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1. INTRODUCTION 

In the past, several authors have defined integrals for set valued functions (multi-
functions). Let us mention Aumann [3], Debreu [17] and Artstein-Burns [2]. 
Aumann's integral was defined using integrable selectors, while Debreu considered 
compact and convex valued multifunctions and so using Radström's imbedding 
theorem he viewed the set valued integral as a Bochner integral. Finally Artstein 
and Burns following an idea due to Kurzweil [26] [27], used a Riemann type defini­
tion. Very recently Jarník and Kurzweil [23], improved the definition of Artstein 
and Burns and provided applications to differential inclusions. 

The purpose of this paper is to study some properties of the Aumann integral 
for Banach space valued multifunctions and to provide applications in control theory 
and differential inclusions. In particular we obtain results closely related to the well 
known "bang-bang principle" of control theory, for infinite dimensional systems. 

2. DEFINITIONS AND PRELIMINARIES 

Let (i2, Ґ) be a measurable space and X a separable Banach space. Throughout 
this paper we will use the following notations: 

Pf(c)(X) = {A Ç X: nonempty, closed, (convex)} 

P(w)k(c){X) = {A ^ X: nonempty, (w-)compact, (convex)} . 

For A e Iх \ {0}, the norm \A\ and the support function бл{т) of A are defined by: 

\A\ = sup ||x|| and oA(x*) = sup (x*, x), ** є X* . 
xeA xeA 

Also /i(% •) will denote the Hausdorif distance of sets. 

*) Research supported by N.S.F. Grant D.M.S. 8403135. 
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A multifunction F : Q ~» P/{X) is said to be measurable if it satisfies one of the 
following two equivalent conditions: 

(i) co -+ dF(co)(x) = inf ||x — z|| is measurable for all x e X. 
zeF(co) 

(ii) there exist {fn(')]n^i measurable selectors of F(*) s.t. for all o> e Q 

F(co) = cl {fn(^))]n^i (Castaing representation). 

If there exists a complete a-finite measure fi(') on I, then (i) and (ii) above are 
equivalent to: 

(iii) GrF = {(co, x) є Q x X: x e F(co)} є I x B(X) (graph measurable). (Here 
B(X) denotes the Borel <r-field ofJf). 

Furtherresults on the theory ofmeasurable multifunctions can be found in: Castaing-
Valadier [7], Himmelberg [21], Rockafellar [32] and Wagner [35]. 

For any multifunction F : Q ^> Iх \ {0}, let 

Sl
F = {/(.) є Ûx{Q):f(co) e F(cD) ^a.e.} . 

If F( ' ) is graph measurable then Sp is nonempty if and only if inf ||x|| є L+(i2). 
xsF(co) 

Also if F(*) is closed valued, then it is easy to see that SF is a strongly closed subset 
of L^x(Q). Using this set we can define an integral for the multifunction F( ' ) . So let 

fo F(co) d|i(co) = {Jo/(o>) dM(co):/(-) є S£} 

where Jß/(co) d^(co) is the usual Bochner integral. This multivalued integral is known 
as Aumann's integral. 

We will say that F : Q -^ P/(X) is integrably bounded if it is measurable and 

ЩєЬ-
Finally suppose that Y, Z are HausdorfT topological spaces and F: Y^ 2 Z \ { 0 } . 

We say that F(*) is u.s.c. (resp. l.s.c.) if for all V = open subset of Z, the set {y e Y: 
F(y) c 7} (resp. {^є У: F(j^)n 7 ф 0}) is open. If F(-) is both u.s.c. and Ls.c. 
then is said to be continuous. 

We will close this section with two general results about measurable multifunctions 
that we will need in the sequel. 

The first is a result about weak compactness in the Lebesgue-Bochner space LX(Q) 
and was first obtained by the second author in [28]. 

Theorem 2.1 [28]. / / F: Q -^ Pwkc(X) is integrably bounded then SF is a non­
empty, convex, w-compact subset of LX(Q). 

Remarks , (l) If (i2,Z,^) is nonatomic and X* is separable too, then there is 
a converse to that theorem (see theorem 4.2 in [29]). 

(3) An immediate interesting consequence of the theorem is that Jß F(oS) afi(co) e 
e Pwkc{X). 

Thesecondresultisarather folklore theorem for people working on multifunctions. 
Here we state it and prove it in the most general possible form for Banach space 
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valued multifunctions. For a similar result for multifunctions taking values in 
a Souslin localy convex space look at [30] (theorem 4.1). So let ( ß , 1 , ju) be a a-finite 
measure space with I being a Souslin family (see Wagner [35]) and X a separable 
Banach space. 

Theorem 2.2. / / F: Q ~> 2*\{0} is graph measurable and SF Ф 0 then for all 
x * e Z * , tfJňF(x*) - Jß^F(cü)(x*)d^(co). 

