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Czechoslovak Mathematical Journal, 39 (114) 1989, Praha 

ON SOME TYPES OF KERNELS OF A CONVERGENCE Z-GROUP 

JÁN JAKUBÍK, KoŠice 

(Received January 30, 1987) 

In the paper [9], two types of kernels in lattice ordeted groups which were defined 
by means of properties of sequences were investigated. 

In the present paper the notion of a convergence lattice ordered group (or, shorter, 
a convergence /-group) is applied in the same sense as in [7]. This notion was studied 
also in [5], [6], [8], [10] and [11]. Particular cases of convergence i-groups were 
dealt with in [3] and [20]. 

Let G be a convergence Z-group. Assume that p is a condition concerning convex 
i-subgroups of G. A convex /-subgroup H of G is said to be a p-kernel of G if H 
is the largest element of the system consisting of those convex /-subgroups of G 
which satisfy the condition p. If p is given, then the question arises whether the 
p-kernel exists. 

The existence of some types of p-kernels will be investigated below. All these 
kernels are related to properties of sequences which were dealt with in the literature 
on convergence structures (for a more detailed notation, cf. below). 

As an illustration, let us mention the following result. Let G be a lattice ordered 
group and let c(G) be the system of all convex /-subgroups of G. Each element H 
of c(G) is viewed as a convergence /-group with respect to the o-convergence. H will 
be said to satisfy the condition (M) if, whenever (x„) is a sequence in H which o-
converges to 0, then there exists a sequence (kn) of positive integers such that kn -^ oo 
and knxn ^o 0. It will be proved below that in each lattice ordered group G the Ai-
kernel does exist. 

The condition (M) was dealt with by several authors; e.g., it was applied for defining 
the notion of regular vector lattices (cf. B. Z. Vulich [23], W. A. J. Luxemburg 
and A, C. Zaanen [l5]). 

1. PRELIMINARIES 

The standard notions and notation for lattice ordered groups will be used (cf.> 
e.g., [2] and [13]). The group operation in a lattice ordered group will be written 
additively. 

Let N be the set of all positive integers. The direct product YlneN Gn, where Gn = G 
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for each n є N, will be denoted by GN. The elements of GN are written as (gn)neN> 
or simply (gn)< (Instead of n, the symbols i,j of k are sometimes used.) Ifthere exists 
g є G such that gn = g for each n e N, then we write (gn) = const g. 

(gn) is said to be a sequence in G. The notion of a subsequence has the usual 
meaning. 

We recallthe notion ofthe convergence J-group (cf. [8], Definition 1.4, Lemma 1.9 
and Theorem 1.10; cf. also [7] and [l0]). 

A subset a of (GN)+ will be said to be G-normal if for each g є G the relation 

— const g + a + const g я a 
is valid. 

Let a be а convex G-normal subsemigroup of the semigroup (GN)+ such that the 
following conditions are satisfied: 

(I) If (gn) e a, then each subsequence of (gn) belongs to a. 
(II) Let (#и)є(0^)+ . If each subsequence of (gn) has a subsequence belonging 

to oc, then (gn) belongs to a. 
(III) Let g є G. Then const g belongs to a if and only if g = 0. 
Under these assumptions a is said to be a convergence in G. The pair (G; a) is 

called a convergence l-group. Ifno misunderstanding can occur, then we often write G 
instead of (G; a). 

For (gn) e GN and g e G we put gn ^ a g if and only if (\gn — g\) є a. If the conver­
gence a is fixed, then we often write gn ^ g instead of gn ^ a g. 

In view of Theorem 1.10, [8], а convergence group is а FLUSH convergence 
structure (for this notion cf., e.g., the monograph [19]). 

Let X be a nonempty set and let ß ф 0 be a subset of XN x X. The set ß will be 
said to be a convergence structure on X. If((xn), x) e ß, then we write xn ~» x. Hence, 
under theabove notation, the set 

«o = {((#n), g)- 9n ^a g) 

is a convergence structure on G. 
If A is a nonempty subset of G, then we always consider it to be equipped with the 

convergence structure (AN x A) n a0. 
A set equipped with а convergence structure will be called a convergence space. 
A condition p concerning convergence J-groups will be called trivial if each con­

vergence /-group satisfies the condition p. 

