in [1] we
obtain that U**: XB“(T;) — Y is weakly compact. The theorem is proved.

From Theorem 2 and from the elementary properties of the integral withi respect
to a polymeasure, see [13] and [14], we immediately obtain

Corollary. There is an isometric isomorphism between the Banach space of all
bounded d-linear functionals I'(Cy(T;); K) and the Banach space of all separately
countably additive d-polymeasures pm (Xo(%, ;), K) with the norm y - |y| (Ty),
given by the equalities

V(f) = fao(fi)dv, (fi)e XCo(T3), and lVl = ”7’“ (7).

If U: XCy(T;) — Yis a bounded d-linear operator and either ¢q ¢ Yor U is weakly
compact, then assertion 2) of Theorem of A. Pelczynski implies via Theorem 2
a Lebesgue Bounided Convergence Theorem type result for the integral with respect
to the representing d-polymeasure y of U. We prove in Theorem 3 below that for
the integral of d-tuples of scalar valued functions with respect to arbitrary separately
countably additive vector d-polymeasure this Lebesgue Bounded Convergence
Theorem holds. Hence for any bounded d-linear operator U: XCy(T;) — Y which
can be represented by a separately countably additive y: Xo(%, ;) — Y, the assertions
of Theorem of A. Pelcyniski hold.

First we introduce a useful notion.

Definition 1. Let T, &= 0, i = 1, ..., d be arbitrary sets, let &, < 27* be o-rings,
and let y: X%, — Y be separately additive. Let further g;, g9, T; > K, n = 1,2, ...
be & -measurable for each i = 1, ..., d. We say that the d-tuples (g;,),n = 1,2, ...,
Xw*-converge to the d-tuple (g;) y-almost everywhere if there are sets N; € &;,
i=1,...,d such that §(..., T;—;, N;, Ty4q,...) = 0 and the sequence g;,. Xr,-n,
n =1,2,... o*-converges to the function g;. xr;—y, foreach i =1,...,d.

Theorem 3. Let T; + 0, i = 1, ..., d be arbitrary sets, let ¥, < 2", i=1,....,d
be g-rings and let y: X¥; — Y be a separately countably additive vector d-poly-
measure. Let further g;,g,, T;—> K, n=1,2,... be bounded & -measurable
functions for each i = 1, ..., d, and let the sequence of d-tuples (g;,),n = 1,2, ...,
Xw*-converge to the d-tuple (g;) y-almost everywhere. Then (g;), (9:,.) € I;(y) =
=1(y), and

(1) lim Jou (910 87 = Jono (65) &7

Sor each (A;)e X# . If in each of (d— 1) coordinates either y is uniformly countably
additive or the sequence g;,, 1 = 1,2, ... converges uniformly to the function g,,
then the limit in (1) is uniform with respect to (4;) € X&'
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Proof. First note that ||y|(T;) < +o by the Nikodym uniform boundedness
theorem for polymeasures, see (N) in [12]. Since (g,), (g;,) € XS(¥:, K), we have
(9:), (g:n)€1(y) by Theorem 2 in [13]. Further, I,(y) = I(y) by Corollary of
Theorem 5 in [14]. According to Theorems 2 and 3 in [12],

(2 lim |y (4:) = 11m y(AL ) =0

whenever 4; ,€ &, n =1,2,... and A,-’,l - 0 for each i = 1,...,d. Without loss
of generality we may suppose that (g;,}, » = 1, ... is Xw*-convergent to (g:) every-
where. However, then by the definition of w*-convergence there is a constant C > 0
such that lgi,,,(ti)‘ < Cforeachi=1,...,d,eachn =1,2,...,and each t;e T,.

If now in each of (d — 1) coordinates either y is uniformly countably additive
of the sequence g;,, n = 1,2, ... converges uniformly to the function g;, then from
the proof of Theorem 7 in [13] it is easy to see that the limit in (1) is uniform with
respect to (4;) € X¥,.

