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This paper is a direct continuation of [2], where the fundamental concepts and
their notation were introduced. Continuous and compact imbeddings of weighted
Sobolev spaces into weighted Lebesgue spaces for power-type weights and a bounded
domain Qe %°*, 0 < k < 1, are investigated. The weight functions may have
singularities or degenerations only on the boundary dQ of Q.

7. Domains of the type °*, 0 <k <1

We will consider domains Q € ¥%*. Let us recall here the definition of the class
%°*, which is based on the method of local coordinates (cf. [3]).

7.1. Definition. Let 0 < ¥ < 1. A bounded domain Q is said to be of class ¥%*
(notation Q € #°*) if the following conditions are fulfilled:
(i) There exists a finite number m of coordinate systems

(7.1) (y:'syiN)’ Vi = (.Vihyiza""yiN—l)
and the same number of functions a; = a,-(y’,-) defined on the closures of the (N - 1)
dimensional cubes

(7.2) A= {yis|yy| <8 for j=1,2,...N —1}.

(i = 1,2,..., m) so that for each point x € Q there is at least one i€ {1,2, ..., m}
such that

(7.3) x =iy and yiy = a(y).

(ii) The functions a; satisfy the Holder condition on 4; with the exponent x and
a constant A4.
(iii) There exists a positive number 4 < 1 such that the sets

(7~4) B; = {(J’/i,.ViN), yied, ai()’:') —A<yn< ai()’:‘) + ;1}
satisfy

(7-5) U;=BnQ= {(Y;"yiN); yied, ai()’;') —A<yin< "i(.":')}
and

(7~6) =B niQ2= {(Y:" yiN); Vvied, yixn= ai(}’?)} (i =1,2,..., m) .
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7.2. Partition of unity. Let Q€ €%, 0 < x < [ and let {Q,},2, be a sequence of
domains such that

(77)  Q,e®*', {er; d(x)>l}c!2,,c{xe§2; d(x) > - : }
n n+1

By the symbol " we mean the set int (2\ Q,).
There exists a number n, €N such that the system
(7.8) {By,....B,},

where B; are the sets given by the formula (7.4), forms a covering of the closure Qe
of the domain Q™. Let us denote by

{4’1, cees (Dm}
a partition of unity corresponding to the covering (7.8), that is, let
(7.9) ®,eC(RY), supp®, = B;, 0 P(x)< 1,

Y dx) =1 for xeQ™.
i=1
7.3. Remark. If the number 4 in (7.4) is small enough, then we evidently have
7.10) d(x) = d{x), xe€Qnsupp @;,
where d(x) = dist (x, I';), i =1,2,...,m.
Further, Lemma 4.6 from [3] yields
ai()’:‘) — yn\'" ,
7.11 e S dix) £ alyi) — »i
(.11 (#=2) 2 a9 5wl — in
forx = (y,yineU,i=12,..m
8. Imbeddings of weighted Sobolev spaces with power-type
weights — thecase 1 S p<g < ®

Let us recall the following two theorems which the reader can find in [3] (Theorems
8.2, 8.4).

8.1. Theorem. Let Qe %°* 0 <k < 1.Let1 < p < o0 and

(8.1) e>x(p—1).

Then

(8.2) WhHQ; d°, d°) Q I2(Q; d") ,

where ‘
_fe—xp for k(p—1)<e=<xp,

(8.3) = {(s[rc) —p for &> Kp.

8.2. Theorem. Let Qe 6°*, 0 <k < 1. Let 1 < p < o and
(8.4) e+ x(p—1).
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Then
(85) Wo'P(Q; d°, d°) Q L2(Q; d")
where
k(e — p) for ¢ <0,
(8.6) n=<e—xp for 0<e=<Zxkp,
(¢/k) — p for & > xp.
8.3. Remark. In the proof of Theorem 8.1 (or 8.2) the classical Hardy inequality
was used (see [3]), i.e. .
(87) & |u()|rrrdt < <~ P ‘ng" ()P ede, 1 <p<oo,*
le —p + 1

which holds for every absolutely continuous function u on (0, o) such that

(i) limu(t) =0 and e>p-—1,
t— o0

or

(ii) limu(f)=0 and e<p-—1,
t—0~

or

(iii) limu(t) =limu(f) =0 and e+p—1.

