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The aim of this paper is to present results concerning oscillatory and asymptotic
properties of solutions of n-th order (n > 1) differential equations of the form

0] (1) ... () () Y (O)) -y + p() F(3(9(1))) = 0,

where r, p, g are real-valued and continuous functions on an interval [to, oo),
r(t) > 0, g(t) > o as t - oo, and f is a real-valued and continuous function on
(— 00, ). The technique used in the paper is based on the notion of the v-derivative
of a function. The main tool in establishing the results is the following assertion,
which is a special case of Theorem 2.1.

Theorem. Let the above conditions on r, p,g,f be satisfied. A function y(t) is
a solution of the equation

Y1) + r(@(1)) p(2(1)) f(V(R(g(2(1))) = ©

on [ty, o) if and only if the function u(t) = y(R(t)) is a solution of the equation
(1) on [t,, ), where

11
R(t)=J ds for t=1t,, R(t)y> o as t— oo,
to S

@ is the inverse function to R, and t,(=0) is such that g(D(t)) = to if 1 = t;,t,(= 1,)
is such that R(t) 2 t, if t 2 t,.

As we shall see, this theorem permits to obtain information about oscillatory and
asymptotic properties of solutions of differential equations of the form (1) from the
results of this kind known for differential equations of the form

Y1) + a(t) f(y(h(1))) = 0.
Examples of such applications of our theorem are presented in Section 3 of this
paper.
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1. THE v-DERIVATIVE OF A FUNCTION

Suppose throughout this section that f, g, v, vy, ... are real-valued functions of
one real variable. Let the interval (— o0, o0) be denoted by R.

Definition 1.1. Let functions f and v be defined on a neighborhood O(f) of a point
t e R and let the conditions x € O(t), x = ¢ imply v(x) = o(t). If the limit

limf(x) — f(t)
x>t v(x) - I)(t)
is finite, then it is called the v-derivative of the function f at the point f and is denoted
by f.(1) or df(¢)/dv.
Remark 1.1. It follows from Definition 1.1 that f}(t) = 1 for every t such that f
is defined on O(t) and the conditions x € O(t), x # ¢ imply f(x) =+ f(1).
Using the above definition we can build the v-differential calculus similar to the
ordinary differential calculus. Here we introduce two results that we shall need later.

Theorem 1.1. Let the following conditions be satisfied:
(i) a function v is continuous at a point t,
(ii) a function g has the v-derivative at the point t,
(iii) a function f has the ordinary derivative at the point g(t).
Then the composite function f(g) has the v-derivative at the point t and

(f(9)): (1) = f'(g(1) gi(1) -
Theorem 1.2. Let there exist v'(t) % 0 on an interval I. Then for t € I the v-deriva-
tive f,(t) exists if and only if the derivative f'(t) exists. Moreover,

’ (¢

fv(t) = w .
v(1)

The proofs of the above two theorems are simple and therefore omitted.

Now we introduce v-derivatives of higher orders.

Definition 1.2. Let n > 1 be a natural number. Let functions v, and f{,0

be defined on a neighborhood O(t) of a point t € R and let the conditions x € O(t),
x % t imply v,(x) # v,(t). If the limit

]imf'g'xl;zl,)...,vn—l(x) — ftg';;zl,)-n.vm'l(t)
x-rt v.(x) — v,(1)

is finite, then it is called the n-th v-derivative of the function f at the point t and
denoted by

(O
dv,...dv, dv,

() oF
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In the case v; = ... = v, =vand v,,, = ... = v, = u we shall write

S en(t) 0 _df(n)

m gn—m! .
"“ nmdm

For instance, if we put n = 2 and t €I in Definition 1.2, then by Theorem 1.2
we have

&f() _ 4 10
dv, dv,  do, v3(2)
&f@) _ 1

dv, dv, vz(t) dt

() _ 1 df( , -
doydo, ~ o i o) e HOFO (=1 en L
1) _ 10 w0 — 10 00 o

T ) 0 R A

on I and there exist f”(t) and v(t) on I.

whenever vj(t) #0 on I,

f,,l(t) whenever v3(f) =0 on I,

2. THE v-TRANSFORMATION OF A DIFFERENTIAL EQUATION

In the sequel we shall use the term “v-differential equation” for a differential
equation (may be with deviating arguments) in which all derivatives of the unknown
function have been replaced by its v-derivatives. Specifically, a v-differential equation
will be refered to as a 1v-differential equation if all the derivatives of the unknown
function in this equation are v-derivatives with respect to the same function v. Thus
a lv-differential equation with deviating arguments is an equation of the form

(1) G(t, y(1), yil2), -+ Yo (0), y(hs(1)), yi(Bs(2)), - s yerd (o (1)), --
cs Y(1(0)), yi(hi(0)), - ym2(i(1)) = O,

where G: R" > R", y: R > R*,v: R—>R,h:R—>R (i = 1,2,...,k); m,n, p, kand n;
( j=0,1,..., k) are nonnegative integers.

