Czechoslovak Mathematical Journal

Jéan Jakubik
On some types of kernels of a convergence [-group

Czechoslovak Mathematical Journal, Vol. 39 (1989), No. 2, 239-247

Persistent URL: http://dml.cz/dmlcz/102299

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/102299
http://dml.cz

Czechoslovak Mathematical Journal, 39 (114) 1989, Praha

ON SOME TYPES OF KERNELS OF A CONVERGENCE I-GROUP

JAN JAkuUBik, Kogice

(Received January 30, 1987)

In the paper [9], two types of kernels in lattice ordeted groups which were defined
by means of properties of sequences were investigated.

In the present paper the notion of a convergence lattice ordered group (or, shorter,
a convergence I-group) is applied in the same sense as in [7]. This notion was studied
also in [5], [6], [8]. [10] and [11]. Particular cases of convergence I-groups were
dealt with in [3] and [20].

Let G be a convergence I-group. Assume that p is a condition concerning convex
I-subgroups of G. A convex I-subgroup H of G is said to be a p-kernel of G if H
is the largest element of the system consisting of those convex I-subgroups of G
which satisfy the condition p. If p is given, then the question arises whether the
p-kernel exists.

The existence of some ti]pes of p-kernels will be investigated below. All these
kernels are related to properties of sequences which were dealt with in the literature
on convergence structures (for a more detailed notation, cf. below).

As an illustration, let us mention the following result. Let G be a lattice ordered
group and let ¢(G) be the system of all convex I-subgroups of G. Each element H
of ¢(G) is viewed as a convergence l-group with respect to the o-convergence. H will
be said to satisfy the condition (M) if, whenever (x,) is a sequence in H which o-
converges to 0, then there exists a sequence (k,) of positive integers such that k, — oo
and k,x, —¢ 0. It will be proved below that in each lattice ordered group G the M-
kernel does exist.

The condition (M) was dealt with by several authors; e.g., it was applied for defining
the notion of regular vector lattices (cf. B. Z. Vulich [23], W. A. J. Luxemburg
and A. C. Zaanen [15]).

1. PRELIMINARIES

The standard notions and notation for lattice ordered groups will be used (cf.,
e.g., [2] and [13]). The group operation in a lattice ordered group will be written
additively.

Let N be the set of all positive integers. The direct product [ [.en G,, where G, = G
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for each ne N, will be denoted by G¥. The elements of G¥ are written as (n)nens
or simply (g,). (Instead of n, the symbols i, j of k are sometimes used.) If there exists
g € G such that g, = g for each n € N, then we write (g,,) = const g.

(g,,) is said to be a sequence in G. The notion of a subsequence has the usual
meaning.

We recall the notion of the convergence I-group (cf. [8], Definition 1.4, Lemma 1.9
and Theorem 1.10; cf. also [7] and [10]).

A subset « of (G¥)* will be said to be G-normal if for each g € G the relation

—constg + « + constg S «
is valid.

Let o be 2 convex G-normal subsemigroup of the semigroup (GV)* such that the
following conditions are satisfied:

() If (g,) € @, then each subsequence of (g,) belongs to a.

(I1) Let (g,) e(G")*. If each subsequence of (g,) has a subsequence belonging
to o, then (g,) belongs to a.

(III) Let g € G. Then const g belongs to « if and only if g = 0.

Under these assumptions « is said to be a convergence in G. The pair (G; oc) is
called a convergence I-group. If no misunderstanding can occur, then we often write G
instead of (G; o).

For (g,) € G" and g € G we put g, —, g if and only if (|g, — g|) € a. If the conver-
gence o is fixed, then we often write g, — g instead of g, —, g.

In view of Theorem 1.10, [8], a convergence group is a FLUSH convergence
structure (for this notion cf., e.g., the monograph [19]).

Let X be a nonempty set and let § + 0 be a subset of X¥ x X. The set § will be
said to be a convergence structure on X. If ((x,), x) € B, then we write x,, — x. Hence,
under the above notation, the set

% = {((9n): 9): 9u > 9}
is a convergence structure on G.
If A is a nonempty subset of G, then we always consider it to be equipped with the
convergence structure (A x A4) N a.
A set equipped with a convergence structure will be called a convergence space.
A condition p concerning convergence I-groups will be called trivial if each con-
vergence [-group satisfies the condition p.