2. THE DIAGONAL CONDITIONS (i>), (SD) AND (PSD) 

Let X be a nonempty set equipped with a convergence structure. For each i e N 
let Si be a sequence of elements of X; we denote Ŝ  = (xřj-) ^/ = 1,2,...). Let 
j(l),j(2),j(3),... be positive integers, j(l) < j(2) < j'(3) < ... . Then the sequence 

(1) (*і,ло) (< = l ,2,3, . . . ) 
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is said to be a diagonal sequence of the system S = {Sť} (i eN). A subsequence of 
the sequence (1) iscalled a diagonal subsequence of the system S. 

Let V = (uf) be a sequence in X and let v e X, vt ~> v. If for each i e I the relation 
xu ~> ̂  ( j = 1, 25 3,...) is valid, then (S, V, v) is said to be an s-system (cf. [4]), 

Consider the following conditions for X: 
(D) For each s-system (S, V, v) there exists a diagonal sequence of S converging 

to v. 
(SD) For each s-system (S, F, v) there exists a diagonal subsequence of S con­

verging to ü. 
(PSD) For each s-system (S, V, v) with vt = v for each і є JV there exists a diagonal 

subsequence of S converging to v. 
These conditions were investigated, e.g., in [12], [14] (the condition (J9)), [18] 

(the condition (SD)), and [17] (the condition (PSD)). 

2.1. Lemma. All the conditions (J9), (SD) and (PSD) are ,nontrivialfor abelian 
convergence l-groups. 

Proof. Clearly (D)=>(SD)=>(PSD). Hence it suffices to construct an abelian 
convergence /-group G which does not satisfy the condition (PSD). 

Let R be the additive group of all reals with the natural linear order. For all m, 
fn e N let Gmn = jR and let G = П(ш,„)є# * N &тп- We denote by a the set of all sequences 
fk in G which have the following properties: 

(i) for each (m, n) e N x JV, 0 ̂  fk(m, n) ^ 0 (k = 1, 2, 3,...) in R (with respect 
to the usual topology of R); 

(ii) there exist fc0, m0 є N such that fk(m, n) = 0 for each m > m0, k > k0 and 
for each n e N. 

It is obvious that a satisfies the conditions (I), (II) and (III) from Section 1. Hence a 
is а convergence on the lattice ordered group G. 

For each i,j e N let/^- є G be such t h a t / i / m , n) = i|j if i = m, and/^(m, n) = 0 
otherwise. Let F = const 0, t; = 0. Put 

$ = l( / i j)j = l,2,3,...)i=l,2,3,... • 

Then (S, F, u) is an s-system such that vt = v for each і є iV. No diagonal subsequence 
of S satisfies (ii), hence no such subsequence converges to v. Thus G does not satisfy 
the condition (PSD). 

Let G be a convergence /-group and let x, j є G. We put 

*ODJ 7 

if the interval [x л y, x v y] of G satisfies the condition (D). 

2.2. Theorem. Let G be a convergence l-group. The following conditions are 
equivalent: 

(i) QD is a congruence relation of the lattice ordered group G. 
(ii) J / a, b, c e G, a ^ b <£ c, a £# fo and b QD c, iiten a gD c. 
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For proving 2.2 we need some lemmas. Let x, y e G be such that x Qn У is valid. 
Put x л y = q, x v y = r. Hence [g, r ] satisfies the condition (D). 

2.3. Lemma. Let z є G. Tften z v x £>£> z v y and z л x gD z л y. 
Proof. Put qt = q v z, r t = r v z. We have to verify that the interval [qu r J 

satisfies the condition (D). 
Let (xn) be a sequence in [g1? г г ] and let x e [qu r J . Denote 

(2) xn = xn л r , x' = x л r . 
Then we have 
(3) xn = *; v q1 , x = x' v ^ . 
From (2) and (3) we obtain that 

(4) xn ~» x o xn -* xf 

is valid. In view of (4), the interval [qu rt] satisfies (D) if and only if the interval 
[qx A r, r] satisfies (Ď). Since [qx л r, r ] Ç [g, r ] , the condition (£) is valid for 
[qx л r, r ] . Therefore (D) holds for [g l 5 r x ] as well. Hence x v z £ду v z. The 
relation x л z £я у л z can be verified dually. 

2.4. Lemma. Let z e G. Then z + x QD z + y and x + z QD y + z. 
Proof. Put Wi = z 4- q, ^ = z + r. Because of (z + x) л (z + y) = «і and 

(z + x) v (z + y) = £>1? we have to verify that [u l 51^] satisfies (D). Let (x„) be 
a sequence in [w l 5 t^] and let x є [w l 51^]. Denote x^ = ~ z + x„, x' = —z + x. 
Then (4) holds and hence the interval [u1? ^ ] satisfies (J9). Thus z + x gD z + y, 
Similarly we verify that x + z QD y + z. 