For a general y we prove (1) by induction with respect to the dimension d. For
d = 1 the theorem is already proved, since then 7 is 2 uniform polymeasure. Suppose
the theorem is proved for dimensions 1, ..., (d — 1).

Let (4;) e X&;. For each i = 1, ..., d take a countably generated o-ring &, = &;
such that y,, g;, n = 1,2,... are &;-measurable. Let 9’ be the restriction y' =

=y: X(G;n &) > Y, where G; ——U{t €Ty, g ,(t;) * 0} € #;. Since (g,), (9:0,) €

e X§(G; n #1), K) = I,(y') n I(y) for any ny,...,ng=1,2,..., obviously
S0 (9imy V' = Je£o (9imy dv and g, (9:) dv" = [iz, (9:) dy for each ny, ..., ny =
=1,2,... and each (E;) e X%, in particular for (E;) = (4;). Hence it is enough
to prove (1) when y is replaced by y'.

According to Theorem 11 in [12] there is a control d-polymeasure, say 1, x

. % 24t X(G; 0 #}) = [0, +0), for the vector d-polymeasure y’. Obviously

Jeao @i = 90+ 9) AV = Jan (9) V' = fea (gin, — 95) Ay’ +

+ Jea0 (91 G2m, = 92)s s Guma — 92) DY + oo

o+ _f(m) ((!h,n, - 91)» (gl,nz - 92)’ ""(gd-l,nd-x - gd—1)7 gd) dy' +

+ I(A,-) (glagzy(g:i,n; - 93), ~~-:(gd,nd - gd)) dy" + ...

vt Sean @0 Gam1s (Game — 90) Y + oo+ Jan (910 = g1): 925 --- Ga) dy’

for any ny,...,n, = 1,2, .... Clearly the set functions:

(Ez’ EERD) Ed) - ,f(Al.Ez ..... Ea) (91, XEys <+ s XE,,) dy’, (Ez’ cees Ed)e

€Sy X oo X Py oo (Ety ooy BEamy) = [ 5y Bacs ey (KB s XEa_ s 92) 475

(Eys oo Egy)e Py x oo x Py, (Esy .o E) >

= cai s b (915 G2 XEss s XE) Vs (Ezs oo E) €SPy X oo X Fhy o  Eg >
- j(AI,...,Ad_l,Ed) (gb e a1 XEd) dy, E,e Sy .., E; —

- .[(E;,Az,...,A,l) (XE,a g25--0s gd) dy', E; e &
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are (d —1)-,...,(d = 1)-,(d — 2)-, ..., 1-, ..., I-polymeasures, respectively. It is
easy to see that the integrals of ((¢,.,, — 92)s -~ (Guma — 94))s ---» (G1my — 1) -
oo (Ga-tmaey = Ga-1))s ((93,713 = g3)s e (gd,nd = 98) s (Gama = 9a)s -

cees (gl,,,1 —-9g 1) with respect to them are equal to the corresponding integrals with
respect to " written above. Now, let ¢ > 0. Then by the induction hypothesis there
is a positive integer n, such that

®3) fcan (@en) 4V = Jean (9) '] = [fean (gim — 95) d¥'| + ¢/2
whenever ny, ..., ny; = ny.

According to the Egoroff-Lusin theorem, see Section 1.4 in [5], for each i =
= 1,...,d there are sets N;, G;,€G;n ¥}, k=1,2,... such that )»,.(Ni) =0,
G;x # G; — N;, and on each G;;, k=1, 2,... the sequence g;,, n =1,2,...
converges uniformly to the function g;. Evidently
(4) Scao @i = 90V = [ea-ny (i, — 9) Ay =

I((Ai‘Ni;Gi,k)UGi,k) (gi,"i - gi) d’))' = J'(Ai‘Ni_Gi,k) (gi,"a - gi) d’yl +
+ §61 kA2~ N2 =620 (Aa=Na=Gapoy (Gime — 91) AV + ...
et j.(c,-,k) (Gim, — g1 dy" .