=0~ t—= oo

Instead of (8.7) it is possible to use another inequality of Hardy type
(8.8) o lu(@Prdt e f5|u()Pfd, 1<p<o
(c > 0 is a suitable constant independent of u), which holds for every function u
defined on (0, b) (0 < b < o0) and such that eithter
(i) ue AC((0, b)), li;n u(t) =0 and
o
Bsp-—-1, a>—-1vE>p—1, a«2p—p;
or

(i) ue AC((0,b)), limu(t)=0 and f<p—1, a=f—p;
t—0+
or
(iii") ue AC((0,b)), limu(t) =limu(t) =0 and
t—>0+ t—=b~

B+p—1, azZB—-pvph=p—1, a>—1.

Then we obtain the following assertions (which generalize Theorems 8.1 and 8.2).

8.4. Theorem. Let Qe 6°* 0 < x < 1,1 £ p < . Then

(8.9) W (Q; &, d) Q I(Q; d)
if either
(8.10) kKp—1)<eZ«kp, n2e—«p,

*) It is possible to show that the inequality (8.7) takes place also if p = 1.
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or

(8.11) kp<e, n=(x)—p.
Further,

(8.12) WiR(Q; d°, d°) QQ L(Q; dY)
if

(8.13) esx(p—1), n> —x.

8.5. Theorem. Let Qe 6°*,0 <k < 1,1 £ p < . Then

(8.14) Wen(Q; d=, d°) G 1X(Q; d')

if

(8.15) e+ K(p—1)

and

(8.16) n2k(e—p) for ¢ 20,
nZze—xp for 0<e=kp
n=(e/k)—p for & >xp.

Further,

(8.17) WoP(Q; d°, d°) QQ I(9; d")

if

(8.18) e=x(p—1), n>—x.

Proofs of Theorems 8.4 and 8.5 are left to the reader. In the case (8.13) (or (8.18))
the compactness of the imbedding (8.12) (or (8.17), respectively) is due to the strictness
of the inequality > —x« (cf. part b) of the proof of Theorem 9.3).

We will generalize the above theorems. Our aim is to find conditions under which
the imbeddings

(8.19) Wir(Q; dF, dP) G IH(Q; d7)
(8.20) Wo P(Q; d*. d") CQ I4(Q; d*) ,
(8:21) Whe(Q; df, d*) QQ IX(Q; d%) ,
(8.22) W, (s d°, d*) QQ IA(Q; d)
take place.

Let us recall the results of Example 5.1 from [2]. Suppose that
(8.23) 1Spsqg<o, IINz1p—1[g (or I/N > 1[p —1[q).
Then
(8.24) WR(Q; dr, ) G IH(Q; d7)

(or
(8.25) WhH(Q; d77P, d7) QQ LA(Q; d%))
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if and only if

(8.26) N<5—3>+5—1+1;0
a p/ a »p

(or

(8.27) N(l—l>+°—°—2+1>o,
a9 p) a »p

respectively).

8.6. Theorem. Let | < p< g < 00,1/N=1/p—1/q,2€¥°*,0 <k < 1. Then

(8.28) WhrQ; d°, df) G IH(Q; %)

if either

(8.29) B<x(p—1), N<£_£>+E_K(p~1)+,€>0’
a ») 4 p

or

(8.30) K(p— 1) <B=xp, N(L—l)+5—/—3+xgo,

a » 4 p

or

(8.31) kp < B, N<1—1>+5—£«+1go_
a p/ 4 xp

Proof. By Theorem 8.4 we have for ue W"(Q; d*, d*):

(8.32) ”“"xa,fz,de = C““H 1,p,2,d8 48

(with a constant ¢ > 0 independent of u), where

(8.33) y=B—kp+p if x(p—1)<p=xp,
y = B/x if kp<§.
In both cases we have § < y in (8.33) and so
diam Q\—#/r
(5.34 19l oo = (F52) 1 (90 Ly

It follows from (8.32) and (8.34) that
(8.35) Whr(Q; df, d%) Q WhH(Q; d7TP, dY) .