2. THE DIAGONAL CONDITIONS (P), (SD) AND (PSD)

Let X be a nonempty set equipped with a convergence structure. For each ie N
let S; be a sequence of elements of X; we denote S; = (x;;) (j = 1,2,...). Let
J(1),7(2),j(3), ... be positive integers, j(1) < j(2) < j(3) < .... Then the sequence

(1) - . (xi,j(i)) (i =1,2,3, )
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is said to be a diagonal sequence of the system S = {S;} (i e N). A subsequence of
the sequence (1) is called a diagonal subsequence of the system S.

Let V = (v;) be a sequence in X and let v € X, v; — v. If for each i e I the relation
x;; = v; (j =1,2,3,...) is valid, then (S, ¥, v) is said to be an s-system (cf. [4]).

Consider the following conditions for X:

(D) For each s-system (S, V, v) there exists a diagonal sequence of S converging
to v.

(SD) For each s-system (S, V, v) there exists a diagonal subsequence of S con-
verging to v.

(PSD) For each s-system (S, V,v) with v; = v for each i € N there exists a diagonal
subsequence of S converging to v.

These conditions were investigated, e.g., in [12], [14] (the condition (D)), [18]
(the condition (SD)), and [17] (the condition (PSD)).

2.1. Lemma. All the conditions (D), (SD) and (PSD) are .nontrivial for abelian
convergence I-groups.

Proof. Clearly (D)= (SD) = (PSD). Hence it suffices to construct an abelian
convergence I-group G which does not satisfy the condition (PSD).

Let R be the additive group of all reals with the natural linear order. For all m,
fneNletG,, = RandletG = l_[(m,,,)snx ~ G- We denote by a the set of all sequences
fi in G which have the following properties:

(i) for each (m,n)eN x N, 0 £ fi(m,n) - 0 (k = 1,2,3,...) in R (with respect
to the usual topology of R);

(ii) there exist ko, my € N such that fi(m, n) = 0 for each m > my, k > k, and
for each n e N.

It is obvious that « satisfies the conditions (I), (II) and (III) from Section 1. Hence
is a convergence on the lattice ordered group G.

For each i,j € N let f;; € G be such that f;(m, n) = 1/jif i = m, and f;(m, n) = 0
otherwise. Let V = const 0, v = 0. Put

S = {(fij)j:l,Z,S,...}i= 1,2,3,0 *
Then (S, V, v) is an s-system such that v; = v for each i € N. No diagonal subsequence

of S satisfies (ii), hence no such subsequence converges to v. Thus G does not satisfy
the condition (PSD).

Let G be a convergence I-group and let x, y € G. We put
X@0p Yy
if the interval [x A y, x v y] of G satisfies the condition (D).
2.2. Theorem. Let G be a convergence l-group. The following conditions are
equivalent:

(i) op is a congruence relation of the lattice ordered group G.
(i) Ifa,b,ceG,a < b <c,agpband bopc, thenagpec.
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For proving 2.2 we need some lemmas. Let x, y € G be such that x ¢p y is valid.
Putx A y = gq,x v y = r. Hence [q, r] satisfies the condition (D).

2.3. Lemma. Let ze G. Thenz V xgpz vV yand z A xQpz A ).

Proof. Put g, = g v z,ry = r v z. We have to verify that the interval [q,, r,]
satisfies the condition (D).

Let (x,) be a sequence in [qy, 71] and let x € [q,, 7,]. Denote
2 Xp =X, AF, X' =x AT,
Then we have
3) X=X,V gy, X=XV gq.
From (2) and (3) we obtain that

4) X, = X< x, - X'

is valid. In view of (4), the interval [q,, r,] satisfies (D) if and only if the interval
[q: A 7, 1] satisfies (D). Since [g; A r,7] < [q, r], the condition (D) is valid for
[as A r, r]. Therefore (D) holds for [g,, 7] as well. Hence x v zopy v z. The
relation x A zgpy A z can be verified dually.