Proof. Our prooffollows Rockafellar [32] (theorem 3A). 
Fromtheorem5.10 ofWagner [35] we know that,F(*)admits a Castaing representa-

t ion{/ , , ( - )}^! . Hence: 

^F(a>)(x*) = sup (x*,/n(co)) => œ ^ o"F(o,)(x*) is measurable . 
/ i ^ i 

Also since for/(-)eSp(x*,/(co)) g crF(a))(x*)jU-a.e. and ( x * , / ( ' ) ) e L 1 we deduce 
that for all x* є X*, œ ~> сг^(а))(х*) is quasintegrable. 

Directly from the definitions it is easy to see that we always have: 

<W(**) è Ь F̂(c*)(**) а > И -
Fix x* є X* and let ß < Jß &Fi(o)(x*) d^(co). Our goal is to show that there exists 

/ ( • ) e S F s . t . 
ß < b(x*J(co))d^(co) . 

Take {&n}n^i ^ £ s.t. ^(ßn) < °° a n d ß = U &n a n ( i let К ' ) e ^+> p{w) > 0 for 
all соє Q. For n ^ 1 define "- 1 

An = {co є ß : ffF(a>)(x*) g n} n ß;l -
Then set: 

0и(ю) = oFW{x*) - -p(co) for со є A„ 
n 

= (x*,/(co)) p(co) for co є ß \ Л„. 
и 

Clearly #„(•) є L*(ß) and #,,(co) | o>(ío)(x*) ^i-a.e. So an application ofthe monotone 
convergence theorem tells us that for all n ^ n0, jß#„(co)dju(co) > ß- Set #(•) = 
= g,to(')- Let jR(co) = {xeF(co):#(co) ^ (x*,x)}. Because #(co) < ö>(to)(x*)ju-a.e.? 

we see that for all co є ß , R(co) ф 0. Also GrR = {(co, x) є ß x L: #(co) — (x*, x) <^ 
^ 0} n GrF є Iі x #(X). Hence we can apply Aumann's selection theorem to find 
h:Q^X measurable s.t. h(co)eR(oj)fi-a.e. Clearly h(-) is ju-a.e. a measurable 
selector of F('), but it is not necessarily in the space L^(Q). Furthermore note that: 

^<J 0 (x*,fc(e»))dKe))-
Next let B„ = {a> є ß : |ft(co)|| ^ и} n Л„ and define 

/„(•) = XejA') + Xo\B„f(-)-
Clearly{/;,(-)}„èl <=SJ,and 

ia(x*,fJt<o))dtfa>) = k ( x * , h(co))d^(o)) + f ^ ( x * , / ( c o ) ) d ^ o ) £ 
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^ к#И<*мН + W(^*>/H)^H = 
= Ь в И d^(a>) + j ß V ß n [x*,/(o>)) - flf(o>)] d^(o>) 

Recalling that Jß #(co) d^(co) > ß and that ^(ß \ Bn) 1 0 we finally have that for 
large enough n 

\Q{x*Jn(cD))aß(co)>ß. 

Since /„(•) є Sf, the proof is completed. 
Q.E.D. 

Remark . Ifju(*) is complete, then Z is a Souslin family. 

3. THE AUMANN INTEGRAL 

One of the major results in the seminal paper of Aumann [3] was that if F: Q -^ 
^ Pf(R") is integrably bounded, then j ß F(co) dfi(co) = j ß conv F(co) dju(co). This 
result is a consequence of the well known Lyapunov's convexity theorem and has 
important applications in control theory (see Clarke [10], theorem 5.1.6, p. 115). 
In infinite dimensional Banach spaces, we know that Lyapunov's theorem holds only 
in an approximate form. So the above result ofAumann must be modified accordingly. 
Previous infinite dimensional versions of this result were obtained by Datko [13] 
and Hiai-Umegaki [20]. Our theoiem extends and sharpens those results. 

We will start by establishing the convexity of the Aumann integral. So let ( i2 ,1, y) 
be a nonatomic, cr-finite measure space, with I being a Souslin family and X is 
a separable Banach space. 

Proposition 3.1. If F:Q^>2X\{$] is a graph measurable and Sp ф 0 then 
cl Jß F(œ) dpi(œ) is convex. 

Proof. Let xí9 x2 є cl Jß i4(c0) d^(co). Then given г > 0 there exist fi('),f2(') e 

eSfS.t. \\x1 - Jo/i(oo)dja(w)|| < г/2 and ||x2 - Ь Л Н ^ И І І < sl2-
Consider the vector valued measure r: I ^> X x X defined by 

r(A) = ( b / i H d ^ œ ) , lAf2(œ)drfœ))-

Because fi-(') is nonatomic, corollary 1 (p. 98) of Kluvanek-Knowles [25], tells us 
that the norm closure of the range of r(*) is convex. Note that r(0) = (0, 0) and 
r(i2) = (j^/j(co)dju(co), inA(^)d^(co)). Hence for Ae(0, 1) there exists AeI s.t. 