Using the embedding (8.24) we get the imbedding (8.28) provided the condition
(8.30) or (8.31) is fulfilled.
Now, let p < «(p — 1). Denote
Bo=r(p—1)+ @, where 0 <ow=rxk.
Then
K(p—1)<ﬁm§;cp’
and by (8.30) we have
(8.36) WEA(Q; dPe, dP) Q I(Q; d%)
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if

N(i—l>+3‘-—’i‘"+xgo.
q p q p
As f, > B, we also have

(8.37) Whr(Q; df, df) G WhHH(Q; d", dPe) .
By (8.36) and (8.37) we get the imbedding (8.28) if there exists w € (0, k) such that
N(£—1)+E—~—K(p DO s,
q D q p
Consequently, (8.28) takes place if the condition (8.29) is satisfied.

8.7. Theorem. Let | S p<g <o, I[N2I[p—1lq, Q€€ 0<k =1
Then

(8.38) Wy P(Q; dP, dP) G I4(Q; d%)
if either
(8.39) <o, N<1—1>+5-,cé+xgo,
a p) a p
or
1 1 o B
(840) O<p=wp, PExr(p—1), N[-=——)+-—-=+x20,
a p) a p
or
(8.41) kp < B, N(]———]— “_ Pz,
a p/ q «wp
or
(8.42) B=ux(p—1), N(l——l—)+g-’—c>(p——~‘—)+h‘>0.
a p») a4 p

Proof is analogous to that of the previous theorem and is left to the reader.

8.8. Theorem. Let | < p < g < 0, 1IN > 1[p — 1/q, Q€ °*,0 < k < 1. Then

(8.43) Wir(Q; dP, dP) QQ 1(Q; d°)

if either '

(8.44) B<x(p—1), N(l——l—)+o—(—ﬂl)—_——l—)+zc>0,
49 P q p

or ,

(8.45) k(p—1)< B =«p, N(l——]—>+gi—ﬁ+1\'>0,

q p q p

or
1 1

(8.46) kp < B, N(——->+Z—Ji—+1>0,
q p q Kp
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Proof. The assertion follows from (8.25) and (8.27) by the same argument as in the
proof of Theorem 8.6. The details are left to the reader.

For the sake of completeness we formulate a theorem which is the analogue of
Theorem 8.7 for the compact imbedding.

8.9. Theorem. Let | < p < g < o,1/N > 1/p —1/q, 2€ ¢°*,0 < k < 1. Then

(8.47) Wo P(Q; d*, d%) QC L(Q; d%)

if either

(8.48) <o, N(£—1>+5—KE+K>0,
a p) a4 p

or

(849) O0<pB=kp, B*x(p-1), N(1—1)+Z—E+K>O,

a p/ 4 p

or

(8.50) xp < B, N(1—1>+5—£+1>0,
a p/ 4 xp

or

(8.51) B=x(p—1), N<1—£>+g——’ip—_i)+x>0.
a pl 4 p

Theorems 8.6—8.9 give only sufficient conditions for the existence of the cor-
responding imbeddings. The question arises whether these conditions are also
necessary.

We restrict ourselves only to the case k = 1. First we present an auxiliary assertion.

8.10. Lemma. Let 1 < p, q < o, «, feR, let Q be a domain in R". Let

(8.52) W, n(Q; %, dP) Q I(Q; d)

(or

(8.53) Wy '(Q; d°, d*) QG I4(Q; d7)) .