24. Lemma. Let ze G. Then z + x9pz + yand x + zop y + z.

Proof. Put u; =z + ¢, vy = z + r. Because of (z + x) A (z + y) = uy and
(z +x) v (z + y) = vy, we have to verify that [u,, v,] satisfies (D). Let (x,) be
a sequence in [uy,v,] and let x € [uy,v,]. Denote x, = —z + x,, X' = —z + x.
Then (4) holds and hence the interval [u,, v,] satisfies (D). Thus z + x ¢z + y.
Similarly we verify ghat X+ z0py + z.

2.5. Lemma. The following conditions are equivalent:

(i) ep is an equivalence relation on G.

(i) If a,b,ce G,a < b < c,aopband bepc, then agpc.

Proof. The implication (i) = (ii) is obvious. Assume that (ii) is valid. The relation
0p is reflexive and symmetric; it remains to verify that it is transitive.

Let x,y,ze G such that xgpy and yopz. Denote gy =XV y, g2 =y V z,
t,=qy A qa, t, =01 V q,. We have t,0pq,, because t;,q,€[y Az, yvz]
Hence the relations

t=q,—ti+¢qy, 1=49— 42+
and 2.4 imply that g, 0p t, is valid. We have also x ¢p q;, thus in view of (ii) we get
X @pt,. Moreover, x V z € [x, t2] and thus x ¢p x v z. In a dual way we can verify
that x ¢p x A z holds. By applying (ii) again we infer that x A z ¢p x v z is valid.
Therefore x gp z.

From 2.3, 2.4 and 2.5 we obtain that 2.2 is valid. If the relations ggp and @psp
are defined analogously to gp, then the same method can be used.

2.6. Proposition. Let G be a convergence I-group. Let ¢ € {gsp, 0psp}. Then he
following conditions are equivalent:
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(i) 0 is a congruence relation of the lattice ordered group G.

(ii) If a, b, c are elements of G such thata < b < candagb,bgoc, thenagc.

A convex l-subgroup H of G will be said to have the property p(D) if each interval
of H satisfies the condition (D). The properties p(SD) and p(PSD) are defined
analogously. For each equivalence relation ¢ on G and x € G we denote [x] ¢ =
={teG:tox}.

By applying the notion of the p-kernel as defined in the introduction, we infer
from 2.2 and 2.6:

2.7. Theorem. Let G be a convergence I-group and let ¢ € {0p, 0sp, Cpsp}- Then
the p(g)-kernel in G exists if and only if the condition (il) from 2.6 is satlsﬁed
If this condition holds, then [0] g is the p()-kernel of G.

2.8. Open questions:

(2.8.1) Let g€ {0p, 0sp, 0psp}. Does the condition (ii) from 2.6 hold for each
convergence l-group?

(2.8.2) Let X €{D, SD, PSD}. Does the X-kernel exist for each convergence
l-group?

3. THE DIAGONAL CONDITIONS (Y) AND (P)

Again, let X be a nonempty set equipped with a convergence structure and let
(S, V, v) be an s-system in X.

Let f = (x; ;) and g = (x;;.) (i = 1,2,3,...) be diagonal sequences of the
system S such that for each ie N we have j(i) < j,(i); then we write f < g. If,
moreover, f % g, then we put f < g.

We consider the following condition:

(Y) For each s-system (S, V, v) there exists a diagonal f of S such that each
diagonal g with f < g converges to v.

The relation between the conditions (D) and (Y) was investigated in the papers
[1], [4], [14] (this investigation was inspired by a question proposed in [12]).

3.1. Lemma. The condition (Y) is nontrivial for abelian convergence l-groups.

Froof. This follows from 2.1 since (Y) = (D).
Let G be a convergence I-group. For x, y € G we put x gy y if the interval [x A y,
x Vv y] satisfies the condition (Y).