2.5. Lemma. Thefollowing conditions are equivalent: 
(i) QD is an equivalence relation on G. 

(ii) J / a, b, c є G, a g Ь <= c, a QD b and b gD c, then a gD c. 
Proof. The implication (i) => (ii) is obvious. Assume that (ii) is valid. The relation 

QD is reflexive and symmetric; it remains to verify that it is transitive. 
Let x, y, z e G such that x QD y and y QD z. Denote qx = x v y, q2 = y v z, 

*i = <2i л <?25
 ř 2 = <3i v ^2' We have tx QD q2, because tu q2 є [у л z, y v z ] . 

Hence the relations 
h = q2 ~ h + Я.Х * fli = Qi ~ <li + 4i 

and 2.4 imply that qx QD t2 is valid. We have also x gD qu thus in view of (ii) we get 
x QD ř2. Moreover, x v z є [x, í2] and thus x gD x v z. In a dual way we can verify 
that x QD x A z holds. By applying (ii) again we infer that x л z gD x v z is valid. 
Therefore x QD z. 

From 2.3, 2.4 and 2.5 we obtain that 2.2 is valid. If the relations £SD and QPSD 

are defined analogously to @D, then the same method can be used. 

2.6. Proposition. Let G be a convergence l-group. Let Qs{QsD>QpsDS' Then he 
following conditions are equivalent: 
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(i) Q is a congruence relation of the lattice ordered group G. 
(ii) If a, b, c are elements of G such that a g b ^ c and a Q b, b Q c, then a Q c. 
A convex /-subgroup H of G will be said to have the property p(p) if each interval 

of H satisfies the condition (D). The properties p(SD) and p(PSD) are defined 
analogously. For each equivalence relation Q on G and x є G we denote [x] Q = 
= {te G: t g x]. 

By applying the notion of the p-kernel as defined in the introduction, we infer 
from 2.2 and 2.6: 

2.7. Theorem. Let G be a convergence l-group and let Qe{QD>QsD>QpsD}- Then 
the p(o)-kernel in G exists if and only if the condition (ii) from 2.6 is satisfied. 
Ifthis condition holds, then [0] Q is the р(д)-кегпеІ of G. 

2.8. Open questions: 

(2.8.1) Let Qc{QD,QsD>QpsD]< L>oes the condition ( i i ) / rom 2.6 holdfor each 
convergence l-groupl 

(2.8.2) Let Xe{D,SD,PSD). Does the X-kernel existfor each convergence 
l-groupl 

3. THE DIAGONAL CONDITIONS (Y) AND (P) 

Again, let X be a nonempty set equipped with a convergence structure and let 
(S, V, v) be an s-system in X. 

Let / = (*t,j(i)) anc* 9 = (*i,ji(o) 0 = l ' 2 ' 3,.. .) be diagonal sequences of the 
system S such that for each ieN we have j(i) uji{i)l then we write / ^ g. If, 
moreover,/ Ф #, then we p u t / < #. 

We consider the following condition: 
(7) For each s-system (S, K, ü) there exists a diagonal / of S such that each 

diagonal g w i t h / < g converges to v. 
The relation between the conditions (D) and (Y) was investigated in the papers 

M> W ' [14] ( t m s investigation was inspired by a question proposed in [12]). 

3.1. Lemma. The condition (Y) is nontrivial for abelian convergence Ugroups. 

Г roof. This follows from 2.1 since (Y) => (D). 
Let G be a convergence /-group. For x, j є G we put x QY y if the interval [x л j , 

x v j ] satisfies the condition (7). 

3.2. Lemma. Let a, fr, c be elements of G such that a S b g c and a QY b, b QY c. 
Then a QY c. 

Proof. We shall apply the following notation. I f / i s a sequence in [a, c],f = (xn)r 

then we put (Pi(f) = (хи л b) and ç2(f) = (*« v b). Hence Фі(/) is a sequence 
in [я, b] and ^ 2 ( / ) is a sequence in [b, c]. Conversely, let g = (x'n) be a sequence 
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in [ö, b] and let h = (x„) be a sequence in [b, c]. We put ф(д, h) = (j;„), where 
J>« = ** — Ь + x '̂; thus ^(g, h) is a sequence in [a, c]. If/converges to an element x 
in G, then х є [ й , с ] ; moreover, cpi(f) converges to x л b and <p2(/) converges 
to x v b. Next, if g converges to x' and h converges to x", then y(g,h) converges to 
x' - b + x". 