Then

(8.54) IIN=1/p—1q, N(l—-l—>+3‘—ﬁ+1go
9 p/ a4 p

(w

(8.55) IN>1/p=1q, N<1—1)+5—£+1>0>.
g9 p) a4 p

Proof. Let G be a domain such that G « G = Q. Using the fact that the functions
d*, d* are bounded from above and from below on G by positive constants we get
from (8.52) (or (8.53)) the imbedding

Ws"(G) C I(G)
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(or

Wo"(G) QG 1(G)) -
Now, Theorem 6.2 (or Theorem 6.4) from [2] (with @ = G and w = v = | on G)
implies
I[N 21/p—1]q
(or

1/N > 1]p — 1q).

Further, Theorem 6.2 (or Theorem 6.4) (with Q, w = d*, v = d”) implies that the
space W,'"(Q; d”*, d*) is not continuously (or compactly) imbedded in the space
I(Q; d*) if

or

The lemma is proved.

8.11. Theorem. Let us suppose that 1 S p<q< w0, QeC®, B>p—1
(or B+ p —1). Then

(8.56) W (Q; df, dP) G I¥(Q; d7)

(or

(8.57) WoP(Q; d*, d°) C I4(Q; d%))

if and only if

(8.58) 1N 2 1/p - 1/q, N<1-1>+3‘—E+1g0.
9 p/ 49 P

Proof. The “if” part follows from Theorem 8.6 (or 8.7, respectively). The “only
if”* part is a consequence of Lemma 8.10.

8.12. Theorem. Let | < p<q < w0, Qe C*', > p—1(or B+ p — 1). Then

(8.59) whr(Q; df, df) QQ 1A(Q; d7)

(or

(8.60) Wo'P(Q; d*, d) QQ IX(Q; d%)

if and only if i

(8.61) N > 1/p— 1/q, N(1~1>+5—E+1>o.
9 p/ a p

Proof is analogous to that of Theorem 8.11 and is left to the reader.
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9. Imbeddings of weighted Sobolev spaces with power-type
weights — thecase 1 £ g<p< o
Throughout this section we suppose that
1=g<p< .
In the proof of the imbedding
Whr(Q; d?, df) G IX(Q; d%)

the Hardy inequality (8.8) played the principal role. Now the inequality (9.1) from
the next lemma will be of similar importance for the imbedding

Whr(Q; df, d%) G I(Q; d°) .

9.1. Lemma. Let 0 < b < 00. Then there exists a positive constant ¢ such that
the inequality

(9.1) (1% |u()|? e de)*e < e(f5 [/ (£)[7 1" de) /P
holds for all functions
(9.2) ue Ty(0,b) = {fe AC((0, b)); llmf(x) = 0}
or
(9.3) ue T,(0, b) = {fe AC((0, b)); lim f(x) = 0}
x=b~
or
(9-4) u e T(0, b) = T;(0, b) n T(0, b)
if and only if
9.5) n<p-1, B>nﬂ_ﬁ7_1
p p

or
(9.6) n<p—1,¢e> -1 Vn>p—1,8>ng—2,—1

p p
or
(9.7) nemr, 3>ng—q—,—1,

p p

respectively.

Proof. In the cases (9.2) and (9.3) the assertion follows from [4], Section 1.3.2.
In the case (9.4) the assertion follows from [6].

9.2. Remark. From the proof of necessity of the condition (9.5) or (9.6) or (9.7)
for the inequality (9.1) to hold on the class T;(0, b) or T,(0, b) or T(0, b), respectively,
one can see that the condition (9.5) or (9.6) or (9.7) is necessary for the validity of the
inequality (9.1) even on the (smaller) class of functions T;(0, b) or T5(0, b) or
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T*(0, b), respectively, where
T7(0, b) = {u e C*(€0, b)); 0¢ supp u},
T5(0, b) = {u e C*(0, b)); b ¢ supp u},
T*(0, b) = Ty(0, b) n T5(0, b) .