3.2. Lemma. Let a, b, ¢ be elements of G such thata = b < c and a gy b, b gy c.
Then a gy c.

Proof. We shall apply the following notation. If f is a sequence in [a, c], f = (x,),
then we put ¢,(f) = (x, A b) and ¢,(f) = (x, v b). Hence ¢,(f) is a sequence
in [a, b] and @,(f) is a sequence in [b, c]. Conversely, let g = (x,) be a sequence
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in [a, b] and let h = (x) be a sequence in [b, c]. We put y(g, h) = (y,), where
Yn = X, — b + x; thus Y(g, h) is a sequence in [a, c]. I f converges to an element x
in G, then x e [a, c]; moreover, ¢,(f) converges to x A b and ¢,(f) converges
to x v b. Next, if g converges to x’ and h converges to x”, then (g, h) converges to
x'— b+ x".

Let (S, V¥, v) be an s-system in [a, ¢] (under the notation as above). Put
xij=x;Ab, vi=v,Ab, V' =(), VV=0vAb,
Xj;=x5Vvb, vi=v,vb, V'=(f), vV=0vvb.

The meaning of S" and S” is analogous. Then (S’, V', v") is an s-system in [a, b] and
S” is an s-system in [b, c]. Since [a, b] satisfies the condition (Y), there exists
a diagonal

9= o) (=12..)
of S’ such that if g’ is a diagonal of S” with g’ > g, then g’ converges to v'. Similarly,
there exists a diagonal

h=(xie) (=12..)
of S” such that if h' is a diagonal of S” with h’ > h, then h’ converges to v".

Let (j3(i)) be a sequence of integers such that j;(1) < j3(2) < j3(3) < ..., (i) =

< ja(i) and j,(i) < js(i) for each i € N. Put

f=Gine) (=1,2,..)
and let f' be a diagonal of S with f* > f. Then we have

, X > Vs Xijaw V"
whence
Xijaty = Xijsy — b+ Xijyy 20 = b+ 0" =0.
Therefore [a, c] satisfies (Y) and hence a gy c.
Lemmas 2.3 and 2.4 remain valid if (D) is replaced by (Y). Hence in view of 2.5

and 3.2 we obtain

3.3. Theorem. Let G be a convergence I-group. Then gy is a convergence relation
on G.

A convex I-subgroup H of G is said to have the property p(Y) if each interval of H
satisfies the condition (Y).

3.4. Corollary. Let G be a convergence l-group, H = [0] ¢y. Then H is the
p(Y)-kernel of G.

An I-subgroup H, of G is called closed in G if, whenever K is a subset of H, such
that sup K exists in G, then sup K belongs to H,.

The following example shows that the p(Y)-kernel of a convergence I-group G
need not be closed in G.

3.5. Example. Let G be as in the proof of 2.1. Let H be the p(Y)-kernel of G.
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Then H consists of all elements of G with finite support; hence H fails to be closed
in G. Let us remark that H is, at the same time, the p(Q)-kernel of G for each ¢ €
e {D, SD, PSD}.

The natural question arises whether the p(Y)-kernel of a convergence I-group G
must satisfy the condition (Y) The answer is ““No”’; it suffices to consider the above
example. (Roughly speaking, in this example the p(Y)-kernel H of G is “‘good”
with respect to intervals, but it fails to be ‘“‘good” as a whole.) The same is valid
provided Y is replaced by D, SD or PSD.

Again, let G be a convergence I-group and let us consider the following condition
for G:

(P) If x;;€ G, x;€ G for i, je N, and
(i) foreach i, x;; —» x; (j = 1,2,...),
(ii) for each sequence (p(i)) in N (i = 1,2,...) we have x; ;) = X,
then x; — x.
The condition (P) was introduced in [22].

3.6. Lemma. The condition (P) is non-trivial for abelian convergence l-groups.

Proof. Let G be the set of all real functions defined on the set N. The operation +
and the partial order on G is defined componentwise. Let « be the set of all se-
quences (x,) in G* which have the following property: for each t€ N there exists
ny € N such that for each n > n, and each t; < t, the relation x,(t;) = 0 is valid.
Then « is a convergence on G.