By (2) there is an integer k, such that

”(Aa-N.mGi,ko) (G, — g)dy'| < (2cy “V'H (4i = N; = Gyy) < 8[4.

In the second, third, ..., (2¢ — 1)-summand = the last summand on the right hand
of (4) we have uniform convergence in at least one coordinate. Hence there is an
ny > ng such that

\fean (Gin — 95) dy| < e/4 +¢/4 for ny,...ng=ng.
Thus

feao (gim) 47" = Jean (g) dy'| S
for ny,...,ny = ny. Since ¢ > 0 was arbitrary, (1) is proved for the d-tuple (4,).
Since (A4;) € X&; was arbitrary, the theorem is proved.
Let us note that Theorem 1 in [8], i.e., the Diagonal Convergence Theorem, is
a generalization of Proposition 1 in [32].

-Theorem 4. Let Z be a Banach space. Then there is an isometric isomorphism
between the Banach space L(Cy(T)); Z*) of all bounded d-linear operators
U: XCy(T;) > Z* and the Banach space of all separately weak*-countably ad-
ditive vector d-polymeasures 7: Xo(%B, ;) = Z*, equipped with the norm y —
yl (T;). This isometric isomorphism is given by the equations

U(f) = firo (f) dy,

—

and .
01 = 151 () = sup [s) 21 (7).
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Proof. Let y: Xa(%, ;) —» Z* be a separately weak*-countably additive vector
d-polymeasure. Then |y|| (T;) = sup [y(*) z| (T;) < + o by Nikodym’s uniform
ey

boundedness theorem for polym';a:sures, sce (N) in [12], and by the uniform
boundedness principle. Since XCo(T;) = XS(%, ;, K), we have XCo(T) = I,(3(*) z)
for each z € Z by Theorem 2 in [13]. Since 7(4;)(*): Z — K is a linear mapping for

each (4;) € Xo(%, ;), the mapping U(f;) (+): Z — K defined by the equality
U(fi) z = fery (1) d((+) 2)

is also linear by the elementary properties of the integral, for each (f;) € XCo(Ty).
Clearly U(+) z: XCo(T;) — K is d-linear for each ze Z. By clementary properties
of the integral, see assertion 6) of Theorem 3 in [13], we obtain the inequalities

002l = [Tl 1) 20 () < LUl b () el < o0

for each z € Z, hence U(f;) € Z* for cach (f;) € XCo(T;). Now using Theorem 1 we
obtain the equalities

U1 = sup [UC) 2| = sup () 2 (T:) = Il (7).

Conversely, let U: XCy(T;) — Z* be a bounded d-linear operator. By Corollary
of Theorem 2 for each z € Z there is a unique separately countably additive scalar
d-polymeasure y_: Xa(%oyi) — K such that

U(fi) z = [y (f) dv., (i) e XCo(T),
and
) (T) = U] 2] 5 U] J2] < +eo.

Since BY(T;) for each i = 1,...,d is the smallest class of functions g;: T; » K
which is closed under the w*-convergence of sequences and which contains Co(T;),
by transfinite induction, using assertion 2) of Theorem of A. Pelczynski and the

uniform boundedness principle, we obtain a Xow*-weak*-continuous extension
U**: XB®(T,) — Z*. By Corollary of Theorem 2 this extension is of the form

U**(g,-) z = I(T.-) (gi) dy., (9.‘) € XB(Q)(Ti)

for each z e Z. Taking (g;) = (x4}, (4:) € Xo(%, ), we obtain that U**(x,,) z =
= 9,(A4;) for each zeZ. Hence y(A;) = U**(y,,) € Z* for each (4;)e Xa(%, ;).
The equality with the norms of U and y was established in the first part of the proof.
Hence the theorem is proved.