\\r(A) - X r(Q)W < є/4 and \\r(Q \ A) - (1 - X) r(Q)\\ < г/4 => 

=> ЦЬ/іИ Ф Н - Л b/,(u)) d̂ (u>)|| < г/4 
and 

||W<H<*K<*>) - (1 - Л) ЬЯ©)ф<©)|| < г/4 
for i = 1, 2. Set / = Хл/і + Ха\АІ2- Clearly / ( • ) є Sl

F. Then we have: 

||AXi + (l -A)x 2 - J 0 / (œ)dKû) ) | | á 
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й | K - A Jo/i(o>) ф<о>)У + |AjoA(o))dA<u)) - Ь / і И Ф ( о > ) | | + 

+ ||(1 - Я) x2 - (1 - Я) J0/2(<o) d/<a>)li + 

+ ||(1 ~ A)J0/2(û))d^(a)) - W / 2 H ^ H I I < 
< Яе/2 + є/4 + (1 - Я) є/2 + є/4 = є . 

This proves that indeed cl j ß F(co) dju(co) is convex. 
Q.E.D. 

Now we are ready for the infinite dimensional generalization of Aumann's 
theorem. Let (fì, Z, ju) be a nonatomic complete, сг-fìnite measure space while X is 
still a separable Banach space. 

Theorem 3.1. If F : £ 2 ~ ^ 2 X \ { 0 } is graph measurable and SF + 0 then 
cl Jß F(co) d^(co) = cl j ß cl conv F[co) d^(co). 

Proof. Using theorem 2.2 we have for all x* є X* 

*ci/n*(**) = °SnÁx*) = b*F(*)(**)<MH = jßerc l convF(w)(x*)d^co) . 
Using theorem 4.4 of Debreu [17] (see also theorem 3.4 of Himmelberg [2l]) we 

have that co ^ cl conv F(co) is measurable. So a new application of theorem 2.2 
gives us: 

Jn^clconvF(co)(^*)d^(cOj = o r j í 2 c l c o n v F (x* )=>CT c l j - í 2 F (x : í í ) = C T c l f ň c l c o n v F ( x * ) 

for all x* є Z*. But from proposition 3.1 we know that cl j ß F is convex. So finally 
we have: 

cl j ß F(co) dju(to) = cl j ß cl conv F(co) d î(co) . 
Q.E.D. 

This leads us to the first "bang-bang" type result concerning the Aumann integraL 
By ext A we will denote the extreme points of the set A Я X. As before ( 0 , 1 , д) 
is a nonatomic complete, a-finite measure space and X a separable Banach space. 

Theorem 3.2. If F: Q ~> Pwu(X) is measurable and SF, <S*xtF are nonempty 

then cl Jß F(eo) d^(co) = cl j ß ext F(co) dfi(co) . 

Proof. From the Krein-Milman theorem we know that for all œeQ we have 
cl conv jF(co) = cl conv ext F(co). From Benamara [4] we know that ш -* ext F(co) 
is a graph measurable multifunction. So applying theorem 3.1 twice we get 

cl Jß F(co) dfi(co) = cl jß ext F(co) dfi(oj) . 
Q.E.D. 

Remarks , (l) If F(*) is in addition convex valued and integrably bounded then 
the above result together with theorem 2.1 tell us that j ß F(co) d^(co) = 
= cl jß ext F(co) dfi(co). Also in this case the hypothesis SF, SextF Ф 0 is automatically 
satisfied. 

(2) I fX has the Radon-Nikodym property (R.N.P.), we can assume that F(*) has 
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only nonempty, closed, bounded and convex values (see Diestel-Uhl [18], p. 218). 
Motivated from control theory we make the following definition. 

We will say that g: Q ~> X is a "bang-bang" function for F(*) if and only if 
#(•) e ScxiF = {set of all measurable selectors of co ~> ext F(co)}. 

Using theorem 3.2 we can prove the following interesting density property that 
"bang-bang" functions have. The spaces ( i2,1, fi) and X remain as before. 

Proposition3.2. / / F:Q^Pwkc(X) is measurable, SF,SlxtF are nonempty, 
f(')e SF and e > 0 

then there exists a bang-bangfunction #(•) for F(*) s.t. 

W$nf(co)dv(co) - io^(co)dju(co)|| < e . 

Proof. From theorem 3.2 we know that cl \Q F(a>) dfi(co) = cl j ß ext F(co) dju(co) => 
=*" iaf(<0) afi(co) є cl Jß ext F(co) d^i(co). So we can find #(•) є Sl

extF s.t. 

||fo/(o>) d ^ H " Í« #(ш) аКш)ІІ < e • 
Q.E.D. 

An interesting particular case of this proposition, which often appears in applica­
tions, is the following. Suppose {fk(')]l=i £ L^x(Q). 

