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Czechoslovak Mathematical Journal, 39 (114) 1989, Praha 

OSCILLATORY AND ASYMPTOTIC PROPERTIES OF THIRD 

AND FOURTH ORDER LINEAR DIFFERENTIAL EQUATIONS 

JÁN OHRISKA, KoŠice 

(Received June 12, 1986) 

This paper is a continuation of [3] and [4] and deals with oscillatory and asympto­
tic properties of solutions of linear differential equations of the form 

(1) (r{t)(r(t)y'{t))y + p(t)y(t) = 0, 

(2) (r(t)(r(t)(r(t)yW)')' + p(t)y(t) = 0, 

where r, p є C([t0, oo)), r(t) > 0. The technique used in the paper is based on the 
notion of a t>-derivative of a function. 

In the sequel we will restrict our attention to those solutions of the equations 
considered which exist on some ray [Г, co) and are non-trivial in any neighborhood 
of infinity. Such a solution is called oscillatory if it has arbitrarily large zeros, and 
nonoscillatory otherwise. 

1. THE v-DERIVATIVE AND THE v-TRANSFORMATION 

Throughout this section suppose that / , g, v, q> are real-valued functions of one 
real variable. Let the interval ( — oo, oo) be denoted by R. Now we recall the following 
definitions, remarks and theorems from [3]. 

Definition 1.1. Let functions / and v be defmed on some neighborhood 0(i) of 
a point t є R and let the conditions x є 0(t), x Ф t imply v(x) ф v(t). If the limit 

шМ-т 
x^t v(x) — V[t) 

is finite, then it is called the v-derivative of thefunctionfat the point t and denoted 
byffc)ordf(t)|dv. 

R e m a r k 1.1. It follows from Definition 1.1 that/}(ř) = 1 for every t such t h a t / 
is defined on 0(t) and the conditions x e 0(t), x Ф t imply/(x) ф f(t). 

Theorem 1.1. Let thefollowing conditions be satisfied: 
(i) afunction v is continuous at a point t, 
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(ii) afunction g has a v-derivative at the point i, 
(iii) afunctionf has the ordinary derivative at the point g(t). 

Then the compositefunctionf(g) has the v-derivative at the point t and 

(f(g)X(t)=fU<))9'At)-
Theorem 1.2. Let there exist v'(t) Ф 0 on an interval I. Thenfor t e I the v-deriva-

tivefu(t) exists ifandonly ifthe derivativef'(t) exists. At the same time, 

f{t)J^i 
M ) v'(t) * 

In this paper we shall need the following simple form of Definition 1.2 in [3]. 
Definition 1.2. Let n > 1 be a natural number. Let functions v and f%-P be 

defined on some neighborhood 0(t) of a point t e R. If the limit 

ììmf^P(x)-f^(t) 
x-*t v(x) — v(t) 

is finite, then it is called the n-th v-derivative of the function f at the point t and 
denoted by 

/S>(0 »г Ш 
dvn 

We simplify also the notion of a ^-transformation of a differential equation 
presented in [3] to fit the needs of this paper. Thus suppose that the following 
conditions are satisfied: 
a) n ^ 1 is integer, ' 
b) / and Ix are intervals in R, 
c) v є C(/i), v is a strictly monotonous function, v: Ix ^> I, 
d) q> is the inverse function to v, 
e) p:I^ R. 

Consider the differential equation 

(3) yin\t) + p(t)y(t) = 0, teI. 

If the independent variable t is replaced by the function v(t) in the coefficient p(t) 
of the equation (3) and y(n)(t) is replaced by y${t) in the sense that v(t) replaces even 
the independent variable as an argument of the function with respect Jo which the 
derivatives of the unknown function are calculated, then the equation (3) is trans­
formed into the equation 

(4) y^(t) + p(v(t))y(t) = 0, teI,. 

In the sequel we shall call the abovementioned process of obtaining (4) from (3) 
a y-transformation of the differential equation (3). 