We immediately obtain

Corollary. Let Z be a Banach space. Then every bounded d-linear operator
U: XCo(Ty) » Z* has a unique d-linear Xw*-weak*-continuous extension U**:
XB®(T;) - Z* given by the equality

U*(g)) = [y (9:)dv, (g5)€ XBU(T,),
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where y: Xo(%, ;) - Z* is its representing d-polymeasure. Moreover, ]U**| =
= Il (1) = |u]

Identifying Y with its canonical image in Y**  from the preceding theorem we
easily obtain

Theorem 5. There is an isometric isomorphism between the Banach space of all
bounded d-linear operators L'9(Co(T:); Y) and the Banach space of all separately
weak*-countably additive d-polymeasures y: Xo(%B, ;) — Y**, with the norm
y = || (T\). This isometric isomorphism is given by the equations

U(f:) = fao (f)dy, (fi) e XCo(T),
Y U(f) = forg (F)d((-) ¥*) . (f) e XCo(Tyy, y*e Y*, and
(Ul = I (T) = sup n() »*| (T2)

From Corollary of Theorem 4 we obtain another

Corollary. Every bounded d-linear operator U: XCo(T;) = Y has a unique Xw*-
weak*-continuous extension U**: XB‘“)(T,-) — Y** given by the equality

U**g:) = fry(9:)dy, (9:) e XB(T),
where y: Xa(#B, ;) — Y** is the representing d-polymeasure of U. Moreover,
[U**] = v (T:) = |U].

Keeping the identification of Y with its canonical image in Y**, we now prove

Theorem 6. Let U: XCo(T;) — Y be a bounded d-linear operator with the repre-
senting d-polymeasure y: Xo(%, ;) — Y** and extension U**: XB®)(T;) —» Y**.
Then the following conditions are equivalent:

a) y is Y-valued,

b) y is Y-valued and is separately countably additive in the norm topology of Y,

C) vy is separately countably additive in the norm topology of Y**,

d) U**- XB®(T,) » Y** is Xw*-norm-continuous, and

e) U**: XB®(T,) — Y, and it is Xw*-norm-continuous.

Proof. a) = b) by Theorem 5 and the Orlicz-Pettis theorem, since on Y < Y**
the weak* and the weak topology coincide.

Evidently b) = c).

¢) = d) by Theorem 3.

Trivially d) = e).

e) = a) since y(4;) = U**(x,,). The theorem is proved.

Another generalization of the l-dimensional case is given in

Theorem 7. For a bounded d-linear operator U: XCO(T,.) — Ywith the representing
d-polymeasure y: Xo(#,,;) - Y** and the extension U**: XB®(T;) > Y** the
following conditions are equivalent:
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a) U is (weakly) compact,
b) U** is Y valued and (weakly) compact, and
¢) y is Yvalued and its range is (weakly) compact.

Proof. a) = b) by Theorem of A. Pelczy1iski, using assertion e) of Theorem 6 and
the fact that the Xw*-sequential closure of XCy(T;) is XB“(T;).

Evidently b) = c).

The implication ¢) = a) in the case of a weakly compact range was already proved
in Theorem 2. In the case of a compact range it can be proved similarly as Theorem
VI.7.7 in [19].

Let y: Xo(%, ;) — Y be separately countably additive. We say that y is uniformly
countably additive in the coordinate i if the vector measures y(. U PP FIPTI &
o(Bo;) > Y, ..., Ai_1€0(Boi-1), Aiv1€0(Bg,i+1), ... are uniformly countably
additive.