Proposition 3 3 . Iff: Q -^ X is a measurablefunction s.t. f(co) є conv {Л(со)}"=1 

and s > 0 
then there exists {Ak}l=l a measurable partition of Q s.t. 

n 

||io/(co) dn(co) - £ ta/*H Mœ)\\ < 8 • 
fc=J 

Proof. Consider the multifunction F(co) = conv {Л(а>)}£=1. It is easy to see that 
this is a Pfcc(X)-valued multifunction which is integrably bounded. Furthermore for 
all coeQ, extF(ct>) c {/fc(co)}"=l and also / ( * ) e S p . So applying proposition 3.2 
we get the desired result. 

Q.E.D. 

Another interesting consequence of proposition 3.2, is the following result, which 
has important applications in control theory and optimization. Our proposition 
generalizes theorem 3 of Cesari [9]. 

Proposition 3.4. / / {A(-)K=i £ 4 ( i3 ) 
n 

then ci {\Q g{co) dyi(co): g(-) = £ Хлк/к{л)> {A]Ui is a Z-partition of Q} 
k = i 

is a convex and weakly compact subset ofX. 

Remark . I f Z is finite dimensional, then the closure is redundant. 
Actually we can say more about the bang-bang approximations. Assume that 

(Q, Z9 jw) is a nonatomic, complete finite measure space and X a separable Banach 
space. 
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Theorem 3.3. J/ F: Q ^ Pwkc(X) is integrably bounded and g(')eSp then we 
canfind {gn(')}nkl bang-bangfunctionsfor F(-) s.t. 

gJt-)^"-*"*g(.) as n^oo. 

Proof. We need to show that clw SlxtF = SF. From theorem 2.1 we know that SF 

is w-compact in L^(Q). So clw SlxtF я SF. Hence we need to show that given/(*) є SF, 
{W i(-)}7= 1ç[L^(i2)]* = L^w*(0) and e > 0 we can ûnd'f(-)eSlxtF s.t. 
|<Mf,/ - / > | < є for all i = 1 , . . . , m, where <•, •> indicates the duality brackets 
between LVand L^*w* = (L*)*. To this end let # : ß ^ PkAßm) be the multifunction 
defined by 

R(oj) = {r = (tt,(co), z)?. ! є Я"»: z є F(co)} . 

A straightforward application of Castaing's representation theorem tells us that 
R(-) is measurable and clearly it is integrably bounded. Then using theorem 3.2 of 
this paper and theorem 4 of [3] we get that 

j ß R(oj) d^(co) = Jß ext R(co) dfi(co) . 

So there exists r(") є SexiR s.t. 

iß (wi(<*>)>/H)7= i Ф И = Jß r(œ) dfi(co) . 

Consider the multifunction M: Í2 ^ 2 я " \ {0} defined by: 

M(co) = {x є F(tt>): (tti(o)), x)*,! = r(u>)} . 

Note that (co, x) ~> (wi(<̂ )> *)Г=і ~ К ш ) *s a Caratheodory function from £2 x X 
into ^T and so it is jointly measurable. Thus 

GrM = {(a), x) e Q x X: (щ(а>), x)T= x - r(co) = 0} n GrF є £ x B{X). 

Apply Aumann's selection theorem to find / : Q ^> X measurable s.t. f(co) є M(co) 
for all œ є Q. Then clearly / ( • ) є SX

F and 

Hco)J(co))U = r(co) 

for all соє Í2. Our claim is that / (* )eex t SF. From Benamara [5] we know that 
ext SF = Se

l
xtF. So if /(*) §É ext S£, then there exists Л є I with ju(̂ 4) > 0 s.t. f(co) ф 

ф ext F(œ) for all co є А. Now consider G: A ~> 2 X X * \ {0} defined by 

G(ct)) = {(x5 у) є F(o>) x F(Q)):/(o>) = i(x + y)} . 

The Z-valued map (co, x, y) ~> f(œ) - i(x + y) is a Caratheodory map, so it is 
jointly measurable. Hence 

GrG = {(o>, x, j;) є 4 x X x X:f(co) - i(x + j ) = 0} n 
n Gr(F x F) e IA x B(X x Z ) . 

But B{X x X) = B{X) x J5(Z). Therefore GrG є IA x J3(X) x B(X) ( r e ca l l ^ = 
= I n A). Apply Aumann's selection theorem to find x, y: A ^> X measurable s.t. 
for all o)e^(x(co),j;(co))6G(a))^/(a>) = i[x(u)) + j;(cu)]. But then for œeA 
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we will have: 
r(co) = (ui(a>),i(x(o>) + УП%1 = i(ui(co),x(oj)%t + K«iHj>H)7 = 1 

and since (^(со),х(ш))7=1 and (u^),y(co))7=ieR(co) we have a contradiction to 
the fact that r(-) є ext S* = SlxtR. Therefore we deduce that /(•) є Sl

extF = ext SF 
and f(')eWUi_Um(f) = {t<-) e L* : l<ut,f ~ *>| < e, i = 1 , - , m}. Since / ( - ) e 
eS j , {w/(*)ii*=i — ££*w*(^) anc^ є > 0 were arbitrary, we conclude that SF = 
= clw iSeXtF. Since SF is w-compact, by the Eberlein-Smulian theorem is sequentially 
w-compact. So we can find {gn(m)}n*i £ SlxtF s.t. #„(•) ^w~Lxi #(•) as n ^ oo. 