Now suppose that the following conditions are satisfied:
a)k=0,n2=1, p=1 are integers,
b)n;20(i=0,1,...,k) are integers,i n,=Nz2z1,

¢) I and I, are intervals in R, o

d) g;ieC(I)(i =0,1,...,k), go(t) = tand g I > I, < I,

e) ve C(I,), v is a strictly monotonous function, v: I, — I,
f) ¢ is the inverse function to v,
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g) yr-(}’hyz,,,_,y)
h) F:1 N+kt1y,
. X R )P_) R",

Consider the differentia] equation

0y F(t, y(1), y'(1), s y(0), ¥(g1(0)), ¥ (g,(1)). ..
< YO g5(0)), ..o ¥(al®), YD), -, ¥ ™(gi(2) = O, tel.
If, in the equation (2), the independent variable  is replaced by the function v(f) and

¥g(8); v (g 1), - y" (g (1))

are replaced by
¥(0(g,(o())))s yol@(g(o(1))))s -, i (0(g 0(1))))

forj = 0,1, ..., k in the sense that v(t) replaces even the independent variable as an
argument of the function with respect to which the derivatives of the unknown
function are calculated, then (2) is transformed into the equation

®3) F(o(2), y(2), (1), -, v (1), W(0(g1(0(1)))), il 0(9:1(o(1)))), ---
oo Yo (g1 (0(0))))s - - W(@(gul0(1))s Y @(gil0(1)))s - -, yome (@(g((1))))) = O,

tel, .

In the sequel we shall call the above mentioned process of obtaining (3) from (2)
a v-transformation of a differential equation. It is readily evident that a v-trans-
formation preserves the (non-)linearity and the order of equations. Note that (3) is
a lv-differential equation since it is always possible to write (3) in the form (1).

It is also useful to note that a ¢-transformation of (3) leads again to (2).

It is easy to see that, for example, if v is an increasing function and for some
je{1,2,...,k} we have g(t) < t (g,(t) = 1), teI then ¢(g;(v(1))) < t (0(g,(v(2))) =
> t), tel,. Thus it is clear that if v is increasing, then the v-transformation of
a retarded (advanced) differential equation gives a retarded (advanced) 1v-differential
equation.

Finally, we note that the equation (2) (the equation (3)) inciudes an ordinary
aifferential (a 1v-differential) equation without deviating argument as well as a dif-
ferential (a 1v-differential) equation with one or several deviating arguments and
also a system of differential (1v-differential) equations without or with deviating
arguments.

Now we can establish the following result.

Theorem 2.1. Let the conditions a)—h) be satisfied. The function u(t) is a solution
of the equation (2) on I if and only if the function u(v(t)) is a solution of the equation
(3)on1,.

Proof. We put v(t) = s, v(6) = x and u(v(t)) = z(¢) for t, o € I,. Then, according
to Definition 1.1 or according to Theorem 1.1 and Remark 1.1, for the components
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of the functions u and z we have

(4) 2o(g,(0(1))) = uig,(s)) »
(z:): (o(g, (1)) = (i) (9,(5)) »
(z Dalo(g,o1))) = ()" (9,(5)) -

(2)%2(o(g,(0) = ()" (g(5))
fortel;,s=o(t)el;i=1,2,...,p;j=0,1,....k.
From (4) we see that
2(@(9,(o(1)))) = w(g,(s) -
z0(g,(0(1)) = w'(9,(s) -
ZZZ(¢(gj(”(t)))) = u"(9,(s))

202(0(g (1)) = w"(9(5)
fortel,,sel,j=0,1,..., k. Therefore
F(o(0), 2(1), zi(1). -.» 202(2), 2((91((1))): zi(@(g:(o(1)))): --
- 2 (9(91(o(1))), > 2(@(gu(o(1)))): zi(@(9:((1))), -
S'ii)(co(gk(v(t))))) = F(s, u(s), w(s), ..., u"(s), u(g,(5)), w(g1(s)); ---
u(g4(s), - ulgals)), v (gk(S))’ Q)

fortel; ands = v(t)el.

Thus we see that u is a solution of (2) on I if and only if z = u(v) is a solution of (3)
on I, and the proof is completed.

Remark 2.1. It is easy to see from the proof of Theorem 2.1 that if (2) and (3)
are scalar equations, then we can write

E(t, y(0), -, y"(gu(1))) = 0 (20)

F(o(t), y(0), -, yim(@(gu(e(1)))) = 0 (20)
instead of (3), and Theorem 2.1 remains valid.

Note that the v-transformation of an ordinary differential equation may be used
to extend the set of differential equations with known solutions. Indeed, if we put
k =0,n =1, p=1in condition a) and require that v e C"(I) with v'(t) # 0 then
the v-derivatives yy(t), yi(t), ..., y52(t) may be expressed in terms of ordinary de-
rivatives, e.g.

instead of (2) and

0. gy YOK0 - 000
Ty PO
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Thus, in the case k =0, n = 1, p = 1 and ve C"(I,), v'(f) * 0, the equation (3)
becomes an ordinary differential equation, e.g.