Let ($, V, v) be an s-system in [0, c] (under the notation as above). Put 

x'u = x l7 л b , t̂  = ^ л b , F = « • ) , ü' = ü л b , 

x'lj = xy v b , < = vt v b , V" = « ) , и" = о v b . 

The meaning of S' and S" is analogous. Then (S', V', v') is an s-system in [a, b] and 
S" is an s-system in [b, c]. Since [a, b] satisfies the condition (7), there exists 
a diagonal 

0 =(*yi(i>) (* = b 2 , . . . ) 

of S' such that if #' is a diagonal of S' with #' > g, then g' converges to v'. Similarly, 
there exists a diagonal 

fc = (<wo) (i = 1.2,...) 
of S" such that if ft' is a diagonal of S" with h' > ft, then h' converges to v". 

Let (j3(r)) be a sequence of integers such that j 3 ( l ) < j3(2) < j3(3) < ... , j±{i) ^ 
^ j3(1) and72(i) ^ j3(ř) for each і є iV. Put 

/ = Ы 0 = i,2,...) 
and l e t / ' be a diagonal of S w i t h / ' > / . Then we have 

Xi.J3Ki) ~* V' > *i.Mt) ~* V ' 
whence 

Хі,Ыі) = * U ( 0 - Ь + <Mi) ~* V' - b + *>" = ü • 

Therefore [a, c] satisfies (7) and hence a £y c. 
Lemmas 2.3 and 2.4 remain valid if (D) is replaced by (7). Hence in view of 2.5 

and 3.2 we obtain 

3.3. Theorem. Let G be a convergence l-group. Then gY is a convergence relation 
on G. 

A convex /-subgroup H of G is said to have the property p(7) if each interval of H 
satisfies the condition (7). 

3.4. Corollary. Let G be a convergence l-group, H = [0]@y. ThenH is the 
p(Y)-kernel of G. 

An /-subgroup Ht of G is called closed in G if, whenever K is a subset o f # ! such 
that sup K exists in G, then sup K belongs to H1. 

The followingexample shows that the p(7)-kernel of a convergence /-group G 
need not be closed in G. 

3.5. Example. Let G be as in the proof of 2.1. Let H be the p(7)-kernel of G. 
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Then H consists of all elements of G with finite support; hence H fails to be closed 
in G. Let us remark that H is, at the same time, the p(@)-kernel of G for each g e 
e{D,SD,PSD}. 

The natural question arises whether the p(Y)-kernel of a convergence /-group G 
must satisfy the condition (Y). The answer is " N o " ; it suffices to consider the above 
example. (Roughly speaking, in this example the p(Y)-kernel H of G is "good" 
with respect to intervals, but it fails to be "good" as a whole.) The same is valid 
provided Yis replaced by D, SD or PSD. 

Again, let G be a convergence /-group and let us consider the following condition 
forG: 
(P) If Xij є G, Xi e G for i, j є iV, and 

(i) for each i, Xij ^ Xi {j = 1, 2 , . . . ) , 
(ii) for each sequence (p(i)) in N (z = 1, 2, . . . ) we have х^р^ -^ x, 

then Xi ~> x. 
The condition (P) was introduced in [22]. 

3.6. Lemma. The condition (P) is non-trivialfor abelian convergence l-groups. 
Proof. Let G be the set of all real functions defined on the set N. The operation + 

and the partial order on G is defined componentwise. Let a be the set of all se­
quences (xw) in G+ which have the following property: for each ieJVthere exists 
n0 e N such that for each n > n0 and each tx < t0 the relation xn(tt) = 0 is valid. 
Then a is а convergence on G. 

Let i, j e N. We put Xi(t) = i|i for each t є N. Next we set x^-(i) = iji if t = j \ and 
Xij(t) = 0 otherwise. Let x(t) = 0 for each t e N. Then the conditions (i) and (ii) 
from the condition (P) are satisfied, but (xt) does not converge to x. 

For x, y e G we put x Qp y if the interval [x л y, x v y] fulfils the condition (P). 
Now 3.2 remains valid if 7 i s replaced by P. Similarly, 2.3 and 2.4 remain valid 

if D is replaced by P. Hence we obtain 

3.7. Theorem. Let G be a convergence l-group. Then QP is a congruence relation 
of the lattice ordered group G. 

Let p(P) be defined analogously as p(Y). 