Q.E.D. 

A special case ofthe above result generalizes significantly theorem 2 ofDatko [12]. 

CorollaryI. If {A(*)K=i - L*x(Q) andf{co)ecori\{fk{co)}n
k = 1pi -a.e. then there 

n 

exist functions gm(*) = ^XAmkfk{')> where {Amk]l=i m â 1 ř's a measurable 
fe=i 

partition of Q s.t. gm(9) ~^w~Lx #(•) as m ~> oo. 
Remark. Even when we specialize to the case X = ß?"5 this corollary is more 

general than theorem 2 of Datko, who required that the/fe's take values in a compact 
convex set K (i.e. for all co e Q, fk(co) e K for all k = 1, ..., n). 

Another important byproduct of theorem 3.3 is the following: 

Corollary II. / / F: Q ^> Pwkc(X) is integrably bounded 
then SF = clw ext SF = clw SlxtF . 

We have two more useful results concerning the extremal properties of the 
Aumann integral. So let (£2,1, ß) be a complete, cr-finite measure space and X 
a separable Banach space. 

Theorem 3.4. IfF: Q ~» 2X \ {0} is graph measurable and SF? SlxiF are nonempty 

then ext Jß F(co) dfi(co) c Jß ext F(co) dju(o>). 

Proof. Let xeext§QF(cú)dfi(co). Then there exists f(*)eSF s.t. x = 
= Jo/(^>) dju(co). Suppose /(co) £ ext F(co) for all co є А є £ with yi(A) > 0. Then 
this means that /(•) ф SlxtF = ext SF. Hence we can find /i(*),A(') є ^F s-t- / = 
= i / i + 2f2 => x = i Jfl/i(o>) <Цсо) + І k/2(c0) d (̂co) => x = ix! + ix2 with 
*i> x2 є iß ^(ш) ^ ( ш ) ' a contradiction to the choice of x. 

Q.E.D. 
Remark. The above inclusion may be strict as the following simple counter­

example shows. Let Q = [0, 1] with the Lebesgue measure A(-). Let F: Q ^> Pkc(R) 
be defined by F(co) = [0,1] for all co e Q. Then ext F(co) = {0,1}. Also 

Ja F(co) dX(co) = [0,1] 0 ext Jo F(co) dA(co) = {0,1} 
while Jß ext F(co) dX(co) = [0,1]. 
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Our final result on the bang-bang type properties of the Aumann integral is the 
following. Now (O, I, pi) is a complete, finite measure space and X a separable 
Banach space. 

Theorem 3.5. If Fly F2: Q ~* ? w k ( i ) are integrably bounded and 

x є j ß ext {Fi(co) + F2(co)] dfi(co) 

then there exist unique fi('),fi{') є L^(0) s.ř. /t(co) є ext F1(co) jU-a.e. 

/2(co) є ext F2(co) ^-a.e. and x = Jß (^(ш) + /2(œ)) djtx(co). 

Proof. By definition x = j^/(co)d^(co), where / ( - )eS* x t ( F l + F2). But recall that 
<Slxt(Fi + F2) = ex tS F l + F 2 . Also from theorem 1.4 of Hiai-Umegaki [20] we know 
that Spl+p2 = cl[SFl + S F J . From theorem 2.1 we have that SFl and SF l are w-
compact, convex. So cl[SFl + S F J = SFl + Sp2 =>extSFl + Fl = ext(SF l + SFJ. 
Applying theorem 1 (p. 5) of Kluvanek-Knowles [25], we get that there exist unique 
/ i ( - ) e e x t S ^ = Se

1
xtFl and / 2 ( - )Gex tS F 2 = S j x t F a s.t. f = j \ +f2. Then x = 

= Jß (fi(œ) + fi{u>)) dju(co), with/i(to) є ext F1(co) д-а.е. and/2(co) є ext F2(co)/i-a.e. 
" Q.E.D. 

4. DIFFERENTIAL INCLUSIONS AND CONTROL SYSTEMS 

In this section we will prove some "bang-bang" type theorems for differential 
inclusions and control systems. 

We will start with differential inclusions. 
Let T = [0, b], a finite closed interval in R+ and let X = #T. Let F: T x Z ^ 

~> 2X \ {0} be a multifunction (also known as orientor field). Consider the following 
multivalued Cauchy problem: 
(*) x(t)eF(t,x(t)) , a.e., 

x(0) = x0 . 