(5) Folt, y(1), y'(1), s y™(1) = 0, tel, .

Since (3) and (5) are merely two ways of writing the same equation, they have
the same solutions. Thus (2) has been transformed to (5). Moreover, we know that
according to Theorem 2.1, u is a solution of (2) if and only if the composite function
u(v) is a solution of (5). Therefore, for example, if y,(f) and y,(t) are linearly in-
dependent solutions of

(6) y'(t) + p(1) y'(1) + q(t) y(t) =0, tel
and ve C¥(I,), v # 0 and v:1; — I, then

yi(o()) and  y,(u(7))

are linearly independent solutions of
() y(t) + l:v’(t) p(u(1)) — v )] (1) + v*(t) g(v(t)) ¥(t) =0, tel,.
Conversely, if v is such that u,(t) and u,(t) are linearly independent solutions of (7),

then
uy((t)) and  u,(o(t))

are linearly independent solutions of (6).

Recently, there has been increasing interest in studying the oscillatory character
and the asymptotic behaviour of solutions of n-th order differential equations with
or without deviating arguments involving the so-called quasi-derivatives of the
unknown function. In the following sections of this paper we shall be concerned
with oscillatory and asymptotic properties of solutions of some special cases of such
equations.

In the sequel we shall restrict our attention to those solutions of the equations
considered which exist on some ray [T, oo) and are non-trivial in any neighborhood
of infinity. Such a solution is called oscillatory if it has arbitrarily large zeros, and
nonoscillatory otherwise. An equation is said to be oscillatory if all of its solutions
are oscillatory; otherwise it is said to be nonoscillatory.

3. OSCILLATION OF THE n-TH ORDER 1v-DIFFERENTIAL EQUATIONS

Consider the n-th order differential equation with deviating argument of the form

(1) ((O) - (O () y ()Y ) + p(8) f(M(g(1))) = O

for t = o, where re C([#,, o0)), r(t) > 0. We shall state the conditions on the functions
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D.f, g later. It is evident that the above equation is a special case of the equation
@) (ra=a(t) - (r2(0) (rs () ') - ) + (1) f(¥(9(1))) = 0,

where t 2 tg, r;€ C([ty, ©)), ri(t) >0 (i =1,2,...,n — 1).
Now, if we define

t

d

Ry(t) =f Sz, i=1,2,...n—1,
to ri(s)

then we can introduce the well-known properties (A) and (B) of the equation (2)

in the following form:

Definition 3.1. The equation (2) is said to have the property (A) if, for n even, the
equation (2) is oscillatory, and for n odd, every solution y(f) of (2) is either oscillatory
or
3) W) L a s (i=0,1,...,n—1).

dR;...dR, dR,

Definition 3.2. The equation (2) is said to have the property (B) if, for n even,
every solution y(t) of (2) is oscillatory or satisfies the condition (3) or satisfies the
condition

diy(t
I T

- as t—->ow (i=0,1,...,n—1),
dR;...dR,dR,

and for n odd, every solution y(f) of (2) is either oscillatory or satisfies the condition

(4)-

Without mentioning it again, the following notation will be used throughout this

paper:
t ds
R(t) = —_—, t2t,,
() -[tor(s) °

& is the inverse function to R .
Remark 3.1. It is easy to see that in the case
r{(y=r(1), i=12,..,n—-1

the conditions (3) and (4) assume the form

d'y(1) -
3 —~2 50 as t—->ow (i=0,1,...,n—1
() 2 ( )
and

diy(t) .
4 —“’l 50 as t—-ow (i=0,1,...,n—-1),
(@) s ( )

and in the case r(f) = 1 the conditions (3,) and (4,) assume the form

(32) y(i)(t)_,o as t— o (i=0,l,...,n—- ])
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and
(42) |y(i’(t)|—>oo as t— (i=0,],...,n—1).

In the sequel we shall use the terms “the property (A)”, “the property (B)” for the
equation of the form (1) or of the form y™(t) + p(t) f(¥(g(t))) = 0 in the sense of
Remark 3.1.

Lemma 3.1. Let R(t) > o0 as t — oo.

a) If a function y(i) is oscillatory on an interval [ty, o), then the function
u(t) = y(R(2)) is oscillatory on the interval [t,, ), where t, is such that R(t,) = t,.

b) If y(t) satisfies the condition (3;) ((4,)), then u(t) = y(R(t)) satisfies the con-
dition (3) ((44))-

Proof. Since R(f) —» oo as t — oo, the assertion a) is evident. Now, because (by
Theorem 1.1 and Remark 1.1)

) = (R,

Y(R()
L)  y(r(o)... ’(> Yo (R ()

dR? drR""?
we see that the assertion b) holds and the proof is complete.
First we consider the n-th order linear ordinary differential equation

) () - (1) () Y)Y ) + () =0, 1216,
where r, p e C([to, ©)), r(t) > 0.