Let i, j € N. We put x,(t) = 1/i for each t € N. Next we set x;;(t) = 1/iif t = j, and
x;(t) = O otherwise. Let x(f) = 0 for each t € N. Then the conditions (i) and (ii)
from the condition (P) are satisfied, but (x;) does not converge to x.

For x, y € G we put x p y if the interval [x A y, x v y] fulfils the condition (P).

Now 3.2 remains valid if Y is replaced by P. Similarly, 2.3 and 2.4 remain valid
if D is replaced by P. Hence we obtain

3.7. Theorem. Let G be a convergence l-group. Then gp is a congruence relation
of the lattice ordered group G.
Let p(P) be defined analogously as p(Y).

3.8. Corollary. Let G be a convergence l-group, H = [O] 0p. Then H is the
p(P)-kernel of G.

4. THE CONDITIONS (M,) AND (M})

In this section we assume (when not otherwise stated) that G is a vector laitice
(a K-lineal in the terminology of Soviet papers (cf., e.g. [23]), or a Riesz space in
the terminology of [15]), and that, at the same time, G is a convergence I-group
such that whenever x, - x in G and 4, — 4 in R, then 4,x, — Ax. Under these con-
ditions G will be said to be a convergence vector lattice.
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Let us consider the following conditions:

(M) If (x,) is a sequence in G such that x, — 0, then there exists a sequence (4,)
of reals such that A, - oo and 4,x, — O.

(M*) If (x,) is a sequence in G such that x, — 0, then there exists a subsequence
{(Xneiy) of (x,) and a sequence (4;) of reals such that A; » oo and A;x,, — 0.

(Cf., e.g., [16], [19], [21] and [23], Chap. VI, § 4 and 5.)

- Let (M,) be the condition which we obtain from (M) if the words “‘(x,) is a se-

quence in G” are replaced by ““(x,) is a bounded sequence in G”. Let the condition
(M5) have an analogous meaning. Clearly (M,) = (Mj).

4.1. Lemma. Both the conditions (M,,) and (M,’f) are nontrivial for convergence
vector lattices.

Proof. Cf. the example from [23], p. 178 (concerning the o-convergence).

It is easy to verify that (M) is valid for G if and only if the assertion of the con-
dition (M,) holds whenever x, = 0 for each ne N.

4.2. Theorem. Let G be a convergence vector lattice. Let {G;};; be the system of
all convex l-subgroups of G which satisfy the condition (M,). Put H = V,,; G;.
Then H satisfies the condition (M) as well.

Proof. Let (c,) be a bounded sequence in H such that ¢, = 0 for each n € N and
¢, — 0. Hence there is 0 < ce H with ¢ = ¢, for each ne N. There exist me N,
i(1),i(2), ..., i(m)eI and cje Gy (j = 1,2,...,m), 0 < ¢}, such that

c=ci+ch+ ...+,

Let ne N. In view of 0 = ¢, = ¢ there exists elements c,; of G (j =1,2,..., m)
such that ‘
Cp = Cu1 + Cn2 + ...+ Coum

and 0 <¢,; <) for j =1,2,...,m. Hence for each je{1,2, cn m} and each
ne N we have c,;€ G;jyand ¢,; > 0(n = 1,2,...)in G,
Let je{1,2,...,m}. Because G, satisfies the condition (M), there exists a se-

quence (4;,) (n = 1,2, 3, ...) of reals such that 4;, - o0 and ;,¢,; = 0.
Denote A, = min {4;,} (j =1,2,...,m). Then 4, > 0 and Ac,; — 0 for each
Jje {1, 2,..., m} Thus 4,x, — 0, which completes the proof.

4.3. Corollary. Let G be a convergence vector lattice and let H be as in 4.2.
Then H is the M,-kernel of G.
By a slight modification of the method applied in the proof of 4.2 we obtain

4.4. Theorem. Let G be a convergence vector lattice. Let {G}};; be the system of
all convex l-subgroups of G which satisfy the condition (M;") Put H = V4 Gi.
Then H' is the M, -kernel of G.