9.3. Theorem. Let 1 £ q <p < 0,Q2e%%* 0 <x < 1. Then

(9.8) WhH(Q; df, d°) QQ IX(Q; d7)

if either

9.9) B=x(p—1), o> —x *)

or

9.10) x(p—1)<p=x(p—1)+xL, x(1—1)+5—£+x>0

q a p/ a »

or

(0.11) (p—1)+xL<p, (1—1)+5——‘i+1>o.
q a »/ a «xp

Proof. a) First we will prove that
(9.12) WhH(Q; &, df) O 15(2; d¥)
if the assumptions of Theorem 9.3 are satisfied.
In virtue of Lemma 3.1 from [2] it is sufficient to verify that

(9.13) lim sup [u]gone = < 0,
1

n—o jullx<
where we put X = WP(Q; d*, d*) (the sets Q" were introduced in Section 7.2).
We shall use the result on density of smooth functions in weighted Sobolev spaces
(see [1]):
(9.14) Wl,p(g; de, d") = yl-l1,p,0.4008
where
" ¥ = {ueCQ); |uls,0uwas < o}-

Take ue ¥ . Let us introduce the local coordinates (yi yiw) (i =1,2,...,m)
from Definition 7.1. For x € Q" (n > n,) we have

(9.15) u(x) = u(x)él:l(bi(x) =iilui(x) ,

where we set u; = u®; (the functions @; and the number n, were introduced in
Section 7.2). The relations (9.15) and (7.10) imply

(9'16) “u”q.ﬂ",d“ = ;H“i"q,mm = iglnui”q,ﬂ"nsupwndx'“ = ;H“inq.va,w .

*) Instead of & > — k it is possible to write

1 1 [ p—1
Kl-—=-)+-—« +x>0.
q P q p
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Let us now estimate the norm
(9.17)

"ui”Z,U‘,di‘ = IU; l“i(x)lq d‘:(x) dx = _[Ai dy; IZE{;?%; |ui(y,ia Yiu)lq dail(}’;’ yiN) dy;n -
If @ > 0 then (7.11) and (9.17) yield

(9.18) luillf.vnae < Ja,dyi §6 [uilyi aiy) — 9] © dr.
If « < 0 then by (7.11) and (9.17) we obtain
(919)  Juilfviae < (1 + A)7 fa,dyi 5 |ui aiyi) — 9| e de.

Now, we estimate the inner integral on the right hand side of the inequalities (9.18)
and (9.19) using the Hardy inequality (9.1). If the numbers ¢ and 7 satisfy the condi-
tion (9.6), then Lemma 9.1 implies

(9.20)
Lidyl-(fé [uiy), ai(y}) — o)|* 2 di) < L dy’ ( J : o dt)w .

Let 7 < 0. Using the Holder inequality and the relations (7.11) and (7.10) we get
d 7 ’
—t ui(yis ai(}’i) - t)

2 r a/p
(9.21) J dy;(J' t” dt) <
A; old
— u(yi. a(y}) — 1)

- (*] @
< lAiI(p a)/p (J dyiJ. p
A; 0

Yin

d ’ !
—ulyiaily;) —t
g Lbealy) — 1)

4 a/p
t"dt) < colul mamn -

Similarly, for = 0 we obtain

2
’ d ’ r

(9.22) J‘ dyi<J‘ — uyyi, aiyi) — 1)
(The constants c,, ¢; > 0 are independent of the function u € 7".)

We have to distinguish four cases:

(i) Let @ = 0, B = 0. Then we put &€ = «, 1 = B[k and by {9.18), (9.20) and (9.22)
we have
(9:23) luilv.ae = K u],5.0.00.0

(where K = K, = cc;'?) provided

P alp
" dt) < c|u]t. 0.0 amn -

(9-24) Bsup—1)vp>rp—1), a>=2—-=— 1.