According to Theorem 1.2 we know that the equation (5) may be written in the
form

d"y(t
(51) ——y(") + ) p() y(t) =0, t=1,.
dR
The v-transformation of (5;) with v = & leads to the equation
(6) y(t) + 1(@(1) p(2(1)) y(1) = 0, 1€ [0, R(x)).

Before proving our first result we introduce the following comparison results due
to V. A. Kondratev [4] and T. A. Canturija [2].

Theorem A. Let n = 3. Let functions a and b be integrable on every finite and
closed subinterval of the interval [0, oo).

Ay) If a(t) = b(t) = 0 for te [0, ) and the equation

(7 u™(t) + b(t) u(t) = 0
has the property (A), then the equation
(8) u™(1) + a(t)u(t) = 0

has the property (A).
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A,) If a(t) < b(t) £ 0 for te [0, ) and the equation (7) has the property (B),
then the equation (8) has the property (B).

Also, it will be useful to observe the following well-known fact.
A system of fundamental solutions of the equation
) Y1)+ ay(t) =0, aeR, a=%0

is formed by real and imaginary parts of complex functions of one real variable of
the form

(10) ‘ y(t) s
where
i) k=) (cosw + isin i‘EL‘M‘)

s =0,1,...,n — 1 and arg (—a) means the principal value of the argument of the
number —a.

Theorem 3.1. Let n = 3. Let r, pe C([t,, ®)), r(t) > 0 and R(t) > o0 as t » o.
Then
a) the equation (5) has the property (A) if lim inf r{t) p(t) > 0,
t—

b) the equation (5) has the property (B) if lim sup r(t) p(t) < 0.
t—= oo

Proof. It follows from (10) and (11) that the equation (9) has the property (A)
if « > 0.
Now suppose that lim inf r(t) p(t) = a > 0. Since R(f) — oo if and only if t — oo,
e} t—=> o
lim inf r(@(1)) p(®(1)) = lim inf (¢) p(t) = a
t— oo t—

and then for any « € (0, a) there exists T, = 0 such that
r®(t) p(P(t) =2« for t=T,.

Applying Theorem A to the equations (6) and (9) (with « > 0) we see that the equation
(6) has the property (A). But the v-transformation of (6) with v = R leads to the
equation (5), and thus according to Theorem 2.1 and Lemma 3.1 we know that the
equation (5) has the property (A).

In the case & < 0 the equation (9) has the property (B) and the second part of the
theorem can be proved analogously. This completes the proof.

T. A. Canturija [1] has presented the following results (Theorem 2.1 to 2.4 in [1]).

Theorem B. Let n = 3 and a e C([0, o).
B,) Let a(t) 2 0 and

*
liminf "~ {7 a(s) ds > M, ,

tow n—1
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where M is the maximum of all local maxima of the polynomial
Pi(x)= —x(x —1)...(x = n + 1).
Then the equation (8) has the property (A).
B,) Let a(t) £ 0 and

liminf =1 [P ,a(s)l ds > Mo ,
t— o n—1

where My, is the maximum of all local maxima of the polynomial
Pu(x)=x(x—1)...(x = n +1).
Then the equation (8) has the property (B).
Bj) Let a(t) 2 0 and
limsup ¢ [° s" % a(s)ds > (n — 1)!.
to
Then the equation (8) has the property (A).
B,) Let a(t) < 0. Let n be odd (n even) and
limsup t [ s"~|a(s)| ds > (n — 1)! (>2(n —2)!).
oo

Then the equation (8) has the property (B).
As we shall see, Theorem 2.1 enables us to extend the above results to the equation
(5).
Theorem 3.2. Let n > 3. Let r, p e C([to, )), r(t) > 0 and R(t) - oo as t - oo.
a) Suppose that p(t) = 0 and
lim inf [R@)]™" |2 p(s) ds > n—M—l
oo _

where M is the maximum of all local maxima cf the polynomial
P(ty= —t(t = 1)...(t = n + 1).
Then the equation (5) has the property (A).
b) Suppose that p(t) < 0 and

lim inf [R(t)]"~* {7 |p(s)| ds > Ll ,
t— o n —

where K is the maximum of all local maxima of the polynomial

Q) =1t —1)...(t —n+1).
Then the equation (5) has the property (B).
c) Suppose that p(t) = 0 and

lir?—»?p R(®) [P [R(s)]"" 2 p(s)ds > (n — 1)!.

Then the equation (5) has the property (A).
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d) Suppose that p(t) < 0. Let n be odd (n even) and
lirgiup R(t) [ [R()]" 2 [p(s)| ds > (n — 1)1 (>2(n — 2)!).

Then the equation (5) has the property (B).