By a solution of (*) we understand an absolutely continuous function x: T^ X, 
which satisfies (*) almost everywhere. Let S(xQ) be the solution set of (*) and let 
R(t) = {zeX: z = x(t) for some x( ') є <$(x0)} i.e. R(t) is the attainable (reachable) 
set at time ř, of the differential inclusion. 

We will call a solution of (*), a "bang-bang" solution if its derivative almost all 
time instants lies on the extreme points of JP(', x(*)). 

We can prove the following "bang-bang" theorem for the inclusion (*). 

Theorem 4.1. IfF: T x Rn ~> Pkc(№) is a multifunction s.t. 
1) (ř, x) ~> F(r, x) is measurable 
2) for all t є T, x ~> F(i, x) is u.s.c. 
thenfor every z є R(t), there exists a bang-bang solution 

y(-) of(*)s.t . z = y(t). 
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Proof. From theorem 4.2 of Davy [14] we know that for all te Г, R(t) Ф 0. 
Let x(*) є S(x0) s.t. z = x(i). Consider the map 

<Mk*( . ) )^^ 
defined by: 

<K/) = *o + JO/(s)ds. 
Because of hypothesis 1) and theorem 2.1, Sj^.,^.)) is w-compact and convex 

in L*(T). Also ф(*) is affine, continuous when SF(.,*(-)) has the relative weak L\-
topology. Then applying theorem 3.2 of Artstein [ l ] (although for the result priority 
should be given to Benamara [5], corollary 1.7, p. 39), we can find g(')e 
eextSl

H.Mm)) = SlxiF(.)Xh)) s.t. ф(ог) - z = ф(х). Let y(x) = x0 + f0 g(s)ds. Then 
j ( ' ) is a bang-bang solution and y(t) = z. 

Q.E.D. 

Another important subset ofthe solution set S(x0) of(*) are the extremal solutions. 
Recall that x(»)eS(x0) is said extremal at time te Г, if x(t)edR(t), where #(•) 
is the attainability multifunction. As before T = [0, b] and X = Rn. 

Theorem 4.2. J / F : T x Яи ^ Pkc(^") is a multifunction s.t. 
1) /o r яИ x є Я1", t ~> F(t, x) is measurable and 

aFiUx) й Щх\\2 + 1) a.e. 

2) for all t є Т, x -+ F(ř, x) ř's w.s.c. 
3) the attainability multifunction #(•) has convex values and if {хп(')}п^і — 

Я S(x0) are extremal at {i„}„^i and х„(т) ~> x(x)for all т є Г. 
řfoerc íftere exisís / e T s.t. x(*) /s extremal at t. 
Proof. Since {tn}n^i £ Т and T is compact, by passing to a subsequence if neces­

sary we may assume that tn ~> t є Г. Also from theorem 2 (p. 184) of Kikuchi [24] 
we know that S(x0) is a compact subset of CjT) with the uniform convergence 
topology. So once more without any loss ofgenerality we may assume that xn(') ^>Cn 

~^Cn x(-) є S(x0) => xn(t„) ~> x(r) as n ~> oo. Furthermore from theorem 4 (p. 184) 
of [24] we know that the attainability multifunction #(•) is continuous. Note that 
R(t) = et(S(x0)) where et\ CjT) ^> X is the evaluation map at time t. But et(*) 
is continuous (see Dugundji [19], theorem 1.4, p. 260) and S(x0) is compact in Cn(T). 
Thus R(') is compact valued. Hence R(*) is Hausdorffcontinuous. Then proposition 
2.1 of DeBlasi-Pianigiani [16] tells us that dR(*) is Hasudorff continuous. So 
dR(tn) ^>h dR(t) as n -+ oo. Since xn(tn) e dR(tn) n ^ 1, we conclude that x(t) e dR(t) 
i.e. x(*) is extremal at t є T. 

Q.E.D. 

Remarks . (!) Conditions under which hypothesis 3) is satisfied are provided 
by Blagodatskikh [6]. Specifically if for all t e T, F(f, •) is concave i.e.for all x, z є X 
and X e [0 ,1] XF(t, x) + (l - X) F(t, z) c F(t, Xx + (1 - X) z), then jR(i) is convex 
for all t є Г. 

10 



(2) Density results of the set of extremal solution in S(x0) were obtained under 
stronger hypotheses by Cellina [8] and DeBlasi-Pianigiani [15]. 

(3) An extremal solution is a bang-bang solution if F(% •) has strictly convex 
values. 

Now we pass to control systems. 
First we will consider the following nonlinear control system defined on T = [0, b] 

and X = separable reflexive Banach space. By Xw we will denote X with the weak 
topology. 
(**) x(t) = f(t, x(t)) + g(t, x(t)) u(t) , 

u(*) e Sy , x(0) = x0 . 

The following assumptions will be made concerning (**). 
First about the multifunction U(*). 