3.8. Corollary. Let G be a convergence l-group, H = [0] £P. Then H is the 
p(P)-kernel of G. 

4. THE CONDITIONS (Mb) AND (Mb*) 

In this section we assume (when not otherwise stated) that G is a vector lattice 
(a K-lineal in the terminology of Soviet papers (cf., e.g. [23]), or a Riesz space in 
the terminology of [l5]), and that, at the same time, G is a convergence J-group 
such that whenever xn -> x in G and Xn -+ X in R, then lnxn ~» Xx. Under these con­
ditions G will be said to be a convergence vector lattice. 
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Let us consider the following conditions: 
(M) If (xn) is a sequence in G such that xn ~> 0, then there exists a sequence (An) 

of reals such thatA„ ^ 00 and Xnxn ^> 0. 
(M*) If (x„) is a sequence in G such that xn ^ 0, then there exists a subsequence 

(*n(o) °f (x«) anc* a sequence (Ai) of reals such that X{ ^ co and Я^х„(0 -^ 0. 
(Cf., e.g., [16], [19], [21] and [23], Chap. VI, § 4 and 5.) 
Let (Mb) be the condition which we obtain from (M) if the words "(xn) is a se­

quence in G" are replaced by "(x„) is a bounded sequence in G". Let the condition 
(M*) have an analogous meaning. Clearly (Mb) => (M*). 

4.1. Lemma, Bořh ífoe conditions (Mb) and (M*) are nontrivialfor convergence 
vector lattices. 

Proof. Cf. the example from [23], p. 178 (concerning the o-convergence). 
It is easy to verify that (Mb) is valid for G if and only if the assertion of the con­

dition (Mb) holds whenever xn ^ 0 for each n e N. 

4.2. Theorem. Let G be a convergence vector lattice. Let {Gi}ieI be the system of 
all convex l-subgroups of G which satisfy the condition (Mb). Put H = yieI G|« 
Then H satisfies the condition (Mb) as well. 

Proof. Let (cn) be a bounded sequence in H such that cn ^ 0 for each n e N and 
cn ^ 0. Hence there is 0 < c e H with c ^ c„ for each n є N. There exist m є iV, 
i(l), i(2), . . . , i(ra) є / and c) e GiU) (j = 1, 2 , . . . , m), 0 < c}, such that 

c = ci + ci + .. . + cm . 

Let n є N. In view of 0 ^ c„ ^ c there exists elements cnj- of G (j = 1, 2, . . . , m) 
such that 

cn " Cnl + си2 + ••• + Cnm 

and 0 ^ cnj S c'j for j = 1, 2 , . . . , m. Hence for each j e {1, 2 , . . . , m} and each 
n є iVwe have cnj e Gi{j) and cwi ~> 0 (n = 1, 2, ...) in GiU). 

Let j є {1, 2 , . . . , m}. Because G i(j) satisfies the condition (Mb), there exists a se­
quence (Aj„) (n = 1, 2, 3, ...) of reals such that Xjn ^> 00 and Xjncnj ^ 0. 

Denote Xn ~ min {Xjn) (j = 1, 2 , . . . , m). Then A„ ̂  00 and Xncnj ~> 0 for each 
j є {1, 2 , . . . , m}. Thus Anx„ ~» 0, which completes the proof. 

4.3. Corollary. Let G be a convergence vector lattice and let H be as in 4.2. 
Then H is the Mb-kernel of G. 

By a slight modification of the method applied in the proof of 4.2 we obtain 

4.4. Theorem. Let G be a convergence vector lattice. Let {G'ř}řeI be the system of 
all convex l-subgroups of G which satisfy the condition (M*). Put H' = \/ieJ G\. 
Then H' is the Ml-kernel of G. 

It is easy to verify that if in the condition (M) the words "a sequence (Aw) of reals" 
are replaced by "a sequence (A„) of positive integers", then we obtain a condition 
which is equivalent to (M). In this modified formulation the condition can be applied 
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to convergence Z-groups as well. The same holds with respect to the condition (M*). 
Theorems 4.2 and 4.3 remain valid, if G is any convergence /-group (with the same 
proofs). Moreover, if G is a convergence /-group with respect to the 0-c0nvergence, 
then (M) coincides with (Mb) and (M*) coincides with (M*). 

4.5. Open question: Let Xe{M,M*]. Does the X-kernel exist for each con­
vergence l-groupl 
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