Proof. Since
lim inf [R(£)]" ™" [ p(s) ds = lim inf "~ [ r(P(s)) p(@(s)) ds ,
1> o t—> o

so according to Theorem B (part B,), the assumptions of our theorem (part a)
ensure that the equation (6) has the property (A). By Theorem 2.1 and Lemma 3.1
we see that the equation (5) has the property (A), and part a) of Theorem 3.2 is
proved.

It is evident that the other parts of Theorem 3.2 may be proved similarly and thus
the proof is complete.

Now we consider the n-th order linear differential equation with retarded argument

(12) (@) ... () (1) ()Y -y + p(1) W(g(t)) =0, t =1,
where the following conditions will be assumed to be fulfilled.

(iy) n is even,

(i) r e C([te, ©)), r(t) > 0, R(t) > o0 as t — o0,

(is) pe C([to, ), p(t) > O,

(is) g & C'([to ). 9(t) = . ¢'(1) > 0, lim g(1) = oo.

Similarly as before we can write (12) in the form
(13) %:-) +r(t) p(t) y(g(1)) =0, t=1,.

By the v-transformation of (13) with v = @ we obtain the retarded differential
equation

(14) yeAt) + (1)) p(®(2) ¥(R(9(2(1)))) = O
which we shall study for t €[t, ), where t; (20) is such that
g@(t) 21, if t21,.
Recently M. Naito [7] has established the following results (Theorems 2,4 and 5
in [7]).
Theorem C. Let (i), (i3), (i5) be satisfied.
C,) (i) The equation

(15) (1) + p(t) x(g(1)) = 0
is oscillatory if i
(16) § [g(s)]" 2 p(s)ds = co.
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(ii) Suppose that (16) fails to hold. Then the equation (15) is oscillatory if -
lim sup g(t) |7 [g(s)]"" % p(s)ds > (n — 1)!,
or if o '
liminf g(t) {7 [g(s)]" 2 p(s) ds > (Li—l—)' .
t— 00

C,) Suppose that
[©s" 2 p(s)ds < w0 .

Then the equation (15) is nonoscillatory if

Y
limsup t [ 5"~ 2 p(s) ds < (n—4g)~ .

t— o0

C;) Assume that
lim inf M > 0.
t—w t

(i) The equation (15) is strongly oscillatory if and only if either
[©s""2p(s)ds =

limsupt [ s" "2 p(s)ds = o .

t— o0
(ii) The equation (15) is strongly nonoscillatory if and only if
[?s" 2 p(s)ds < o
and
limt [ s" 2 p(s)ds =0.

t— o0
The above mentioned notions of strong oscillation and strong nonoscillation are
defined as follows: An equation of the form (12) is said to be strongly oscillatory
if the related equation
(17) Ht) . (@) (M) y' ()Y .Y + 2p(t) p(g(1)) =0, t =1,
is oscillatory for all positive values of Z. An equation of the form (12) is said to be

strongly nonoscillatory if (17) is nonoscillatory for all positive A’s.
The purpose of the following theorem is to extend Theorem C to the equation (12).

Theorem 3.3. Let (i,)— (i) be satisfied.
a) (i) The euqation (12) is oscillatory if

(18) 7 [R(g(N]"~* p(r) di = oo
(ii) Suppose that (18) fails to hold. Then the equation (12) is oscillatory if
lim sup R(g(1)) [ [R(g(s))]" "2 p(s)ds > (n — 1)1,
t— o
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or if

— 1M
lim inf R(g(1)) [ [R(g(s))]"~* p(s) ds > U 4 23
t— oo
b) Suppose that
= [ROT o) ds < eo.
Then the equation (12) is nonoscillatory if
— 9\
lim sup R(t) [ [R(s)]" "2 p(s) ds < s 4 2 '
t— o0
c) Assume that

lim inf

t— 0

}j(—g—(t—))>0.
R(?)

(i) The equation (12) is strongly oscillatory if and only if either

J= [R@Y ™2 p(1) dt = oo

lim sup R({) 12 [R(s)]" 2 p(s) ds = oo .

or

(ii) The equation (12) is strongly nonoscillatory if and only if
§2 [R(1)]""2 plt) dt < 0

lim R(¢) [ [R(s)]" "2 p(s)ds = 0.
t— o0
Proof. As we can see,

(19) [R(g(2(1))]’ = r(;(é(zg)) g(@(t) >0 for t=1,

if g'(t) > 0 for t > t,. Moreover,

and

(209) [= [R(g()]"™* p(r) de = [ [R(g(@())]"* r(@(1) p(@(1)) dr

tim sup R(g(1)) §” [R(g(s))]" 2 p(s) ds =

~ tim sup R(o(2(9) 7 [R(a(@()IF~* r(@(s) p(5) ds

and the same is true when we write lim inf instead of lim sup. Therefore, according
to Theorem C, part C,), the assumptions of our theorem, part a), ensure that the
equation (14) is oscillatory. By Theorem 2.1 and Lemma 3.1 we see that the equation
(12) is oscillatory and the assertion a) of Theorem 3.3 is proved. It is clear that the
assertions b) and c) of Theorem 3.3 can be proved similarly. To prove the assertion c),

we note that
(Rlg() _ o R(#(0)
R(t

t— o t

lim in
t— o0

The proof is complete.
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Note that part a) of Theorem 3.3 covers Theorem 1 in [9] and, of course, also all
results which are covered by this theorem.