(ii) Let @ < 0, B = 0. Then we set ¢ = afk, 7 = B[k and by (9.19), (9.20) and
(9.22) we arrive at (9.23) (with K = K, = ¢(1 + 4)~** ¢}’?) provided

(925) Bsxlp—1),a> -k v ﬁ>x(p—1),a>ﬂg—x<g—,+1).
p 14 :

(iii) Let @ 2 0, < 0. Then we set ¢ = «, n = B and the inequalities (9.18),
(9.20) and (9.21) immediately imply (9.23) (with K = K; = cc}9).
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(iv) Let @ < 0, B < 0. Putting ¢ = afx, n = B and using (9.19). (9-20) and (9.21)
we get (9.23) (with K = K, = (1 + A4)™%/* cc§'%) provided

(9.26) o> —K.

From (i) — (iv) we conclude that (9.23) takes place (with K = max {K,, K, K3, K,})
if o and B satisfy the condition (9.9) or (9.10) or (9.11). Under these conditions we
have by (9.16) and (9.23)

H”"q.ﬂ",d" = mK"u” 1,p,02,d8. 4B

and by (9.14) the same estimate holds for all functions u € W'-?(Q; d*, d*). Thus the
condition (9.13) is fulfilled (with &/ < mK), which completes the proof of (9.12).

b) It is now easy to prove Theorem 9.3. Let the numbers f and « satisfy for
example the condition (9.10) (the proof in the other cases is analogous). In virtue
of the strictness of the inequality

x(l——l>+z—é+x>0
q9 P a p

there exists & > 0 such that the numbers f and & = o — ¢ satisfy (9.10) (with &
instead of ). Then part a) of our proof implies

whr(Q; d*, df) Q L(Q; d°) .
Hence there is a positive constant K such that
(9:27) luls0.0 < K|u| 1 p0us.a0, weWn(Q;d* d).
Let u € W''2(Q; d, d*). Then by (7.7) and (9.27) we get
u(x)|? d*(x) dx = Jgu [u(x)|? d°(x) d*(x) dx <

| )5.0n.4= = far
K‘I
< o il = 2 [l s

hence
lim sup "u ”q,ﬂ",d‘ =0

n— oo ueX,|lullx£1

and the proof of Theorem 9.3 is completed by using Remark 3.2 from [2].

9.4. Theorem. Let 1 < g < p < 0, Q€ ¥**,0 < x < 1. Then

(9.28) Wn(2; 4, d°) QG IA(Q; )
if either '
0 o, sft- ) Eoxbinso
q p q p

or

p 1 1 o« p
9.30 O0<B=xk(p—1)+k-, x(———)+———+x>0
(9.:30) B=<x(p—1) » it
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or

9.31 Ki —|+KB< , .1___1_ +g_£+1>0_
q 4 P q Kp

Proof is analogous to that of Theorem 9.3 and is left to the reader.

9.5. Theorem. Let 1 < g < p < 0, Qe 6°!. Then

(9:32) Wo'(@; d*, &) QC IX(2; &)

if and only if
1 1 o B

(9.33) peR, [-—=-}]+-—==+1>0.
q D q9 P

Proof. If the condition (9.33) is fulfilled then the imbedding (9.32) follows from
Theorem 9.4.
Conversely, let us suppose that the condition (9.33) is not fulfilled for some «, f, i.e.
-} 4_9 _q,

’

p p

Let us introduce the local coordinates (), y;y) and the numbers 4 and 6 from
Definition 7.1. By Lemma 9.1 and Remark 9.2 (with b = 4, ¢ = a, 7 = B) there
exists a sequence of functions {u,}:>, = CZ((0, A)) such that

(9.34) Jolus()|P t#dt =1, neN,
(9.35) §6 [un(t)|dt > o0 for n— oo
Let ¢ e CP(RY™') be a function satisfying

P(z) =1 for |z| <42,
(9.36) ®(z) =0 for |z| > 38[4,

0<d(z) <1 for zeR¥™!,
For ne N and x € Q let us define

0,061 yin) = 2(y)) u(a,(yy) — yiw) if x = (¥1, yin) €Uy,
(437) ulx) = {0 it xeQ\U,.