Theorem 8. Let y: Xa(%, ;) — Y be separately countably additibe and let U(f,) =

= o (f) dv, (fi) e XCo(T)). Put S; = {fie Co (Ty), |filr. i=1,..,d.
Then the following conditions are equivalent:
a) lim sup |U(...,fi—1, fim fis1,.--)| = O whenever f;,€S;,n=1,2,... and
n—>o fj;eS;
Jj¥Fi

Simg Simy=0forn, £ n,,n;,n, =1,2,...;

b) y is uniformly countably additive in the coordinate i; and

c) for each ¢ > O there is a positive integer N, , such that IU( o fiz 1,f,.,,,,
fiv1s...)| <& for at least one ne{l,...,N; )} whenever f;,€S;, n =1,
SJimg Jimg=0forng Fn,,n;,n,=1,..,N;,, and f;€S; for j + i.

Proof. a)/=> b) by Lemma 1 in [30], which coincides with Lemma 8.3 on p. 267
in [33].

b) = c), since a uniformly countably additive family of vector measures is uni-
formly absolutely continuous with respect to a finite non negative countably additive
measure, see Theorem 1.2.4 in [1] and Theorem 1 in [4].

Evidently c) = a).
We now characterize those bounded d-linear operators U: XCo(T;) — Y whose

representing d-polymeasure is Y valued in terms of U itself. For d = 1 the condition
seems to be also new.

i,v

Theorem 9. Let U: XCy(T;) > Y be a bounded d-linear operator and let
: Xo(%B, ;) = Y** be its representing d-polymeasure. Then y: Xo(%B,;) = Y if
and only if lim U(g; ) € Y exists for any double sequence @;, ;€ XCo(T;) such

that 0 < ¢;,, =1 for each i=1,...,d and each k,n=1,2,..., @Qiui /
7 (~)ginas k— o foreachi=1,...,d and each n = 1,2, ..., and Gin ™~ (7)
asn — o foreachi=1,...,d.

Proof. The necessity is a consequence of Theorem 3. First we show the suf-
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ficiency for the case d = 1. According to Theorem VI.7.3 in [19], y: 6(%,) > Y
(T=T,, By =B, 4, etc.) if and only if the family of scalar measures {y(-) y*:
o(Bo) » K, y* e Y*, |y*| £ 1} is uniformly countably additive. By Grothendieck’s
result, see Lemma VI.2.13 in [1], this occurs if and only if y(0;) - 0 whenever
0;e0(%,), j =1,2,... is a sequence of pairwise disjoint open sets. Let 0}, j =

=1,2,... be such a sequence. Since V, = O;, n = 1,2,... are open F, sets,
j=n

by Theorem B in § 50, [20], for each n = 1,2, ... there is a sequence @, € Co(T),

0=< ¢, =1, k=1,2,... such that ¢,, / yy.. By assumption lim y(V,) =

= lim U**(x,) € Y exists, hence limy(0;) = lim y(V; — V;4,) = lim y(V}) —
n— o j—o jo Jj— o
- V(Vj+ 1) =0.

In the case ~, \ given in the bracket, let C;,j = 1,2, ... be a sequence of pairwise

disjoint compact G; sets. For n = 1,2, ... put D, = | C;. By Theorem B in § 50,
. 2

[20], for each D,, n =1,2,... take a sequence @,; € Co(T), 0 < @, <1, k =
= 1,2, ... such that @, N\ xp,. By assumption lim y(D,) = lim U**(yp,) € Y exists,

hence lim y(Cj) = 0. Consequently, since C;, j =1,2,... was an arbitrary sequence
j=o
of pairwise disjoint compact G, sets, using the regularity of the scalar Baire measures
() y*: o(%,) - K, y* € Y* we immediately obtain that lim y(0;) = 0 whenever
jo o

0;€0(%,),j = 1,2, ...1s a sequence of pairwise disjoint open sets. Hence by Lemma
VI.2.13 in [1] y is Y valued. Hence for d = 1 the sufficiency is also proved.