We finish our investigation of the retarded equation (12) with a result which extends
the following one due to R. Oléh [8].

Theorem D (Theorem 2in [8]). Let n = 3. Suppose that p e C([to, )), p(t) = 0,
ge C'([to, ), g(t) < t, g(t) > 0w ast—> 0 and 0 < g'(t) < 1. If

lim sup g(t) [ [g(s)]" "% p(s)ds > (n — 1)!,
t= o0
then the equation (15) has the property (A).

Theorem 3.4. Let n = 3. Suppose that re C([to, ©)), r(t) > 0, r(t) is non-
increasing, p e C([to, )), p(t) = 0, g € C'([t,, ©)), g(t) < t, g(t) = 0 as t > ©
and 0 < g'(1) < 1. If

lim sup R(g(1)) Iz [R(g(s)]" "2 p(s) ds > (n — 1)1,

then the equation (12) has the property (A).
Proof. If we take into account (19) and (20) and notice that

R(g(2(t /=MQ)— (@) =1 for t=t
[R(g(®(1)))] (o(@(1)° (@) = 21t
provided g’(t) < 1 for t = t, and r(t) is nonincreasing, we conclude from Theorem D
that the equation (14) has the property (A). By Theorem 2.1 and Lemma 3.1 we
know that the equation (12) has the property (A) and the proof is complete.
Now we shall proceed in the investigation of the equation (12) with an advanced
argument, i.e., the following conditions will be assumed to be fulfilled.
(iiy) n is even,
(iiy) re C([to, o0)), r(t) > 0, R(t) > o as t - oo,
(iis) pe C([to, ), p(t) > 0,
(iig) g € C'([to, )), g'(t) > 0, g(t) = t.
Note that the condition g(t) = t allows us to deal with (14) on the interval [0, o)
if necessary.
Recently, T. Kusano [5] has proved the following theorems (Theorem 2,3and 4
in [5]).
Theorem E. Let (ii, ), (ii3), (ii,) be satisfied.
E,) Suppose that
lim sup g(_t) < .

t—+ o t

The equation (15) is strongly oscillatory if and only if

limsup t [P s" 2 p(s)ds = o0,
t—* 0
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and the equation (15) is strongly nonoscillatory if and only if
limt [ s" 2 p(s)ds = 0.
E,) The equation (15) is oscillatory if
(22) fo 2 p(r)dt =
or if (22) fails to hold but one of the following inequalities holds:
limsup t [ s"72 p(s)ds > (n — 1)!,
-0
liminft [ s"7% p(s) ds > (f%l)' .

t— o0
E3) The equation (15) is nonoscillatory if

— )
lim sup g(2) [ s"~2 p(s) ds < (nTZ) .
t—= 0 .

In a similar way as before, using Theorem E, we obtain the following three results.

Theorem 3.5. Let (ii;)—(iiy) be satisfied.
a) Suppose that

lim sup —=-
t= o (®

The equation (12) is strongly oscillatory if and only if
lim sup R(¢) {7 [R(s)]" "2 p(s) ds = oo,
t— oo

Ralo) _ ,
R(t

and the equation (12) is strongly nonoscillatory if and only if
lim R(1) [P [R(s)]" % p(s)ds = 0.
t— oo
b) The equation (12) is oscillatory if

(23)  [R(T™2 p(t)dt = o0

or if (23) fails to hold but one of the following inequalities does:
lim sup R() {7 [R(s)]" "2 p(s) ds > (n — 1)!,
t—
— 1)
lim inf R(¢) {7 [R(s)]"~2 p(s) ds > (n—é—lL) .
t— o0
¢) The equation (12) is nonoscillatory if

im sup R(o(0) I [RE)T"~ 1) s < @%@ .

For the class of nonlinear differential equations we have several remarkable papers
concerning oscillation and asymptotic behavior of solutions of differential equations
of the form

(24) YO () + p(1) f(¥(g(2)) = 0.
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Here we extend some results from the equation (24) to the n-th order equation
of the form
(25) ((0) - (@) (&) ¥ (@)Y ) + p(O) f(N9(®) =0, t =10

For the sake of brevity we shall say that the equation (25) ((24)) has the property
(C) if every solution y(t) of (25) ((24)) is either oscillatory or such that

i ,y(t) 5
R(t)—=—>0 as t—-» o0 (i=0,1,...,n—1
() R ( )

(#yP(t)»0ast—>o (i=0,1,....,n—1)).
Consider the equation (25), where
(iiy) n = 2,
(iii,) r e C([to, 0)), r(t) > 0, R(t) » o0 as t — o0,
(iii3) pe C([to, ©)), p(t) 2 O,
(iiig) g € C([to, 2)), g(t) £ t, g(t) > 0 as t > oo,
(iiis) fe C(R), xf(x) > 0 if x % 0.
As we already know the equation (25) is just another form of the equation

) L 4 o)) 1060 = 0. 121

and the v-transformation of (26) with v = @ leads to the equation

(27) Y1) + r(@(1) p(2(1) f(W(Rg(2(1))))) = O,
which we shall consider for te [t;, o), where t; (=0) si such that g(®(t)) = ¢,
it 1>,
In the sequel we shall use the following notation:
R, = (—o0, —a] U [a, ), & = 0;
C*(R,) = {f with the property (iiis) |f is of bounded variation on every [a, b] =
c R,}.