Fix ne N. Then
supp v, < Uy

and there exists a domain G, such that
(9-38) suppv, < G, = G, = U, .
The function a, is Lipschitzian on A; and consequently

v, € Wo'(G,).
This together with (9.38) yields

(9:39) v,€ Wol(Q; dP, dF).
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By (9.37), (9.36), (7.10), (7.11), Remark 8.3 (the inequality (8.8) with (iii')) and
(9.34) we have

9.40) ol p.0a.a = (fo[oux)]” *(x) dx + fo [Vo,(x)| d'(x) dx)'” <

uay(yy) — yon)|? AP0, yin) dyy dyyy +
+ [0V [ulas(v1) = yin) @)1 d2(v1, yin) dyi dygw)'? <

N-1 A A

< ¢ [(1 + max 0(y1)
yi'eRN-1 i=1 | Oyy;

+ SUlnsuppw lul,l(al(yrl) - le)\p dﬁ(ylli le) d,vll dle] é

< ey(fo |uat)]7 1 dr + [G |un(t)|? ¢ de)'P < y(f5

(the constants ¢, ¢; and ¢, are independent of n).
Further, by (7.10), (7.11), (9.36) and (9.37) we obtain

(941)  [oulf.0ex = Ju, |[2(1) wlai(ys) — yin)|? (s, yin) Ay dyin 2
1 * ’ ’ ' o ’
('_> qu‘\suppdi \¢(Y1)\p “n(a1(}’1) - J’m)\p (‘11()"1) - yuv) dyj dyy 2

1+ 4 )
(s

Now, (9.39), (9.40), (9.41) and (9.35) imply that the space Wy'*(Q; d”, d*) is not
continuously imbedded in the space I%(Q; d*) and the theorem is proved.

_S_ CO(SUI nsupp P

p
> j‘Ulnsupp(b ‘un(al(yll) - le)lp dﬂ(yll, le) dy/ldle'i_

u ()P £ di)'P < ey

v

u,(1)|? * dt .

9.6. Theorem. Let 1 < g < p < 0, Q€ %%, Then

(9.42) Wl‘”(Q; d*, d/’) @@ Lq(Q; d")
if and only if either

(9.43) ps -1, (1—1>+5—E+1>0
. q p q p
or
(9.44) —-1<Bf<p—-1, a> -1
or
(9.45) B>p—1, (1—1>+5~§+1>0.
a p/ q »p

Proof. In the cases (9.44) and (9.45) the proof is analogous to that of Theorem 9.5
and is left to the reader.

For B < —1 we have (see [3], Remark 11.12 (ii))
Whi(Q; d*, a*) = Wy R(Q; dF, dF)

and the result follows from Theorem 9.6.
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9.7. Remarks. (i) In the case 0 < k < 1 it is possible to find (by the same method
as in the proof of Theorem 9.5) necessary conditions for the validity of the im-
beddings (9.8) and (9.28) (and the imbeddings (8.28), (8.38), (8.43) and (8.47) for
1 < g < p < ) but these conditions are different from the corresponding suf-
ficient ones (due to the inequality (7.11)).

(ii) If Q e €°* then it follows from the proof of Theorem 9.5 that either
Wo'n(Q; d*, d*) QQ 14(Q; d%)
(or Wn(Q; df, d’) QQ I4(Q; d*)), or the space Wy '?(Q;d’, d*) (or the space
W'P(Q; d*, d*), respectively) is not continuously imbedded in L¥(Q; d¥).
(iii) When proving the necessity of the condition (9.43) it is impossible to proceed
in the same way as in the proof of necessity of the conditions (9.33), (9.44) and

(9.45). In the case f < —1 we do not know whether the functions v, defined ana-
logously as in (9.37) are elements of W*#(Q; d”, d*), because the inclusion

C*(Q) =« Whn(Q; df, d*)
does not hold.