(Aj) U:T-* Pwkc(X) is integrably bounded. 
Next for the vector fields / : T x X ^> X and g: T x X ^ R. 

(A2) For all x eX, i ^>f(t, x) and t -^ g(t, x) are measurable and ||/(r, x)|| ^ a{t) 
a.e., \g(t, x)| ^ M where a(*) є L*+. 

(A3) For all t є Т, x ~* /(f, x) is continuous from Xw into Xw and x ~> #(i, x) is 
continuous from Xw into R. 

(A4) For all w(*) є Sl, (**) admits a unique solution x(«, м). 
By R(t) we will denote the attainable set at time t of (**), while by Re(t) we will 

denote the attainable set at time ř, when we use only bang-bang controls (i.e. u(t) e 
є ext U(t) a.e.). 

We have the following approximate bang-bang theorem. 

Theorem 4.3. If ( A ^ to (A4) hold and x e R(t) 
then there exist {x„}ngïl £ Ae(ř) s.ř. x„ ^ w x. Infact R(t) = clw Re(í). 
Proof. Because ofhypothesis (A4) we can define a single valued map ф: (Sy, w) ~> 

~> CXw(T) by )̂(w) = x(% w), where (S^, vv) is the set S^ endowed with the weak 
topology. We will show that ф(>) is in fact continuous. Note that the range of ф(*) 
is in the solution set S(x0) of the differential inclusion 

x(t)ef(t,x(t)) + g(t,x(t))U(t) 
x(0) = x0 

and S(x0) is compact and metrizable in the relative CxjT) topology (see [7] and 
[31]). Also S^ being a w-compact subset in the separable Banach space LX(T), 
is metrizable. So we can work with sequences to showthat $(•) is continuous. Let 
«„(•) ^w~Lxi u(*). Then we have: 

x(t, un) = xn(t) = f(t, xn(t)) + g(t, xn(t)) un(t) a.e. 

A straightforward application of the Dunford-Pettis compactness criterion tells us 
that {*rt(*))w^i is relatively w-compact in LX(T). So by passing a subsequence if 
necessary we may assume that x,,(*) _>w _ L x l

 z(-) e LX(T). Thus for all t є Twe have 
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that 

j 0 x B (s )d S ~» w j 0 z (s )ds=> 

=> xn(t) = x0 + ft/(s, x„(s)) ds + jo g(s, xn(s)) un(s) ás ^w x(t) 

where x(t) = x0 + J0 z(s) ds. On the other hand because of (A3) we have 

Sof(s, *n(s)) ds + jo g(s, xB(s)) і ф ) d5 ^ w j 0 / ( s 5 x(s)) d5 + jo #(s, x(s)) u(s) ds => 

=> x(t) = x0 + jo/(5> *(s)) °̂ s + jo #(s> *(5)) w(s) ^s ^ * ( ' ) 

solves (**) for the admissible control w( ' ) . 

Since S(x0) is compact, metrizable in Cxj[T), we can find {хИк(')Ь^і — {xn{')}n^i 
s.t. ^/,k(*)~>CXwX(')- Because every subsequence has a further subsequence that 
converges in CXJ^T) to x(*) = x(*, w) we conclude that *„(•) ^ c * ^ *(•) => ф^.) is 

continuous. 
Next let x(*,w)eS(x0) s.t. x = x(r,w). Let {un(')}n^1&S^xtF = extSF s.t. 

Mn(#) ^ W - L x l w(-). This is possible by corollary II of theorem 3.3. Then we have 
thatx(- , un) ^C x™x(-, u) => х(т, un) ^>w х(т, w)forallT є T. Butx„ = x(i, un)e Re(ť). 
So the first conclusion of the theorem follows. Since R(t) є Pwk(X) the Eberlein-
Smulian theorem tells us that R(t) = c\w Re(t). 

Q.E.D. 

Remark . Conditions under which hypothesis (A4) is satisfied can be found 
in Cramer-Lakshmikantham-Mitchell [11] (theorem 3.2). 

Assume that the same set ofhypotheses is in effect. Let 

(**.) *(i) - f(t, x(t)) + g(t, x(t)) u(t) , 

" ( ' ) e S e x t u , 4 ° ) = fo­
cali the solution set of (**e), Se(x0). Then from the proof of theorem 4.3 we get 

that: 

Theorem 4.4. Se(x0) is dense in S(x0)for the CXvv(T)-topology. 
We continue our investigation on the properties ofthe control system (**). Assume 

X = Rn, f: T x Rn ~* Rn is jointly continuous, locally Lipschitz in x and integrably 
bounded, #(•, 9)eC+(Tx Rn), is locally Lipschitz in x and integrably bounded 
U: T-> Pk(Rn) has strictly convex values with nonempty interior and is Hausdorff 
continuous and integrably bounded and finally 0 ef(t, x) + g[t, x) int U(t) for all 
(t, x) e T x X. 