Let d > 1 and let (4,)e Xo(%, ;). Then (x,,)e XB®(T,). Since B)(T;) =

= U B™(T)), i = 1,...,d, where B®(T;) stands for the o-th Baire class, using trans-
a<

finite induction we immediately see that for each i = 1, ..., d there is a countable
family of functions f; , € Co(T}), n = 1,2, ... such that x,, € B({f:,}) = the smallest
class of functions f;: T; = K which contains the family {f;,} and -which is closed
under the formation of pointwise limits of sequences. Using the sequences {f;,},
i =1,...,d,similarly as in the proof of Theorem V1.7.6 in [19], concerning B({f ,})
we may and will suppose that each T}, i = 1,...,d is a o-compact metric space.
In particular, T}, i == 1, ..., d are separable metric spaces now. According to Lemma
VL.8.4 in [19] each Co(T}), i = 1,...,d is a scparable Banach space. Let h;,, n =
= 1;2,... be a countable dense set in Co(T}),i = 1,...,d.

By the case d = 1 proved above, for each (f,, ..., s) € Co(T2) X ... x Co(T)
there is a unique countably additive vector measure yy,.,....r: 6(%o.1) = Y which
represents the bounded linear operator Uy, . . Co(Ty) = Y, Uy, solfy) =
= U(f1,f2r - fa)s f1€ Co(Ty). Let Ay: 6(%B,,) — [0,1] be a common countably
additive (0 — 0) control measure for the countable family of countably additive
VECLOT  MEASUTES V(i ... hang) o(By4)— Y, ny.ong=12,..., see Lemma
1V.10.5 in [19], or Corollary 1.2.6 in [1]. Let N, € o(%o,1), and let 2,(N,) = 0.

298



We assert that y(Nl,El, "‘5Ed> = 0 for each Eieo(%‘o’i), i=2,..,d. First we
show that ¥(s,,....;a(N1) = 0 for each (f2r s fa) € Co(Ta) x ... x Co(T).

.....

Let (f2» oSl € Co(T,) x ... % CO(Td), and take subsequences {n"'"}. < {’1},
i=2,..,dsuchthat |f, — p,, [r, — 0foreachi =2, . d Evidently Ifillz: <

< sup “hl-,,”,knr, =b, < +o for each i=2,...,d. Put b= max b; Clearly

2<isd

.....

(f27 -~-’fd) - (hZJ'Z.k’ Tt hd-"d,k) =
= ((fz - hl,nz,k)afB,’ '--,fd) + ...+ (h2.llz,k’ s hd—l,nd_,,k’ (fd - hd,nd,k))

for each ny - Mgy = 1,2, ... . Since
ly((fZ - hZ,nz,k)7f37 -~~,fd) (Nl)l é ”‘h)” (Tl) = (by Theorem 1) =
= sup |U(f1’(f2 - h2,nz,k)’f39 ’fd)\ = IU| . “fZ - hZ,nz,k“T: bd_z >

f1lITys1

|'Y(h2,nz_,\., Y FRPR (fd - hd.na,k)) (Nl)l =
HY()H (Tl) = |U| bd_zufd - hd,nd,k"Td

for each ny 4, ..., gy = 1,2, ..., we have ¢z, . ro(N1) = 0

Let (E;,....Ej)e (%) x ... X 0(%,.,4)- According to Theorem 5 and its
Corollary we have y(Ny, E,, ..., Eg) = U**(Xn.» Xgys -+ o> Xga)- Since U**(xn,s f2s -
o)) = UEE o () = ViassoNy) = 0 for each (fy,....f5) € Co(T2) % -..

. x Co(Ty), we have y(N,, E,, ..., Ej) y* = 0 for each y*e Y* by Corollary of
Theorem 5. Hence y(Ny, E,, ..., E;) = 0, which we wanted to show.

By symmetry in coordinates there are countably additive measures A;: o(%, ;) —
- [0,1], i = 2,...,d with analogous properties as 1;. Hence 4; x A, x ... X 44
is a control d-polymeasure for the d-polymeasure y: Xo(%4, ;) - Y**.