It is useful to note that a ф-transformation of (4) leads again to (3). 
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Now we introduce the following result which is a special case of Theorem 2.1 
proved in [3]. 

Theorem 1.3. Let the conditions a ) - e ) be satisfied. Thefunction u{t) is a solution 
ofthe equation (3) on I ifand only ifthefunction u(v(t)) is a solution ofthe equation 
(4)onI,. 

2. DEFINITIONS AND COMPARISON THEOREMS 

Without mentioning it again, the following notation will be used throughout this 
paper: 

««-['£, 
J<oK*) 

t ^ to, 

ф is the inverse function to R .* 

Consider the n-th order differential equation 

(5) (r(t)...(r{t)(r{t)y>(t))y...y + p(t)y(t) = 0, tZt0. 

Definition 2.1. The equation (5) is said to have the property (A) iffor n even, every 
solution of(5) is oscillatory, and for n odd, every solution y(t) of(5) is either oscillato­
ry or 

(6) ^ H 0 _ > O as i ^ o o (i = 0 , l , . . . , n - l ) . V J dRl V ; 

Definition 2.2. The equation (5) is said to have the property (B) iffor n even, every 
solution y(t) of (5) is oscillatory or satisfies the condition (6) or satisfies the condition 

ѴуЩ 
(7) dR* 

oo as t -^ oo (i = 0, 1, ..., n — 1) , 

and for n odd, every solution y(t) of (5) is either oscillatory or satisfies the condition 

00-
It is easy to see that in the case r(r) = 1 the conditions (6) and (7) assume the form 

(6i) y(i)(t)^0 as i ^ o o (i = 0 , l , . . . , n - l ) 
and 

(7i) |/'XOI"*00 a s *^<*> (i = 0 , l , . . . , n - l ) . 
Now we introduce the following comparison theorems of V. A. Kondratev [2] 

and T. A. Čanturija [1]. 

Theorem A. Let n ^ 3. Letfunctions p and q be integrable on everyfinite and 
dosed subinterval of the interval [0, oo). 

Ai) If p(t) ^ q(t) ^ Ofor t є [0, oo) and the equation 

(8) u^(t) + q{t) u(t) = 0 
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has the property (A), then the equation 

(9) u^(t) + p(t) u{t) - 0 
has the property (A). 

A2) Ifp(t) ^ q(t) S Ofor te [0, oo) and the equation (8) has the property (B), 
then the equation (9) has the property (B). 

R e m a r k 2.1. It is known (see e.g. [2]) that if p(t) ^ 0 (p(t) <; 0) and the equation 

y(n\t) + p(t)y{t) = 0 

has the property (A) (the property (B)) then it has solutions of every type mentioned 
in Definition 2.1 (in Definition 2.2). 

3. TWO LEMMAS 

Lemma 3.1. The Euler equation 

(10) t3ym + ay = 0 , t ^ t0 > 0 

a) has the property (A) if a > 2/3 ^/3, 
b) has the property (B) if a < —2/3 ^ 3 , 
c) has not the property (A) if 0 ^ a ^ 2/3 ^f3, 
d) йа5 noř ffoe property (В) і/ —2/3 V3 g a ^ 0. 

Proof. Let j be a solution of(10). Since 

(ii) ^ - = o>', T ^ = ' V + '/> ^ ^ = ' V + 3*V + o>' 
d l n ř -d( ln i ) 2 d(lnř)3 

the equation (10) may be written in the form 

(10,) ^ - 3 ^ + 2 ^ + * , - 0 . 
V ; d(lní)3 d(lní)2 d l n ř 

The tbtransformation of the equation (l0x) with v(t) = exp t yields the equation 

(12) / " - 3y" + 2y' + ay = 0 , 

the characteristic equation of which is 
(13) k3 - Ък2 + 2k + a = 0 . 
Solving it we find 

kx = 1 + a + b , 

a + b a - b . 
k2 = l - ^ ~ - + ~^~iJ3, 

, а + b a - Ь . 
fc3 — i . i ^/з ? 
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чѵпеге 

we put 

a - * / , 

"У 
\ 2 V \ 4 27, 

(a lia.2 Г 
I 2 V U 27, 

a2 1 
D = — - — 

4 27 
and suppose that 2) > 0, i.e. a > 2/3 y/3 or a < —2/3 y/3. Then fcx is а real root 
-and k2, &3 are complex conjugate roots of (13). 