Lemma 3.2.(Lemma4in [6].) Suppose that f has the property (iiis). Then fe C*(R,)
if and only if f(x) = q(x) h(x) for all x € R,, where q: R, — (0, o) is nondecreasing
on (— oo, —a] and nonincreasing on [a, ), and h: R, - R is nondecreasing in R,.

Definition 3.3. The function h in Lemma 3.2 will be called the nondecreasing
component of f while g will be called the positive component of f.

Following W. E. Mahfoud [6] we define

C/R,) = {fe C*(R,)|f has a positive component bounded away from zero}
and -

Cp(R,) = {fe C*(R,)| f has a bounded nondecreasing component}.

We are now in a position to introduce several results proved in [6] and then state
their extension.
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Theorem F. Let (iii, ), (iii;)—(iiis) be satisfied.
F,) Let
lim inf |f(y)| > 0.
y=tw
If [* p(t)dt = oo, then for n even (24) is oscillatory, while for n odd it has the
property (C).

F,) If [ ¢! p(t)dt = oo, then for n even every bounded solution of (24) is
oscillatory, while for n odd either every bounded solution y(t) of (24) is oscillatory
or *y®(t)>0ast—> o0, k=0,1,....,n — 1.

F3) Let fe C{R,) for some « > 0.

If

fottp(t) flEeg" "2(t)] dt = + o0
for every ¢ > 0 and every i€ {0,1,...,n — 2}, then for n even (24) is oscillatory,
while for n odd it has the property (C).

F,) Let f € C(R,) for some o > 0. For every solution y(t) of (24), either y(t)
is oscillatory or y™~1)(t) » 0 as t - oo if and only if

(28) 12 p(t) fl£eg" *(t)] dt = £ o0 forevery ¢>0.

Fs) Let f € C(R,) for some o > 0 and let f be bounded above or below.
For n even, (24) is oscillatory if and only if (28) holds.
For n odd, (24) has the property (C) if and only if (28) holds.

Fg) Let f € C((R,) for some o. > 0 and

liminfg(—t) >0.

t—+ o0

For every solution y(t) of (24), either y(t) is oscillatory or y"~(t) » 0 as t » oo
if and only if
i p(t) f{ et *]dt = + oo forevery ¢>0.

F,) Let f € C¥R,) for some a > 0. If
[ p(t) gl £eg" (1)) dt = o
for every ¢ > 0 and for some positive component q of f, then for n even (24) is
oscillatory, while for n odd (24) has the property (C).
Fg) Let fe Cy(R,) for some « > 0.

For n even, (24) is oscillatory if and only if (28) holds.
For n odd, (24) has the property (C) if and only if (28) holds.

Theorem 3.6. Let (iii,)—(iiis) be satisfied.

a) Let
lim inf lf(y)l >0.
t>too



If [* p(t)dt = oo then for n even (25) is oscillatory, while for n odd it has the
property (C).
b) If
[ RY(1) p(t) dt = o0,
then for n even every bounded solution of (25) is oscillatory, while for n odd every
bounded solution u(t) of (25) is either oscillatory or

k
w—»O as t->ow, k=0,1,...,n—1.
dR*
c) Let f e C(R,) for some o > 0. If
§= R(t) p(t) ST £ e(R(g(D))" ™ "*] dt = o0
for every ¢ > 0 and every i€{0,1,...,n — 2} then for n even (25) is oscillatory
while for n odd it has the property (C).

d) Let fe C(R,) for some o > 0. For every solution u(t) of (25), either u(t) is
oscillatory or

RY(1)

d"u(t)
an—l

-0 as t— o0

if and only if

(29) §2 p(t) fLEc(R(g(t))) ] dt = £oo forevery ¢>0.
e) Let f € C/(R,) for some « > 0 and let f be bounded above or below.

For n even, (25) is oscillatory if and only if (29) holds.
For n odd, (25) has the property (C) if and only if (29) holds.

f) Let f € C/(R,) for some o > 0 and

lim inf Ij(g—(t)) >0.
t— o t
For every solution u(t) of (25), either u(f) is oscillatory or
d""tu(z)
an—l

-0 as t—> ©

if and only if
[ p(t) f(£cR*"*(t))dt = £oo forevery ¢>0.

g) Let f e CX(R,) for some o« > 0. If

§° p(t) g £e(R(g(1)))"~ 1] dt = oo

Jor every ¢ > 0 and for some positive component q'of f, then for n even (25) is
oscillatory, while for n odd it has the property (C).
h) Let f € Cy(R,) for some o > 0.