Theorem 4.5. If the above hypotheses hold and x(*,w) is an extremal solution 
of (**) 

then x(*,w) solves (**e) i.e. u(*) is a bang-bang control. 

Proof. Consider the following multivalued Cauchy problem 

(***) x(t) e F(t, x(t)) , 
x(0) = x0 , 
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where F(t,x)=f(t,x) + g(t,x)U(t). Clearly x(*,w) solves (***). Furthermore 
from Stefani-Zecca [33] we know that the attainable sets for (**) and (***) are the 
same. Thus x(*, u) is an extremal solution for (***) too. Then let (tn, xn) ~» (t, x) 
in T x X. Then we have: 

h(F(t,, xn), F(i, x)) - h(f(tn, xn) + g(tn, xn) U(tn)J(t, x) + g(t, x) U(t)) й 

й Wf(tn, *n) - f(U x)\\ + h(g(tn9 xn) U(tn), g{t, x) U(t)) й 

й | | /(i, , хя) - f(t, x)\\ + h(g(tnì xn) U(tn), g{tn, xn) U{t)) + 

+ h(g{tn, xn) U(t), g(t, x) U{t)) = \\f(tni xn) - f(t, x)|| + 

+ g(t„ xn) h(U(tn), U(t)) + \g(tn, xn) - g(t, x)\ \U(t)\ 

and this tends to 0 as n ~» oo. So F(*, •) is Hausdoríf continuous. Thus we can 
apply theorem 3.4 of Grasse [22] and get that 

x(t) є dF(t, x(t)) a.e. 

But by hypothesis F(*, •) has strictly convex values and so all boundary points are 
extreme points. Hence we can write that 

x(t) є ext F(t, x(t)) a.e. 

=> x(t) e ext [f(t, x(t)) + g(t, x(t)) U(t)] a.e. 

=> x(t) ef(t, x(t)) + g(t, x(t)) ext U(t) a.e. 

=> x(t) є x0 + Jo/(5> x(s)) ds + Jo 9(s> x(s)) e x t U(s) ds => x(-) = x(-, u) 

with w(*) being a bang-bang control. 
Q.E.D. 

Remark . In general the attainable sets of (**) and (***) are not the same as the 
following simple counterexample illustrates: 

x(t) = x(t) u(t) x є R , u e R , 

x(0) = 0 . 

Then for t > 0 the attainable set for (**) is Ri(t) = {0}, while the attainable set 
for (***) is R2(t) = R. 

We will conclude this paper with a bang-bang result concerning infinite dimensional 
linearcontrol systems. We will show that all extremal attainable states can be reached 
using bang-bang controls. 

Let X be a separable Banach space. By if(X) we will denote the space ofcontinuous 
linear operators from X into itself. Also let A(t) be a time dependent, linear not 
necessarily bounded operator on X which generates an evolution operator Ф: A = 
= {(t, s) e T x T: 0 й s й t й b} ^ £Є{Х) (see Tanabe [34]) s.t. ||4>(i, s)\\ й М, 
B: T~^ <&(X) is continuous for the strong operator topology and U: T^ Pwkc(X) 
is an integrably bounded multifunction. Consider the linear control system governed 
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by the following evoution equation: 

(****) x(t) = A{t) x(t) + B(t) u(t), 

u(-)eSl, x(0) = x0 . 

We will assume that for each w ( ' ) e S j , (****) admits a mild solution.Finally 
let JR(*) denote the attainability multifunction of (****). 

Theorem 4.6. / / z є ext R(t) 

then z = x(ř, u) where x ( ' , u) solves (****) and w(*) is a bang-bang control. 

Proof. By hypothesis we have: 

x(i, u) = 0(t, 0) x0 + Jo &(t, s) B(s) u(s) ds 
and note that 

R(t) = Ф(*, 0) x0 + jo *(i ,s) B(s) U(s) ds => 

=> ext A(t) = #(i, 0) x0 + ext jo <P(t, s) B(s) U(s) âs . 

Note that Ф(г, s) B(s) U(s) e Pwfc(X) and if {u„(')}n^1
 i s a Castaing representation 

for U(*), for all у є X we have: 

d0(t,s)B(s)uts)(y) = inf ||j> - Ф(*, s) J3(s) Mw(s)|| => 5 ^ ^(ř,S)B(S)rj(S)(v) is measurable 
« i i 

=> 5 ^ Ф(ґ, s) B(s) U(s) is measurable and clearly integrably bounded . 

Then we can apply theorem 3.4 and get that 

ext R(t) Я <P(t, 0) x0 + jo ext Ф(г, s) B(s) U(s) ás с 

S <p(f, 0) Xo + jo * ( i , s) J5(s) ext tf(s) ds . 

Let u(-) e Slxtu s.t. x(ř) = Ф(г, 0) x0 + jo Ф(г, s) B(s) w(s) ds => x(% w) solves (****) 
with w(-) being a bang-bang control. 

Q.E.D. 
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