In a simple way we find out that for a > 2/3 y/3, 

kx = 1 + a + Ь < 0 
and 

* - l - i t i > l . 
2 

We know that the fundamental system ofsolutions of(12) consists ofthe functions 

Уі(0 = exp (fcií) 5 

J2(O = e x P (ht) cos j t y/3 J , 

y3(t) = exp (ftí) sin í ř V3 ) 

Hence, according to Theorem 1.3, the fundamental system of solutions of (10) 
consists of the functions 

<14) u,(t) = j^(ln t) = tk> , 

tl2(i) = j;2(ln t) = th COS y ~ y/3 ln M , 

M3(ř) = j 3 ( l n t) = th Sin | " V3 ln Л . 

From this we see that for a > 2/3 *J3 the equation (10) has the property (A). 
Similarly as before we find out that for a < —2/3 ^3, 

kx = 1 + a + b > 2 
and 

, л a + Ь 
й = 1 < 0-5 . 

2 
Now we see from (l4)that for a < —2/3 y/3 the equation (10) has the property (B). 
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It js easy to see that for 
in 2 ~2 

ae{0, , 
1 3V3 3V3 

the roots fcl5 k2, k3 of( l3) are real. It means that (12) and also (10) has no oscil­
latory solution, i.e. the equation (10) has neither the property (A) nor the property (B). 

In the case D < 0 and 0 < a < 2/3 *J3 we have 

*• • ' + f ™ Garctg A^ - ' ))+ s m GarM8 №* ' ' 
i 2 V 3 /1 / / 4 fc2 = 1 ^_ c o s _ arctg /[ 1 

3 \ 3 VV27a2 

fc = l + X_ c o s / _ arctg /[ l ] ] — sin [ - arctg /[ — 1 
3 \3 VV27a2 )) \3 V \27a 2 

Similarly as before, since kl9 k2, k3 are real roots, the equation (10) has no oscillatory 
solution, i.e. it has not the property (A). 

Finally, in the case D < 0 and —2/3 s/Ъ < a < 0 we have 

^ = l + ^ c o s ( i a r c t g ^ - l ) ) , 

k2 = 1 - f cos ( Í arctg J ( ^ _ _ i ) ) + s i n (1 a r c t g J(_i_ 

fc3 = 1 - f c o s (I arctg |Uj - l ) ) - sin (1 arctg / ( ^ 
' ) ) • 

Now again fc1? fc2, ^з a r e r e a^ roots, thus the equation (10) has no oscillatory solution, 
i.e. it has not the property (B). The proof is complete. 

Lemma 3.2. The Euler equation 

(15) * V 4 ) + oty = 0 , t è to > 0 

a) ftas ifte property (A) z/ a > 1, 
b) ftas the property (B) i/ a < —9/16, 
c) ftas noi the property (A) i/ 0 ^ a ^ 1, 
d) has not the property (B) if —9/16 ^ a ^ 0. 

Proof. Let y be а solution of( l5) . Since (11) holds and 

J l Z _ = řY4) + 6í3/" + 7*У + 0>' > 
d(ln í)4 

the equation (15) may be written in the form 

(150 ^ - - 6 ^ - + 11 J&- - 6 ^ - + « , = 0 . 
V ; d(lnr)4 d(lnř)3 d(lni)2 d l n i У 
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The ^-transformation of the equation (15X) with v = exp t yields the equation 
(16) y(4) - 6/" + 11 / ' - 6y' + ocy = 0 
the characteristic equation of which is 
(17) k* - 6k3 + Ш 2 - 6k + a = 0 . 
Solving (17) we obtain 