For n even, (25) is oscillatory if and only if (29) holds.
For n odd, (25) has the property (C) if and only if (29) holds.
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Proof of Theorem 3.6, part c). Since
§° Ri(t) p(t) ST £ (R(g(1))y" " ~*] dt =
= [ t'r(()) p(@(1)) S £ (R(g(2(1)))" " ~*] dt
thus, according to Theorem F, part F3), we see that under the assumptions of
Theorem 3.6, part c), for n even(27)is oscillatory while for n odd it has the property

(C). We already know that if y(¢) is an oscillatory solution of (27) then y(R(?)) is the
oscillatory solution of (25) and if y(¢) is a solution of (27) with the property

*y®(t) >0 as t—->o0, k=0,1,...,n—1,
so u(t) = y(R(t)) is the solution of (25) with the property
Rk( )d “(‘)

Thus, using Theorem 2.1 we prove Theorem 3.6, part c). The other parts of Theorem
3.6 can be proved similarly.

It is easy to see that many other results concerning the oscillatory and asymptotic
behavior of solutions of differential equations of the type (24) can be generalized
to the equation of the type (25).

= R¥t) yP(R()) >0 as t—>o0, k=0,1,...,n— 1.

4. AN EXTENSION OF THE PREVIOUS RESULTS

Here we shall show that the results obtained in Section 3 of this paper for equations

of the form
(1) - () () Y @) ) .Y + p(1) f(¥(a(1))) = 0

may be extended to equations of the form

(ra=1(®) . (r2(8) (ra()) ()Y ) + p(1) f(¥(g()) = O
by using suitable comparison theorems.

Thus, for instance, in [3] T. A. Canturija has presented two comparison theorems
which we can formulate as follows.

Theorem G. Let n = 3; p;, q; € C([0, oo)) pit) > 0, g; (t) > 0; fe C([0, ) x ),
h e C([0, ) x R).

G,) Let
1) q{t) 2 pit) for te[0,), (i= 1,2,...n— 1),
cdr o (i= ..,n—1),
(2 _ J'O el (i=12,.., 1)

—f(t,u)sgnu = —h(t,u)sgnu 20 for te[0,0), uek.

Let the function —h(t, u) be nondecreasing in u. Then the equation
3) (Pa-1(8) - (Pa(®) (21 () w'(B))) ..) = f(t, u(r))
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has the property (A) if the equation
) (ga-1() -+ (a2(1) (a2(0) '(0))) -.) = h(t, (1))
has the property (A).

G.) Let the conditions (1), (2) be satisfied and

f(t,u)sgnu = h(t,u)sgnu 20 for te[0,0), uel.

Let the function l1(t, u) be nondecreasing in u. Then the equation (3) has the property
(B) if the equation (4) has the property (B).

Now we are ready to introduce several examples of extensions of the previous

results.
Consider the equation

) (ra=s(1) - (r2() (rs(0) '(O)))" ) + P(2) ¥(1) = 0,
where

(iv)) n = 3,

(ivy) rie C([to, ), ri(t) >0 (i=1,2,...,n — 1),

(ivs) p e C([to, ).

From Theorem 3.1 and Theorem G we have the following result.

Theorem 4.1. Let (iv,), (iv,), (ivs) be satisfied. Let

(6) reC([to, ©), r(t)z max rft) for te[t, ),
and i=1,2,..., n
(7) R(t) = B o as 1.

(S)
a) Suppose p(t) = 0 and hm mfr(t) p(t) > 0. Then the equation (5) has the

property (A).
b) Suppose p(t) <0 and 11m sup r(t) p(t) < 0. Then the equation (5) has the

property (B).
In a similar way, using successively parts a), b), ¢), d) of Theorem 3.2 and Theorem
G, we obtain the following results.

Theorem 4.2. Let the conditions (iv,)—(ivs), (6) and (7) be satisfied.
a) Let p(t) =2 0 and

lim inf [R(¢)]"~* |7 p(s) ds > ——M—l ,
t— o n —

where M has the same meaning as in Theorem 3.2. Then the equation (5) has the
property (A).
b) Let p(t) < 0 and
lim inf [R()]""* [ |p(s)| ds > —51 ,
t—> n —
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where K has the same meaning as in Theorem 3.2. Then the equation (5) has the

property (B).
c) Let p(t) 2 0 and

lirfl_'ssp R(t) [P R 2p(s)ds > (n — 1)!.

" Then the equation (5) has the property (A).
d) Let p(t) < 0. Let n be odd (n even) and

lintl_’s;lp R(?) [ [R(s)]""2 |p(s)| ds > (n — 1) (>2(n — 2)!).

Then the equation (5) has the property (B).
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