It is easy to verify that if in the condition (M) the words “a sequence (4,) of reals”
are replaced by ““a sequence (,1,,) of positive integers”, then we obtain a condition
which is equivalent to (M). In this modified formulation the condition can be applied
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to convergence I-groups as well. The same holds with respect to the condition (M*).
Theorems 4.2 and 4.3 remain valid, if G is any convergence I-group (with the same
proofs). Moreover, if G is a convergence [-group with respect to the o-convergence,
then (M) coincides with (M,) and (M*) coincides with (M}).

4.5. Open question: Let X € {M, M*}. Does the X-kernel exist for each con-
vergence l-group?

References

[1]1 J. Burzyk: The example of FLUSHD convergence without Y. Convergence structures,
Proc. Conf. Bechyng& (1984), Math. Research 24, Akademie-Verlag, Berlin, 1985.
[2] P. Conrad: Lattice ordered groups, Tulane University, 1970.
[3] C. J. Everett, S. Ulam: On ordered groups. Trans. Amer. Math. Soc. 57, 1945, 208—216.
[4] R. Frié&, P. Vojtds: Diagonal conditions in sequential convergence, Convergence structures,
Proc. Conf. Bechyn& (1984), Math. Research 24, Akademie-Verlag, Berlin 1985.
[5] M. Harminc: Sequential convergence on abelian lattice-ordered groups. Convergence struc-
tures 1984. Mathem. Research, Band 24, Akademie Verlag, Berlin, 153—158.
[6] M. Harminc: The cardinality of the system of all convergences on an abelian lattice ordered
group. Czechoslov. Math. J. 37, 1987, 533— 546.
[7] M. Harminc: Sequential convergences on lattice ordered groups. Czechoslov. Math. J.
(submitted).
[8] M. Harminc: Convergences on lattice ordered groups. Dissertation, Math. Inst. Slovak
Acad. Sci., 1986. (In Slovak.)
[9] J. Jakubik: Kernels of lattice ordered groups defined by properties of sequences. Cas. pést.
matem. 109, 1984, 290— 298.
[10] J. Jakubik: Convergences and complete distributivity of lattice ordered groups. Math.
Slovaca 38, 1988, 269—272.
[11] J. Jakubik: On summability in convergence I-groups. Cas. pést. matem. 113, 1988, 286—292.
[12] A. Kamirski: On characterization of topological convergence, Proc. Conf. on Convergence,
Szczyrk (1979), Katowice 1980, 50—70.
[13] B. M. Konsimog: PenieTouHO ynopsiioYeHHsIe IpyIitsi, Mocksa 1984.
[14] P. Kratochvil: Sequential convergences generated by coneighborhoods and an example of D
not Y space. Czechoslov. Math. J. (to appear).
[15] W. A. J. Luxémburg, A. C. Zaanen: Riesz Spaces, Vol. I, Amsterdam 1971.
[16] P. Mikusinski,J. Pochcial: On Mackey convergence. Bull. Polish. Acad. Sci. Vol. 37 (1983),
151—155.
[17] J. Novdk: On convergence groups. Czechoslov. Math. J. 20, 1970, 357— 374.
[18] J. Novdk, L. Misik: On L-spaces of continuous functions. Matem. fyz. sbornik 7, 1951,
1—17. (In Slovak.)
[19] E. Pap: Funkcionalna analiza, nizovne konvergencije, neki principi funkcionalen analize,
Novi Sad 1982.
[20] F. Papangelou: Order convergence and topological completion of commutative lattice-
groups. Math. Ann. 155, 1964, 81—107.
[21] J. Pochcial: An example of FLUSHK-convergence semigroup without M-property. Proc.
Conference of Convergence, Szczyrk 1979, 95—96 (1980).
[22] J.Pochciat: On functional convergences. Rend. Ist. Matem. Univ. Trieste, 17, 1985, 47— 54.
[23] 5. 3. Byaux: BeeneHue B TEOPHIO MOJIYYIIOPSIOYEHHBIX IIPOCTPAaHCTB, Mocksa 1961.

Author’s address: 040 01 Kogice, Zdanovova 6, Czechoslovakia (Matematicky ustav SAV,
dislokované pracovisko).

247



		webmaster@dml.cz
	2020-07-03T06:49:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