(18) fclf2,3t4 = І ± V(i(5 + V(9 + 16a))) ± V(i(5 - V(9 + 16a))). 
Now from (18) we see that 

9 + 16a ^ 0 and 5 - J(9 + 16a) ^ 0 for a є [-9/16, l] . 
Then the roots ku k2, k3, k4 of(17) are real provided a є [ — 9/16,1], i.e. all solutions 
of (16) are nonoscillatory. But then, according to Theorem 1.3, all solutions of (15) 
are nonoscillatory and by Remark 2.1 we obtain the assertions c) and d) of Lemma 
.3.2. 

The case a > 1 yields 5 — V(9 + 16a) < 0, i.e. the roots ku k2j k3, k4 are complex 
numbers of the form 

fc1,2,3,4 = f ± V(i(5 + V(9 + 16a))) ± i V(i(V(9 + 16a) - 5)). 
It means that all solutions of (16) are oscillatory. From this, according to Theorem 
1.3, we conclude that all solutions of(15) are oscillatory and thus the assertion a) of 
Lemma 3.2 holds true. 

The case a < —9/16 yields 9 + 16a < 0, and simple calculation gives 

fei = f + W ( 4 V ( l - « ) + 5 ) > 3 , 
ki = | - W ( 4 V ( l - a ) + 5 ) < 0 , 
fc3,4 = f + i / 2 V ( 4 V ( l - * ) - 5 ) . 

Since now linearly independent solutions of (16) are the functions 
yi(t) = exp (k ti), y2(t) = exp (k2t), 
y3(i) = exp (fr) cos (i/2 V(4 V(1 - a) - 5)) , 
y4(t) = exp (ff) sin (r/2 V(4 V(1 - a) - 5)) , 

then linearly independent solutions of (15) are the functions 
(19) u,(t) = ^(ln f) = f' , u2(t) = y2(ln t) = f*2, 

"з(0 = Уз(1п í) = í3/2 cos (ln í/2 V(4 V(1 - oe) - 5)), 
u4(t) = ^4(ln í) = ť'2 sin (ln í/2 V(4 V(1 - «) - 5)). 

If we take into account that k1 > 3 and k2 < 0 then from (19) it is easy to see that 
the assertion b) of Lemma 3.2 holds true. This completes the proof. 
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4. MAIN RESULTS 

Theorem 4.1. Let r, p є C([ř0, oo)), r(f) > 0 and R(t) -^ oo as ř ^> oo. Tften ífter 
equation (1) ftas Йе property (A) i/ 

l i m i n f ^ ( < ) > ( r ) K O > ^ 
f^oo J V ^ 

and the equation (1) foas the property (B) f/ 
2 limsup R3(i) r(t) p(t) < -

î oo 3 ^ 3 

Proof. We can write the equation (l) in the form 

(li) ^ + r(t)p(t)y(t) = 0, tZta. 
áRó 

By the ^-transformation of(lx) with v = ф we obtain 
(20) y'"(i) + r(4>(i)) K<K0) X0 = 0 , ř ^ 0 . 

A simple calculation shows that 
lim infiV(^(i)) p(#(f)) = lim infK3(i) r(<) p(ť) . 
r->oo t-*co 

Putting a=liminfjR3(ř)r(ř)p(ř)>2/3V3 we obtain that for every ax witb 
ř-í-oo 

2/3 V3 < «i < a there exists ^ (>0) such that 

*M<K0)K<K0)^ if t*h. 
From this inequality, according to Lemma 3.1 and Theorem A we conclude that the 
equation (20) has the property (A). But then by Theorem 1.3, the equation (lx) and 
also the equation (1) has the property (A). Indeed, if y(t) is a solution of (20) then 
u(t) = y(R(t)) is a solution of(lx) and also of(l). Further (since R(t) ~> oo as t ^ oo)̂  
if y(t) is an oscillatory solution of (20) then u(t) = y(R(t)) is an oscillatory solution 
of(l). Finally, ify(t) is a solution of(20) with the property ( 6 j then for u(t) = y(R(t)} 
we have 

u(t) = y(R(t)) ~> 0 as t ^> oo , 

^ = y(R(t))^0 as r ->oo, 
dR v JJ 

^ ^ = y"(R(t))^0 as i ^ o o . 
dR2 У V V " 