10. N-dimensional Hardy inequality with power-type weights

We will deal with the inequality
(10.1) (Jo |u(x)|* d(x) dx)""1 < c(fq |Va(x)|? d*(x) dx)!/?

where 1 £ p, ¢ < 0, Qe%°, 0 <k <1, ue Wo'*(Q; d*, d) and c is a positive
constant independent of u. This inequality will be called the N-dimensional Hardy
inequality (cf. [5]).

First, let us recall

10.1. Lemma. If Qe®°*, 0<k <1, 1<p<ow, —xp/(l —x)<e<
< «(p — 1),*) then the norms |*|1 0440 and |||*|||s,p.0,4 Where

(10.2) l][}1,5.0.0e = (S |Vus() | d5(x) dx)*7
are equivalent on the space Wo'"(Q; d*, d°).

For the proof see [3], Proposition 9.2, which can be easily extended to the case
p=1

The imbedding theorems (Sections 8, 9) and Lemma 10.1 imply

10.2. Theorem. Let | S p < g < 0, 1/[N 2 1/p — 1/q, Qe €°*,0 < k < 1, and
either

11
(10.3) -2 <p<o, N(———>+5—x5+zcgo,
1 a o) a »p

_"') For k = 1 we put —p/(1 — g) = — -
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or

(10.4) 0<p<xk(p-1), N(l—£>+z—é+k’§0~
9 P q P

Then there exists a positive constant ¢ such that the inequality (10.1) holds for all
ue Wy?(Q; d*, d*).

Proof. For u e Wy '?(Q; d*, d*) we have by Theorem 8.7
(10.5) [ullg.0a < crlluls.p.0.08,08

and by Lemma 10.1

(106) [ulls 508,00 = call[ull s 5.0.00
(cy, ¢, > O are suitable constants independent of u). Combining (10.5) and (10.6)
we immediately get (10.1).

10.3. Theorem. Let 1 £ g < p < 0, Q€ %°*, 0 < k £ 1, and either

(10.7) - <p<o, K<£—l—>+5—xl—g+x>0
l—x a p/ a p
or
(10.8) 0<B<x(p—1), K(l_£>+§_E+K>0_
g p) q »p

Then there exists a positive constant ¢ such that the inequality (10.1) holds for all
ue Wyh(Q; db, d*).
Proofis analogous to that of the previous theorem and is left to the reader.

If Qe @°! then we are able to give necessary and sufficient conditions for the
validity of the inequality (10.1).

10.4. Theorem. Let Qe %', 1 <p, q <, B<p— 1. Then there exists
a positive constant c¢ such that the inequality

(10.9) (Ja |u(x)|" d*(x) dx)"9 < o(fq |Vu(x)|" d(x) dx)'/?
holds for all u € Wy'?(Q; d*, d*) if and only if either

(10.10) 1S p<g<w, 1N21/p—1/q, N(1—1>+3—E+1go
q P q P
or
(10.11) 1<g<p< o, <£—1—>+9(——l—3+1>0.
q P q p ‘

Proof. Let the conditions (10.10) or (10.11) be fulfilled. Then the validity of the
inequality (10.9) for functions u € Wy 7(Q; d”, d*) follows from Theorem 10.2 or 10.3,
respectively.

Now, let us suppose that for all functions u € Wy'?(Q; d?, d*) the inequality (10.9)
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holds. Then
Wo P(Q; d*, dP) @ 14(Q; d°) .
If p < ¢, then Theorem 8.11 yields

Nz 1p—1/q, N(l—l)ﬂ—’f“go,
q P q p
i.e., the condition (10.10) is fulfilled.

If g < p, then by Remark 9.7 (ii) and by Theorem 9.5 we have

(£—£>+f—g+1>o,
a p) 4 p

i.e., the condition (10.11) is fulfilled.
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