By regularity of the Baire measures 4;: 6(%, ;) — [0,1],i = 1, ..., d, see Theorem
G in § 52, [20], for each i there is a non decreasing sequence of compact G, subsets
C;,cT,n=12,..,and a non increasing sequence of open subsets 0;, = T;,
n=1,2,... such that C;, = 4; < 0, and A(0;, — C;,) < 1/n for each n =

IIA

0 @0
=1,2,....Hence (N 0;, — UC;,) = 0foreachi = 1, ..., d. Now by Urysohn’s
n=1 n=1

Lemma for each i = 1,...,d and each n = 1,2, ... there is a non decreasing (non
increasing) sequence @; , x € CG(T}), 0L @iux =1, k=1,2,... such that @; ,; /
7 %0, (®ink ~ Xc,,,)- By assumption and Theorem S,

lim lim U(@; ) = lim lim [, (@;,,)dy = yeY

n—ow k= o n-> o k-
exists. Hence, using Corollary of Theorem 5 and the fact that A, x ... x 4, is
a control d-polymeasure for the d-polymeasure y: Xo(%, ;) - Y**, we immediately
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obtain the equalities
y*y = lim iim fero (@in) d(+) y*) = (0 0,,) y* =
n—ow k—w© n=1
= 4) 5" (=10 o))

for each y* € Y*. Thus y(A,-) = y € Y by the Hahn-Banach theorem, which we wanted
to show.

Since (4;) € Xa(%, ;) was arbitrary, the theorem is proved.

Since our spaces T;, i = 1, ..., d are locally compact, the following “‘localization”
of our integtal representation is of importance. Its proof is obvious.

Theorem 10. For a bounded d-linear operator U: XCy(T;) — Y the following
conditions are equivalent:

a) the representing d-polymeasure y of U is Y valued on X%, ;;

b) the representing d-polymeasure y of U is Y valued on X%, ; and separately
countably additive on X%, ;;

c) for any relatively compact open sets D;e By ;, i = 1,...,d the restriction
Up, = U: XCO(D,-) — Y is representable by a unique Y valued d-polymeasure
Yoy: X(D; 0 By ;) = Y.

If these conditions are fulfilled, then

U(f) = Jeao (f) dy. (fi) e XCo(T3),

where y: X8, ;- Y, |U| = |y|(T), and yp, = v: X(D;n Bo.) > Y for any
open D;e By, i =1,...,4d.

The bilinear operator U: ¢, X ¢o = ¢, of pointwise multiplication U(x, z) =
= (x(1), z(t)) € C, is a simple example of a separately compact operator, obviously
bounded. However, its representing bimeasure is not Y valued on 2¥ x 2", non-
etheless, it is Y = ¢, valued on %, ; x %, ,, where B, = HB, , is the é-ring of
all finite subsets of N.

If Y contains no copy of [, and T'is a Stonean compact, then every bounded linear
operator U: C(T) —» Y is weakly compact by the important theorem of H. P.
Rosenthal, see [34] and Theorem VI.2.10 in [1]. Now it is easy to check that the
proof of Theorem of A. Pelczynski in [32], hence also the theorem itself remain valid
if Ycontains no isomorphic copy of I, andeach T}, i = 1, ..., d is a Stonean compact.
Hence, similarly as Theorem 2, we have our concluding.

Theorem 11. Let Y contain no copy of 1, in particular let Y be separable, and
let T,, i = 1,...,d be Stonean compacts. Then every bounded d-linear operator
U: XC(T,) <> Y has a unique representation in the form

U(f) = fao (f)dy, (fi)e XC(T),

where the representing d-polymeasure y: Xo(%, ;) — Y is separately countably
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additive. Moreover, U has a unique Xw*-norm-continuous extension U**:
XB®(T;) — Y given by the equality

U**(9:) = firo (g dy, (g0 € XB(T)) .
At the same time,
Ul = 7]l (T:) =lyﬁlllgll|y* ¥ (1) = [U**|.
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