To prove the second part of Theorem 4.1 we can proceed similarly as above.. 
Since now 

2 lim sup í3r(^(ř)) р(Ф(і)) = lim sup jR3(í) r(t).p(t) < 
ř ^oo i-+oo 3 yJ3' 
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thus putting 
b = lim sup R3(t) r(t) p(t) 

t^00 

we obtain that for every bx with b < bx < —2/3 V3 there exists t2 (>0) such that 

i 3 r ( # ) ) X < K O ) ^ i if t>h. 
This inequality together with Lemma 3.1 and Theorem A implies that the equation 
(20) has the property (B), and by Theorem L3 we find out that the equation (!) has 
the property (B). This completes the proof. 

For other related results concerning the property (A) of retarded differential 
equations the reader is referred to the paper [5]. 

Theorem 4.2. Let r, p є C([ř0, oo)), r(t) > 0 and R(t) ~» oo as t -+ oo. 
a) Let p(t) ^ 0 and 

limsupR%t)r(t)p(t)<^ 
i^-oo J^/J 

Then the equation (l) has not the property (A). 
b) Let p(t) й 0 and 

limMR*(t)r(t)p(t)>^ 
i->>ao J ^Jj 

Then the equation (l) has not the property (B). 
Proof. As we already know the ^-transformation of (!) with v = ф yields (20). 

Since now 
2 

lim sup í3r(^(ř)) р(ф(і)) = lim sup R3(t) r(t) p(t) < 
ř^oo ř^oo

 w w w 3V3 
thus putting 

a = lim sup R3(t) r(t) p(t) 
ř̂ -oo 

we obtain that for every ax with a < ax < 2/3 ^Ъ there exists tx (>0) such that 

*M<K0)K<K0)^ if t*h-
From this inequality, according to Lemma 3.1 and Theorem A we see that the equa­
tion (20) has not the property (A). Now by Theorem 1.3 we conclude that the 
equation (l) has not the property (A), and part a) ofTheorem 4.2 is proved. Part b) 
of Theorem 4.2 can be proved similarly. Therefore the proof is complete. 

If we use Lemma 3.2 instead of Lemma 3.1, we can prove the following two 
theorems in the same way as above. 

Theorem 4.3. Let r, p є C([f0, oo)), r(t) > 0 and R(t) V oo as t ^> oo. Then the 
equation (2) has the property (A) if 

\iminfR4(t)r(t)p{t) > 1 
i^oo 

I 
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and the equation (2) hasthe property (B) if 

lim sup R*(t) r(t) p(t) < - 9 /16 . 
i^oo 

Theorem 4.4. Let r, p e C([i0> oo)), r(i) > 0 and jR(ř) - • oo as ř ^ oo. 
a) Let p(t) ^ 0 and 

lim$upR*(t)r(t)p(t) < ' 1 . 

r-*oo 

Then the equation (2) has not the property (A). 

b) Let p{t) g 0 and 
lim infR*(i) r(t) p(t) > - 9 /16 . 
í^oo 

Then the equation (2) has not the property (B). 

Note that the previous results can be generalized e.g. to equations 

(r,(t)(r,(t)y'(t))')' + p(t)y(t) = 0, 

(г,(0(Ы0(Ы0/(0У)0' + К0з<0-о 
by suitable comparison theorems. On the other hand, in the case r(r) =s 1 Theorems 
4.1, 4.2, 4.3 and 4.4 give results for the equations 

y"'{t) + p(t)y(t) = 0, 

/4)(í) + K0X0 = o. 
which we can regard as an extension of Hille's results (see [6], p. 194) to the third 
and fourth order differential equations. 
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